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Abstract—Commonly ISAR/SAR images can be considered
as sparse. Therefore they can be obtained from a reduced
set of measurements (pulses) by using Compressive Sensing
reconstruction techniques. In this paper we analyze influence
of the pulse selection strategy to the uniqueness of the obtained
radar image from a reduced set of pulses. A simple algorithm
for optimal pulse selection strategy is proposed. It is shown that
the proposed method can significantly increase sparsity limit
(maximal number of target points in a radar image) when the
reconstruction uniqueness can be guaranteed.

Index Terms—Radar, ISAR, SAR, Compressive sensing, Re-
construction uniqueness

I. INTRODUCTION

Compressive sensing (CS) theory is introduced in [1]. Its
possible applications, including signal processing [2], [3], are
intensively studied in the past decade. It is shown that the CS
can be used in many signal processing applications including
radar signal processing.

Inverse Synthetic Radar Imaging (ISAR) and Synthetic
Radar Imaging (SAR) are techniques for obtaining target
image based on analysis of radar return signal [4], [5]. Target
is illuminated with series of N radar pulses (lineary frequency
modulated) and target image is obtained as 2D Fourier trans-
form of the radar output. Especially in the ISAR case there is
relatively small number of target scatterers and target image
is sparse signal. Only a small part of image has non-zero
values. These facts are intensively used for the CS based
ISAR imaging [6]–[16]. From the CS point of view we can
consider each pulse as a measurement and the obtained radar
image as an output sparse signal. Reconstruction of the sparse
signal based on a reduced set of measurements is important
topic within CS framework. There exists many reconstruction
methods [17]–[20]. In each of them the uniqueness of the
obtained reconstruction is very important.

In the considered scenario radar omits some pulses during
the coherent integration time (CIT) as illustrated in Fig. 1.
The positions of omitted pulses are known and controllable
by the radar. The problem addressed within this paper is in
optimal strategy of selecting pulses that can be omitted, having
in mind that the reconstruction should remain unique. Solution
uniqueness is checked by recently proposed theorem [21]. It is
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Fig. 1. Illustration of the CS based ISAR image formation. Three out of 6
pulses are omitted (marked with ×). In order to obtain clear ISAR image
reconstruction of missing measurements should be performed.

shown that a random pulse selection is not optimal. A simple
algorithm for optimal selection is presented.

Omitting some pulses reduces the total transmitted energy,
making the radar system more energy efficient. This can also
reduce the probability of radar detection.

Uniqueness theorem guaranties reconstruction uniqueness
for sparsities lower than certain sparsity limit. In the radar
imaging scenario this sparsity limit can be considered as the
number of scatterers.

Reconstruction uniqueness is reviewed within Section II and
the analysis of the worst and the best cases is performed.
Based on this analysis optimal sampling strategy is proposed
in Section III. Improvements in the sense of maximal allowed
sparsity is analyzed and presented as well.

II. RECONSTRUCTION UNIQUENESS CHECK

Uniqueness of the signal reconstructed from a reduced set
of samples is recently proposed [21]. It is assumed that the
signal is sparse in the DFT domain calculated with N = 2r.
For an arbitrary signal uniqueness is checked with Theorem
1 and Corollary 2. Sparsity limit obtained by Theorem 1 is
strict. It is shown that many cases covered with Theorem 1
are zero probability events leading to a relaxed uniqueness



check, formulated as Corollary 2. Zero probability events that
reconstructed signal components and their amplitudes are fully
correlated to the positions of missing samples are neglected.

Theorem 1 Consider a signal x(n) that is sparse in the
DFT domain with unknown sparsity. Assume that the signal
length is N = 2r samples and that Q samples are missing
at the instants qm ∈ NQ. Assume that the reconstruction is
performed and that the DFT of reconstructed signal is of
sparsity s. The reconstruction result is unique if the inequality

s < N − max
h=0,1,...,r−1

{
2h (Q2h − 1)

}
− s

holds. Integers Q2h are calculated as

Q2h = max
b=0,1,...,2h−1

{
card{q : q ∈ NQ, mod(q, 2h) = b}

}
Corollary 2 Consider the signal x(n) that is sparse in the
DFT domain. Assume that signal length is N = 2r samples
and that Q samples are missing at the instants qm ∈ NQ.
Also assume that the reconstruction is performed and that the
DFT of reconstructed signal is of sparsity s. Assume that the
amplitudes of signal components are arbitrary with arbitrary
phases so that the case when all of them can be related to
the values defined by using the missing sample positions is a
zero-probability event. The reconstruction result is not unique
if the inequality

s ≥ N − max
h=0,1,...,r−1

{
2h (Q2h − 1)

}
− 1

holds. Integers Q2h are calculated in the same way as in the
Theorem 1.

Consider now the best and the worst case for the sparsity
limits obtained by Theorem 1 and Corollary 2. In both cases
the value of

Qm = max
h=0,1,...,r−1

{
2h (Q2h − 1)

}
determine sparsity limit. Higher values of Qm produce lower
sparsity limits and vice versa.

Let us analyze values Q2h . They are obtained by partition-
ing set of missing samples NQ with respect to the reminders
obtained by division its elements with 2h.

Let us start with h = 0. In this case the number of
partitions is 1 and all elements of NQ belong to single partition
producing Q20 = cardNQ = Q.

For h = 1 we have two partitions: odd and even samples
from NQ. In the best case missing samples are equally
distributed producing Q21 = dQ/2e where d·e stands for
ceiling operation (rounding to the greater integer). In the worst
case one partition is largest possible. Consider that all q ∈ NQ

are 0 ≤ q < N meaning that there is no more than N/2 even
and N/2 odd elements in NQ. This limits maximal cardinality
of each partition to min{N/2, Q}. Now we can conclude that

dQ/2e ≤ Q21 ≤ min{N/2, Q}.

