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Abstract—Sparse inverse synthetic aperture radar (ISAR)
images can be reconstructed using a reduced set of data and
compressive sensing based theory. In real cases the ISAR images
are noisy and only approximately sparse or not sparse. The
influence of the additive input noise and nonsparsity of the
ISAR data to the reconstructed images is analyzed in this paper.
Simple and exact formula for the mean square error (MSE) in
the reconstructed ISAR image is derived. Results are tested on
examples and compared with statistical data in the cases of: 1)
input additive noise and sparse ISAR images and 2) nonsparse
ISAR images reconstructed assuming that they were sparse.
Statistical data confirm the theoretical results.
Index Terms—Radar imaging, ISAR, noisy signal, sparse signal,
compressive sensing

I. INTRODUCTION

Inverse Synthetic Aperture Radar (ISAR) is a technique
in radar processing for obtaining a high resolution two-
dimensional signal of the target of interest. The ISAR image
is obtained as a two-dimensional Fourier transform of the
received signal, after its appropriate pre-processing. Since the
target commonly consists of a small number of reflectors,
the signal can be considered as sparse in the transformation
(ISAR image) domain. It means that the compressive sensing
(CS) theory can be used for ISAR signal processing and
reconstruction [1]–[7].

The aim of CS is to achieve full information of a signal
from a reduced set of data/measurements/observations [8]–
[15]. A reduced set of data in the ISAR imaging can occur for
different reasons. Some parts of the signal may not be available
due to the physical constraints. The radar signal can also be
highly corrupted in some parts that it is better to omit them
from the reconstruction [16]–[22]. In this case, the corrupted
data will be declared as unavailable and the set is reduced
to the ones which are not corrupted. The method of reducing
the set of available measurements can be beneficial for the
effectiveness of processing of radar signals by transmitting
only a few random pulses of the signal as well.

In real cases the ISAR data are noisy and only approxi-
mately sparse or not sparse [23]–[26]. The influence of the
additive input noise and nonsparsity of the ISAR data to
the reconstructed images is analyzed in this paper. Simple
and exact formula for the mean square error (MSE) in the
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reconstructed image is derived. Results are tested on examples
and compared with statistical data in the cases of: 1) input
additive noise and sparse ISAR images and 2) nonsparse
ISAR images reconstructed assuming that they were sparse.
Statistical data confirm theoretical results for the MSE.

The paper is organized as follows. The radar signal model
for ISAR is presented in Section II. Model for missing
samples in the initial signal is given in this section as well.
Additive noise influence is reviewed in Section III. Relations
for influence of nonsparse ISAR signal analysis, using the
sparsity assumption, are given in Section IV. All theoretical
relations are illustrated on numerical and statistical examples.

II. RADAR SIGNAL MODEL

Consider a radar that transmits continuous-wave linear
frequency-modulated signals in a series of M chirps. The
received signal is a delayed version of the transmitted signal.
Assuming that a target consists of K scattering points, after
common post-processing of the received signal is done, the
signal component corresponding to the ith scattering point can
be written as

qi(m, t) = Aie
jΩ0

2di(t)

c e−j2πBfr(t−mTr)
2di(t)

c (1)

where Ω0 is the radar operating angular frequency, c is the
speed of light, Ai is the reflection coefficient of ith scattering
point, while 2di(t)/c is the corresponding delay of the re-
ceived signal component to the transmitted one. The distance
of this point is denoted by di(t). The single chirp repetition
time is Tr = 1/fr. The number of samples within a chirp is
N . One revisit time is Tc = MTr (coherent integration time
- CIT). The index m will be used for the slow time (chirp
index). For a system of point scatterers, the signal is equal to
the sum of the individual point scatterer responses, [1]. The
Doppler part of the received signal will be denoted by

si(t) = Aie
j2di(t)Ω0/c. (2)

The range part of the received signal can be written as

ri(t) = ej2πγn/N

since exp(−j2πBfr(t −mTr)2d(t)/c) reduces to with γ =
−BfrTsN(2d(t)/c) and t−mTr = nTs. The index of a signal
sample within one chirp (fast time) is denoted by n and the
sampling interval within that chirp is defined as Ts = Tr/N .



Consider a target consisting of K scattering points. Then
the signal can be written as when the target motion may be
considered as uniform within the CIT. The distance of the ith
scattering point to radar can be written as di(t) ∼= d0 + vit ∼=
d0 + vimTr

After the distance compensation, the received signal at the
ith scattering point can be defined as

qi(m,n) = Aie
jΩ02viTrm/cej2πγin/N

= Aie
j2πβim/Mej2πγin/N ,

where vi = yi0ωR, βi = 2Ω0yi0ωRTr/c and γi =
−BfrTsN(2di(t)/c) are the constants proportional to the
velocity (cross-range yi0) and range (after distance d0 com-
pensation γi = −2Bx0i/c since Ts = Tr/N = 1/ (frN)).

