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Abstract—The Ozone density and its decrease in the atmo-
sphere are one of the main concerns of nowadays. The Ozone
density is tracked using the Ozone Measurements Instrument
(OMI). During tracking and collection of information, missing
data occur because of the pathway the instrument is going.
Reconstruction of those missing data can be done using the results
from the compressive sensing (CS) approach. The application of
a CS algorithm based on the gradient-descent method for the
Ozone density data reconstruction is presented in this paper.
The algorithm is based on varying the missing data to promote
sparsity in each frame. The algorithm is modified for a more
efficient reconstruction by using the dynamic information about
previous frames. The reconstruction results for some recent
Ozone data are presented.
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I. INTRODUCTION

The Shannon-Nyquist theorem is used for representing
continuous-time signals into discrete-time domain. It states
that every signal can be recovered from the discrete-time
samples if the frequency of sampling is at least twice as high
as the maximum frequency of the given signal. The sampling
theorem can be restated in the following way. If the Fourier
transform of a continuous-time signal is of finite duration, then
we do not need to know all its values in order to reconstruct
the signal.

Compressive sensing (CS) is a field dealing with sparse
signals. A signal can be transformed to different domains
with a possibility to obtain the exact signal via the inverse
transform. A signal is sparse in a transformation domain if
the number of non-zero coefficients in that domain is much
fewer than the number of signal samples. For a signal that
has a small number of non-zero coefficients in a transfor-
mation domain we can expect that it can be recovered from
a smaller set of signal samples. The goal of compressive
sensing in signal processing is to reconstruct all values of a
sparse signal with a smaller number of randomly positioned
samples/measurements than it is required by the Shannon-
Nyquist theorem if the recovery conditions are met [1-6].
Since many signal processing problems are dealing with
signals which are sparse in a transformation domain, the CS
already expanded in many areas, such as image processing,
tracking, biomedicine, communications, radar processing, etc.
Since the introduction of CS, there are many methods and
techniques developed for the reconstruction of a sparse signal.

The one considered in this paper belongs to a large group of
the gradient-based algorithms. This algorithm uses the missing
values as variables and reconstructs the unavailable signal
samples/measurements [7], [8]. The idea of sparse signals
reconstruction by varying the missing samples is applied in
this paper to the Ozone data. The missing data occur due to
a different pathway of the Ozone Measurements Instrument
(OM]) in comparison to the Earth’s rotation [9], [10]. The
reconstruction of missing Ozone data, implicitly assuming data
sparsity in the discrete-cosine transform (DCT) domain, is
done in this paper. Dynamic properties of the successive Ozone
data frames are used to improve calculation complexity and
efficiency of the reconstruction algorithm.

The paper is organised as follows. The problem formulation
in the compressive sensing approach, the basic theory of
Ozone density data and the relation to dynamic signal presen-
tation are given in the Section II. The reconstruction algorithm
is presented in Section III. The results of the reconstructed data
of Ozone density are shown in Section IV. The conclusions
are given in Section V.

II. THEORETICAL BACKGROUND

The general compressive sensing problem formulation is
reviewed in this section, along with the theory of the Ozone
density and its relation to the sparse signal processing with
missing data.

A. Ozone Problem Formulation

The Ozone is a very thin layer in the stratosphere, which
takes only a fifth of 1% of the Earth’s atmosphere. Its role
is to preserve Earth from Sun’s radiation of ultraviolet waves.
The Ozone density is calculated in Dobson Units (DU) and
it can be defined as the amount of Ozone squeezed in 1mm
and at freezing point 0 degree Celsius. The usual amount of
Ozone is about 300 DU. Region where the Ozone layer is, for
example, around 100 DU (thinner than usual), is defined as
the Ozone hole in the atmosphere, [9-11].

The Ozone Measurements Instrument is used for tracking
the Ozone density [9]. Because of the rotation of the Earth and
the path of the instrument, there are regions where it cannot
track the information and missing data occur. An image of
one day Ozone density data tracked by OMI is shown in Fig.
1, implemented from [11]. This kind of image will be used
for the reconstruction. The missing data are represented as the
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Fig. 1. The available Ozone density data for one day

blue stripes on the image. The reconstruction of missing data
on this kind of information is a complex and costly insufficient
task to be solved on the instrument hardware. It turns out that it
is easier to do it on the software part of the instrument. In this
case, CS approach will be used in a specific way. If we assume
that the signal representing Ozone data is sparse, we can
reconstruct the missing parts of data if the CS reconstruction
conditions are satisfied. So in the reconstruction we will
consider the blue stripes as unavailable/missing samples and
assume that the data are sparse in the two-dimensional Discrete
Cosine Transform (2D-DCT) on appropriately defined blocks.