For h = 2 we have four partitions and limits

dQ/4e ≤ Q22 ≤ min{N/4, Q}.

In general, for any h = 0, 1, ..., r − 1 we have

dQ/2he ≤ Q2h ≤ min{N/2h, Q}

or

2h(dQ/2he − 1) ≤ 2h(Q2h − 1) ≤ 2h(min{N/2h, Q} − 1).

The upper limit of Qm can be obtained by analyzing

max
h=0,1,...,r−1

{
2h(min{N/2h, Q} − 1)

}
.

It is equal to

Q(max)
m = N − 2log2 N−blog2 Qc

where b·c stands for the floor rounding operation.
Note that this limit is equal to N − 2 for Q ≥ N/2. It is

equal to N − 4 for N/4 ≤ Q < N/2, and so on.
The lower limit of Qm can be obtained by analyzing

max
h=0,1,...,r−1

{
2h(dQ/2he − 1)

}
.

It is equal to
Q(min)

m = Q− 1

Let us now recall sparsity limits obtained by Theorem 1 in
the best and in the worst case. Lowest sparsity limit will be
obtained for the maximal Qm as

2s < 2log2 N−blog2 Qc

and the highest sparsity limit when the uniqueness could be
guarantied is

2s < N −Q+ 1.

For Example if N = 128 and Q = 60 we get 2s < 4
in the worst case meaning that only signals with sparsity
s = 1 can be uniquely reconstructed with 128 − 60 = 68
available samples out of total 128 samples. If we consider
best possible case then 2s < 69 meaning that signals with
up to 34 components can be uniquely reconstructed with 68
available and 60 missing (omitted) samples.

The same analysis can be used in the Corollary 2 limits
resulting in obtaining non-unique reconstruction in the worst
case for

s ≥ 2log2 N−blog2 Qc − 1

and for the best case

s ≥ N −Q.

Note that the reconstruction will be unique with a high
probability if conditions from Corollary 2 are not satisfied.

Presented analysis lead us to the conclusion that the decision
which sample/pulse will be omitted and which one will be used
for reconstruction is very important if we want to uniquely re-
construct signals with higher number of components (sparsity).
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Fig. 2. Histogram of sparsity limits obtained with Theorem 1 for 1000
realizations of randomly positioned Q = 60 samples out of total N = 128
samples (upper subplot). Sparsity limit for samples positioned according to
the proposed method (lower subplot). Number of realizations is given at top
of each histogram bin.

Derived limits are analyzed as the worst and best case.
In order to provide more details about sparsity limits we
considered set of N = 128 samples in total and Q = 60
randomly positioned samples as missing ones. We analyze
1000 realizations and calculate sparsity limit according to
Theorem 1 for each of them. Histogram of the obtained
sparsity limits is presented in Fig. 2, upper subplot.

From Fig. 2 (upper subplot) we see that within the consid-
ered 1000 realizations, the best (s = 34) and the worst (s = 1)
sparsity limits are not achieved. Instead we have a majority of
realizations with sparsity limit of s = 15.

III. PROCEDURE FOR OPTIMAL SAMPLING STRATEGY

According to the analysis presented in the previous section
we can, for given N and Q select a set of Q missing (omitted)
samples such that we achieve upper sparsity limit.

The procedure pseudocode is presented in Algorithm 1.
Corresponding MATLAB code is given in Algorithm 2.

The main idea is to provide a maximal spread of elements
from the set NQ over each partition.

Note that selecting a half of the set (line 6 in Algorithm
1 and line 7 in Algorithm 2) in the case when the set S has
odd cardinality 2m + 1 should be done such that with equal
probability we select m or m+ 1 elements into set S2.

The selection procedure with N = 128 and Q = 60 is
repeated 1000 times. For each subset of samples the Theorem
1 and Corollary 2 are checked for sparsity limits. Obtained
sparsity limits for Theorem 1 are presented in Fig. 2, lower

0 20 40 60 80 100 120

sample index

0

100

200

300

400

500

co
u

n
t

Fig. 3. Number of selections for each sample in 1000 realizations with Q =
60 and N = 128. Expected count, for uniform distribution, is 1000Q/N =
468.75.

subplot. In all cases we get maximal sparsity limit, according
to the analysis presented in Section II.

Next we checked uniformity of samples selection. For each
realization we record selected set of samples and after 1000
realizations we counted how many times each sample was
selected. The results are presented in Fig. 3. We can see that
the selection procedure does not favor any sample, i.e., we
obtain uniform distribution of selected samples.

In the next experiment we used N = 128 samples and
varied number of missing samples Q from 1 to 127. For
each pair (N,Q) we performed 100 iterations with randomly
selected samples and samples selected according to the pro-
posed procedure. Sparsity limits calculated for Theorem 1
are presented in Fig. 4. In the lower subplot we presented
the increase in maximal allowed sparsity obtained with the
proposed procedure.

Similar results (with approximately twice higher sparsity
limits) are obtained for Corollary 2.

IV. CONCLUSION

A detailed analysis of sparsity limits obtained by the re-
cently proposed uniqueness theorem is presented. The analysis
lead to a simple procedure for the optimal samples selection.
The presented procedure is checked statistically. A significant
increase in the sparsity limits is achieved.
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Fig. 4. Sparsity limit for Theorem 1 calculated for total number f samples
N = 128 and number of selected (missing) samples Q = 1, 2, . . . , 127
(upper subplot). Increase in sparsity limit caused by proposed selection
procedure is presented (lower subplot).
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