The target signal with K scattering points is

q(m,n) =

K∑
i=1

qi(m,n).

The two-dimensional FT of the signal q(m,n) is

Q(k, l) =

M−1∑
m=0

N−1∑
n=0

q(m,n)e−j(
2πmk
M + 2πnl

N ), (3)

where q(m,n) is the discrete received and processed signal
and the indices k and l are the discrete two-dimensional FT
frequencies, where k is proportional to the cross-range and l
is proportional to the range.

Assume that some parts (few samples or blocks) of the sig-
nal are highly corrupted or not available at random positions.
The samples are then omitted from the analysis [11]. The two-
dimensional FT estimate of the new signal is

Q̂(k, l) =

M−1∑
m=0

∑
n∈NA(m)

q(m,n)e−j(
2πmk
M + 2πnl

N ). (4)

where NA(m) represents the set of available samples within
the m-th chirp, and the total number of available samples is
in the range 1 � NA ≤ MN . Note that the unavailable/cor-
rupted data can occur within one chirp only or spread over
more chirps, including the possibility that a few chirps in a
row are affected. Also note that it could happen that there are
no available samples within mth chirp, i.e. NA(m) = ∅.

For a large number of randomly positioned unavailable
samples MN −NA the value of Q̂(k, l) is a sum of vectors
with quasi arbitrary phases (for k and l not corresponding to
βi and γi). It can be considered as a complex-valued variable
(missing samples noise) with Gaussian distributed real and
imaginary parts (as shown in [13]). Its variance is

var{Q̂(k, l)} = NA
MN −NA
MN − 1

A2
i . (5)

For K scattering points and k and l we may write [13]

E{Q̂(k, l)} =

K∑
i=1

AiNAδ(k − βi, l − γi) (6)

var{Q̂(k, l)} = NA
MN −NA
MN − 1

K∑
i=1

A2
i (1− δ(k − βi, l − γi)) .

III. INFLUENCE OF ADDITIVE INPUT NOISE

Let us consider now that an additive noise ε(m,n) exists in
the available data. When the recovery is achieved, accuracy of
the result is related to the input additive noise in signal samples
since the missing samples noise influences the possibility to
recover the signal only. Reconstruction of noisy signal is based
on

q(m,n) + ε(m,n) =
1

MN

K∑
i=1

QK(ki, li)e
j(

2πmki
M +

2πnli
N ),

for 0 ≤ m ≤ N − 1, n ∈ NA(m). (7)

Its matrix form is
y + ε = ΨQK .

This is a system of NA linear equations with K un-
knowns QK(ki, li) in vector QK . The transform indices
can take a value from the set of detected values (k, l) ∈
{(k1, l1), (k2, l2), ..., (kK , lK)}. The solution of this system
of NA equation for the unknown values of

QK = (QK(k1, l1), QK(k2, l2), ..., QK(kK , lK))

is found as

QK =
(
ΨHΨ

)−1
ΨH(y + ε), (8)

where QK = QKS + QKN contains the true transform
coefficients and the noise values of the reconstructed transform
coefficients, respectively [26].

If the full signal is available, i.e. there are no unavailable/-
corrupted samples, the input signal-to-noise ratio (SNR) would
be

SNRi = 10 log

∑M−1
m=0

∑N−1
n=0 |q(m,n)|2∑M−1

m=0

∑N−1
n=0 |ε(m,n)|2

= 10 log
Es
Eε
. (9)

The scattering coefficient value (component amplitude) at
(ki, li) would be MNAi if all signal samples are available.
When NA samples are available, the coefficient is scaled
to NANAi and the reconstruction algorithm performs its
rescaling by a factor of MN/NA. It means that the noise in the
transform coefficients is rescaled by the same factor MN/NA.
The noise energy is increased to EεA(MN/NA)2 during the
reconstruction. The energy of noise in the available signal
samples is denoted by EεA. The SNR in the reconstructed
signal is

SNRf = 10 log
Es

M2N2

N2
A
EεA

(10)

Having in mind that only K out of MN coefficients are
used and considered as nonzero, the energy of the reconstruc-
tion error is reduced for the factor of K/(MN). Therefore,
the noise energy in the reconstructed signal is

EεR =
K

MN

M2N2

N2
A

EεA.