B. CS Problem Formulation

Within the sparse signal processing framework, the Ozone
density can be described as a two-dimensional dynamic signal.
Consider the original Ozone data as an M x N dynamic signal
x; at a frame corresponding to the measurement time ¢. The
signal can be written in vector form as

X = [2¢(0,0), ..,z (M — 1, N = 1)]". (1)

As a transformation domain the two-dimensional DCT will be
used. It is calculated as

M N
Xi(k, 1) = ) " ai(m,m)p(k, 1, m,n), )

m=0n=0

where ¢(k, [, m,n) are two-dimensional DCT basis functions

2m — 1)k on — 1)1
(k,l,m,n) = ce; cos (W) oS <7T(ZN)>
3

with ¢ ; being scaling constants ¢, = l/m for kK = 0,
cr = +/2/M for k # 0.

If the basis functions are rearranged into an appropriate
matrix ®, then for the frame ¢, the DCT transform and its
inverse can be written as

X; = ®x;, x; = PXy, 4

where W is the inverse transform matrix.

Next the assumption that the Ozone data is a sparse signal
in the two-dimensional DCT domain will be made. The
signal x¢(m,n) is K-sparse in the considered transformation
domain if the number of nonzero coefficients K in X;(k,!)
is such that K << MN. Sparse signals can be recon-
structed from much fewer number of randomly positioned

signal samples (that may also be considered as measurements
or linear combinations of the sparse transform coefficients).
Assume that the signal is known at a set of time positions
Ny = {(m1,n1), (m2,n2),...,(mn,,nn,)}. The Ny signal
samples or measurements of a linear combination of X (k,1)
are denoted as a vector y. Its values are

M N
w(ming) =Y > X(kD(mi,ni k). (5)

k=11=1

They can be written in matrix form
Y = AXy (6)

where y, = [z(m1,n1),...,z¢(mn,,ny, )]  and matrix A,
is an N4 X M N measurement matrix defined from trans-
formation matrix ¥, omitting the rows corresponding to the
unavailable samples. The general CS task is to recover the
signal using the available measurements. In our case it means
to recover the unavailable Ozone measurements using the
available ones. Since the signal is sparse in the transformation
domain, the minimization is done on the sparsity measure
function. The basic sparsity measure would be counting of
nonzero coefficients in X;(k,l). This is done by the com-
mon fp-norm. The sparsity measure can be considered as
minimization of ||X;||, subject to y, = A;X;. However,
the fp-norm is not convex and cannot be used in efficient
optimization algorithms. The ¢;-norm, as the closest convex
norm, is used instead of the {y-norm. With this assumption
we can reformulate the problem within the CS framework.
The available Ozone data at a frame ¢ are denoted by y, and
the missing data will be the aim of reconstruction using the
formulation

min ||X;[|; subjectto y, = A;X,. @)

Under some conditions the £;-norm minimization produces
the same result as if the /y-norm were used.

C. Ozone Density as a Dynamic Signal Presentation

For the initial calculation and the graphical presentation
the missing measurements in the Ozone data signal will be
considered as zero-valued, Fig. 1. Then this signal can be
written as

zi(m,n for (m,n) € Ny
xgo)(m,n) _ t( ) )7 ( ) ) (8)
0, elsewhere
with Ny = {(m1,n1), (m2,n2),...,(mn,,nn,)} being the
set of positions of available measurements/samples. The rela-
tion between the previous and the present frame is

X: =Xi-1+4q, )

where q, represents the dynamic change of the coefficients in
the previous frame, [12-14]. The vector q, is assumed to be
sparse to obtain a sparse signal for X;. If the vector q, has
non-zero coefficients at the positions different from the X;_,
then the signal has changed. Otherwise, we will assume that
the signal sparsity remains unchanged.



The two main steps in the reconstruction of dynamic signals
are prediction and update. In the prediction step, the analysis
of the dynamic signal at the frame ¢ is done, by using the
key information from previous frames. In the update step, the
coefficients at the present frame ¢ are adapted.

III. RECONSTRUCTION ALGORITHM

The gradient algorithm is based on efficient minimisation of
the sparsity (7) by varying the unavailable samples (8). This
algorithm for one-dimensional case is introduced in [7], [8]
and in two-dimensional form in [15], [16]. The dynamic signal
reconstruction algorithm is presented in [16]. For an M x N
two-dimensional signal z;(m, n) at a frame ¢ the sparse signal
in the 2D-DCT domain the reconstruction algorithm can be
described in six steps.

Step 1: Initialize the signal values set of unavailable sam-
ples (m,n) ¢ N to zero. The signal at a frame ¢ will then
be defined as

2" (m,n) = {

In the case of Ozone data, this step is already given in this
form. The blue stripes in Fig. 1 are the zero values at the
positions of unavailable samples.