For a white input noise, the energy of noise in the recon-
structed signal is

EεR =
K

NA
Eε =

K

NA
MNσ2

ε ,



TABLE I
RESULTS FOR THE RECONSTRUCTION ERROR IN [dB] FOR NOISE ONLY

CASE FOR NA = MN/3 AND NA = MN/2

NA = 1
3
MN K = 10 25 50 75 100

Statistics −38.4 −34.5 −31.3 −29.5 −28.1
Theory −38.3 −34.4 −31.4 −29.6 −28.3

NA = 1
2
MN

Statistics −40.3 −36.2 −33.0 −31.3 −30.0
Theory −40.1 −36.1 −33.1 −31.4 −30.1

since the variances of noise in all samples and in the available
samples are the same, i.e.

1

NA
EεA =

1

MN
Eε.

In the case of additive input noise in the available signal
samples, the output SNR will be increased if the estimated
number of components K is as small as possible, for a given
number of available samples NA. In an ideal case, the value
of K should be equal to the signal sparsity.

Example 1: Consider a sparse noisy signal

q(m,n) =
( K∑
i=1

Aie
j2π(k1im/M+k2in/N)

)
/(MN) + ε(m,n)

where k1i, k2i are random frequency indices from 0 to N − 1
and 0 to M − 1. In this example we will use M = N = 64
and assume that the first K components of the signal are
reconstructed. Signal amplitudes of randomly positioned com-
ponents are Ai = 1, for i = 1, ...K. The additive noise is
complex i.i.d. Gaussian with standard deviation of real and
imaginary parts σn = 0.1/(MN). Their variance is σ2

ε = σ2
n.

Factor 1/(MN) is used in the standard deviation to normalize
its value to the signal amplitudes. Two cases are considered
with NA = MN/2 = 2048 and NA = MN/3 ≈ 1365.
That is, we will consider the cases when 50% and 33% of
the signal data is available. Additionally, K will be used from
K = {10, 25, 50, 75, 100}. The reconstruction results for the
squared error,

Estat = 10 log
(
‖QK−QR‖

2
2

)
(11)

Etheory = 10 log
(
K

(MN)2

NA
σ2
ε

)
, (12)

averaged in [dB] over 100 realizations of randomly positioned
available samples, are given in Table I. A complete MATLAB
code (to fully reconstruct this calculation) is given at the end of
this paper. Agreement with the theory is within the statistical
confidence for the number of performed realizations.

IV. NONSPARSE SIGNAL RECONSTRUCTION

In Section II it has been shown that the missing sam-
ples in the initial signal can be represented by a noise.
Assume a signal whose two-dimensional DFT is Q with
sparsity K. According to the presented analysis, if we apply
a reconstruction algorithm on the signal whose DFT is not
sparse (or not sufficiently sparse), then the nonreconstructed
components will behave as additive noise. General bounds for

the reconstruction error for nonsparse signals, reconstructed
with the sparsity assumption, are given in [12]. Here we will
present an exact relation for the reconstruction error for the
ISAR image. Denote by QK the sparse signal with K nonzero
coefficients equal to the largest K coefficients of Q. The K-
sparse original signal transform will be denoted as QK where
QK(k) = Q(k) for k ∈ K and QK(k) = 0 for k /∈ K.
We will assume that the sparsity K and the measurements
matrix satisfy the reconstruction conditions of CS. Then the
reconstruction algorithm can detect (one by one or at once)
the largest K components (A1, A2,...AK) and perform signal
reconstruction to get reconstructed signal QR. The remaining
MN−K nonreconstructed signal components with amplitudes
(AK+1,AK+2,...,AMN ) will be considered as noise in the K
largest reconstructed components. Then we get the energy of
error in the reconstructed components as a function of the
energy of nonreconstructed components

‖QR−QK‖
2
2 = K

MN −NA
NAMN

‖Q−QK‖
2
2 .

The proof, along with a generalization to the nonsparse noisy
ISAR signal, is presented in [23]. This relation will be
illustrated and confirmed on examples.

Example 2: Consider a nonsparse signal

q(m,n) =
( S∑
i=1

Aie
j2π(k1im/M+k2in/N)+

MN∑
i=S+1

Aie
j2π(k1im/M+k2in/N)

)
/(MN)

where k1i, k2i are random frequency indices. Signal ampli-
tudes are Ai = 1, i = 1, ..., S at the randomly positioned
components, while the remaining components are Ai =
0.5e−i/(2S), i = S + 1, ...,MN . Using M = N = 64, the
first K = S components of the signal are reconstructed (cases
when K 6= S are analyzed in [23] as well). The remaining
MN − S signal components are considered as a disturbance.
Reconstruction of the nonsparse signal q(m,n) for several
values of assumed sparsity K is done. The square error for 100
realizations with random frequency positions and positions of
available samples is calculated. When the nonsparse signal is
noise-free, the results of

Estat = 10 log
(
‖QK−QR‖

2
2

)
(13)

Etheory = 10 log
(
K
MN −NA
NAMN

‖Q−QK‖
2
2

)
, (14)

averaged in [dB] in 100 realizations, for NA = MN/3 and
NA = MN/2, are given in Table II.

The analysis is done on simulated ISAR Boeing data
[1]. The simulation uses X-band radar operating at a center
frequency of 9 GHz. The bandwidth of the waveform is 150
MHz with a range resolution of 1 m. The original ISAR
image is presented in Fig.1. Assuming different sparsities, the
results are presented in Fig.2. The sparsities K correspond
to 0.7812%, 3.125%, 6.25%, and 12.5% of the total number
of points MN = 16384. The square error normalized to
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Fig. 1. Original ISAR using all signal samples. The logarithmic scale is on
the right.
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Fig. 2. Original ISAR and reconstructed assuming different sparsities, , K =
128, K = 512, K = 1024, and K = 2048.

the sparsity K and the total maximal coefficient value are
calculated as:

Estat = 10 log

( 1
K ‖QK−QR‖

2
2

maxk,l{|Q(k, l)|2}

)
(15)

Etheory = 10 log

( MN−NA
NAMN ‖Q−QK‖

2
2

maxk,l{|Q(k, l)|2}

)
.

TABLE II
RESULTS FOR THE RECONSTRUCTION ERROR IN [dB] FOR NONSPARSE

NOISE FREE CASE IN FOR NA = MN/3 AND NA = MN/2

NA = 1
3
MN K = 10 25 50 75 100

Statistics −24.0 −15.5 −9.4 −5.8 −3.1
Theory −23.7 −15.6 −9.5 −6.0 −3.5

NA = 1
2
MN

Statistics −26.9 −18.8 −12.4 −8.7 −6.2
Theory −26.7 −18.6 −12.6 −9.0 −6.5

TABLE III
THE MEAN SQUARE ERROR IN THE ISAR RECONSTRUCTED COEFFICIENTS

FOR BOEING DATA AND VARIOUS ASSUMED SPARSITY K .

NA = MN/3 K = 128 512 1024 2048
Theory −25.28 −30.51 −34.53 −38.38

Statistics −25.66 −30.12 −34.04 −38.13

TABLE IV
THE MEAN SQUARE ERROR IN THE ISAR RECONSTRUCTED COEFFICIENTS

FOR MIG DATA AND VARIOUS ASSUMED SPARSITY K .

NA = MN/2 K = 50 150 250 350
Theory −20.92 −24.72 −28.71 −31.60

Statistics −20.19 −24.36 −28.17 −30.34

The errors are checked statistically by using 33% of the
available samples at random positions in 100 realizations. The
mean normalized error energy in K reconstructed components,
obtained statistically and using the energy of remaining com-
ponents, is given in Table III. The accuracy of the reconstruc-
tion result is proportional to the energy of remaining content.

The same analysis is performed on the ISAR MIG data
[1]. The simulation parameters are: X-band radar operating at
9 GHz, with 512MHz bandwidth and a range resolution of
0.293 m. The ISAR image is presented in Fig.3.

For various assumed sparsities, the reconstructions with
available 50% of the original data are presented in Fig.4.
The sparsities K = 50, 150, 250, and 350 are considered. The
results are checked statistically by using random realizations
of the available samples in 100 trials. The mean normalized
error energy in K reconstructed components is given in Table
IV, calculated statistically and using the theory.

V. CONCLUSIONS

In this paper, we examined the influence of noise and non-
sparsity on the ISAR image reconstruction. Simple relations
are tested on a simulated example. The cases of noisy and
nonsparse data are considered. The results are tested on Boeing
and MIG ISAR data with various assumed sparsity levels.
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[25] LJ. Stanković, and I. Stanković, “Reconstruction of Sparse and Non-
sparse Signals From a Reduced Set of Samples,” ETF Journal of
Electrical Engineering, Vol.21, pp.147-169., Dec. 2015.

[26] LJ. Stankovic, “On the ISAR Image Analysis and Recovery with Un-
available or Heavily Corrupted Data,” IEEE Transactions on Aerospace
and Electronic Systems, Vol.51, no.3, pp.2093-2106, July 2015.