Step 2: Add a value of +A to an unavailable sample. The
new signals can be written as

x¢(m,n), for (m,n) € Ny

(10)
0, elsewhere.

x4 (m,n) = zgp)(m, n) + Ad(m — m;,n — n;) an
Zia(m,n) = ;vgp)(m,n) — Ad(m —my,n —ny)
with p being the iteration number. The step A is taken to be
the maximal absolute value of the available data values.
Step 3: For the available data, the gradient value g;(m;, n;)
is zero, which means that they do not change. The gradient
value corresponding to an unavailable sample is estimated as a
difference of ¢;-norms of signals formed in the previous step
_ Xy = Xl
gt(mi, n;) = 5A
where Xy = DCT2{x11}, Xt2 = DCT2{x:2}.
Step 4: The missing values (m,n) ¢ N, at the present
iteration p are updated using the knowledge of the values from
the previous iteration p — 1 as

xip) (mi,n;) = xﬁp‘”

12)

with a step p opposite of the gradient. The available signal
values are not changed.

Step 5: After a number of iterations, when the reconstructed
values are close to the result, they will oscillate around it.
This is because of the nature of the gradient of this sparsity
measure. Therefore, we should decrease the step size, for
example as for A = A/10 and p = 1/10 and continue the
reconstruction. We continue with the process until the desired
reconstruction precision is achieved. The reconstruction of the
present frame is stopped when the change in two successive
iterations is smaller than the desired precision ¢
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Fig. 2. The data from 26'" January with the data reconstructed for 25"
January

— 2P Y (m,n)| < e (14)

max zgp)(m,n)

m,n
for (m,n) ¢ Nu. The Ozone data is an integer of order
10%. Therefore, the acceptable relative error between two
successive iterations of reconstruction should of 10=* order
for a successful reconstruction. Additionally, from the theory
of CS we know that the reconstruction of a sparse signal leads
to a sparse unique solution. When the desired precision is
achieved, we go to Step 6.

Step 6 (Prediction): When a frame is successfully recon-
structed, we move on to the next frame. The difference we
make in comparison to the first frame is that we do not start
from zero values at the unavailable samples. This time, we
rather set the values from the previous frame at the positions
of the missing samples. Note that the value at the positions of
missing samples can be available in the previous frame and
vice versa. The initial signal will then be written as

2" (m,n) = {
(p)

where z,(m,n) are the available data and x,”’; (m,n) are the
data reconstructed from the previous frame at the positions of
the missing (corrupted) data. An example of the signal taking
the values from the previous frame is shown Fig. 2.

x¢(m,n), for (m,n) € Ny

15)

z¢—1(m,n), elsewhere

When the signal in the new frame is defined, we go
back and repeat Steps from 2 to 6. When each frame is
recovered, the reconstruction is finished. In (15) the simplest

dicti (0) - .
prediction form z; ’(m,n) = z,_;(m,n) is used for the
missing measurements. The prediction can be improved using
more advanced methods. For example, applying an L-order
adaptive LMS system

x£0)(m7 n) = hO(t)wtfl(m; n) + ...+ hL71(t)l’t,L(m,n)

= h(t)x¢(m,n)

h(t) =h(t — 1) + pe(m, n)x;—1(m,n) (16)

where in prediction setup e(m,n) = x;(m,n) —h(t)x;(m, n).
Additional prediction improvement can be achieved using
more advanced adaptive systems or Kalman filters in this step,
[13].
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Fig. 3. Corrupted Ozone density data (left), and reconstruction data (right);
for days from 25" (top) to 28" (bottom) of January 2016

IV. NUMERICAL RESULTS

We present the reconstruction of the Ozone density data for
days from 25" to 28" of January 2016. The data is taken
from original OMI documented files, imported from [11]. The
data with unavailable measurements are shown in Fig. 3 (left).
The reconstructed data are shown in Fig. 3 (right). In our
case, the relative error between two successive iterations, for
a successful reconstruction, was of order 10~%. A comparison
between the Orthogonal Matching Pursuit algorithm, Hier-
archical Bayesian-Kalman filter, and the presented gradient-
based algorithm is done in [16]. Also, it can be seen that
the first frame needs more time for the reconstruction than
other frames for the same precision. For the first frame, the
algorithm needs approximately 39.35 seconds for the recon-
struction, whereas for every other frame (i.e. when the values
from the previous frame are used to predict the unavailable
values in the next frame) it needs 22.12 seconds on average.

V. CONCLUSIONS

The reconstruction of Ozone density data using a gradient-
descent compressive sensing algorithm is presented. Because

of the hardware nature of the instrument for tracking the
Ozone, the data has missing parts as shown. The gradient-
descent algorithm can successfully reconstruct this kind of
data because of its characteristic to take the missing samples
of data as the variables, leaving the ones which are available
unchanged. In this case, we implicitly assumed that the data
is sparse in the 2D-DCT domain. Then, as we already had
the missing samples set to zero, we try to reconstruct them
with a desired precision. Since the reconstruction is done in
the time domain, other major advantage of the algorithm is
that it does not use the signal sparsity in a strict sense. The
difference in other frames calculation to the initial one is that
we use the values found in the previous frames and continue
the reconstruction process based on appropriate prediction.
The reconstruction, after the initial frame, is more efficient.
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