
  

  
Abstract — This paper studies the discrete Hermite 

transform applicability in concise representation of short-
term and windowed sinusoidal signals. Namely, the Hermite 
functions show similar behavior with windowed multi-tone 
signals and filtered tones, which opens the possibility for 
signal sparsifation using an optimal transform scaling factor. 
In other words, the scaling factor is optimized in order to 
enhance the transform coefficients concentration. The scaling 
factor optimization method is based on concentration 
measures and it is further generalized to the case of 2D 
Hermite transform. Numerical examples illustrate the 
presented theoretical framework. 

Keywords — Digital signal processing, Hermite transform, 
scaling factor optimization, tone signals. 

I. INTRODUCTION 

HE Hermite transform has been widely studied as an 
alternative to the commonly used Fourier transform, 

since it provides a concise representation of many signals 
arising in different applications [1]-[10]. Namely, the ultra-
wideband (UWB) communication signals and ECG signals 
are the most representative examples [2], [3], [10]. An 
intensive research has been conducted recently towards the 
possibilities of concise representation of QRS complexes, 
the most characteristic waves of ECG signals, having a 
significant role in medical diagnosis and treatment [1]-
[4],[8]-[10]. The main motivation for these approaches 
comes from the visual similarity of UWB Gaussian 
doublets and QRS complexes with the basis functions of 
Hermite transform. Hence, powerful compression 
algorithms for QRS complexes have been developed, 
exploiting the use of the Hermite transform as a crucial 
step for compression [2],[3]. Moreover, the classification 
and detection of QRS complexes have been also widely 
studied in terms of the advantages provided by the Hermite 
representation. A compact representation of QRS 
complexes concentrated in a few coefficients provides a 
potential for efficient medical diagnosis, detection of 
anomalies, and hearth diseases such as arrhythmia [2], [4]. 
Besides afore mentioned applications, the Hermite 
transform is also exploited in many other research areas, 
including: digital image segmentation [5], computed 
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tomography [6], analysis of protein structure in biology, 
physical optics [7], radar signal processing, [9] and so on.  

Exhibiting many interesting mathematical properties, 
which consequently spread the spectrum of possible 
applications, this particular signal transform was recently 
studied in the sparse signal processing and compressed 
sensing context [8], [10]. The reconstruction of signals 
being sparse in the Hermite domain was studied in [8]. 
Therein, an efficient gradient-based reconstruction 
approach was presented.  

The parameter optimization of the Hermite transform, 
leading to the improvement of the signal’s representation 
in this domain was proposed in [10]. This work 
emphasized the importance of the transform’s 
concentration, and to this aim a parameterization method 
based on concentration measure minimization was 
proposed. Namely, the time-axis scaling factor and the 
time-shift of the basis functions were considered.  

In this paper, we study the application perspectives of 
this optimization approach, particularly in achieving the 
compact representation of single-tone and multi-tone 
windowed signals. Moreover, as the filtering is a common 
processing technique applied on tone signals, we also 
consider a possibility to sparsify the representation of 
signals filtered using the common Butterworth digital 
filter. Next, we present the generalization of the approach 
to a two-dimensional Hermite transform. Namely, as the 
2D Hermite transform can be calculated applying the 1D 
transform on both signal dimensions successively, this 
property is used in the development of the generalized 
approach.  

The paper is organized as follows. A short overview of 
the 1D Hermite transform is presented in Section 2. 
Sections 3 and 4 describe the scaling factor optimization 
approach, and its 2D generalization, respectively. Section 
4 presents the numerical results, while the paper ends with 
concluding remarks. 

II.  THE ONE-DIMENSIONAL HERMITE TRANSFORM 

Starting from the definition of the p-th order Hermite 
polynomial [1]-[3], [8]-[10]: 
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The scaling factor σ  controls the width of basis 
functions, and its properly chosen value may lead to a 
more concentrated representation. The 1D Hermite 
expansion of the signal f(tm) has the following form: 
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where ( )p mtψ  is the p-th order Hermite basis function and 

M is the number of basis functions used in the expansion. 
Argument tm represent sampling points equal to the roots 
of the M-th order Hermite polynomial. In general, an 
infinite number of basis functions is needed for the 
representation of a continuous-time signal using (3). 
However, if both the signal and the basis functions are 
sampled at points tm, relation (3) is the accurate signal 
expansion, known also as the inverse discrete Hermite 
transform. If the Gauss-Hermite quadrature is applied in 
the calculation of the expansion coefficients cp, one may 
define the 1D discrete Hermite transform as follows: 
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III.   NON-UNIFORM SAMPLING AND PARAMETER 

OPTIMIZATION 

It is crucial to emphasize that the signal needs to be 
sampled at points tm proportional to the roots of the M-th 
order Hermite polynomial. Signals are usually sampled in 
accordance to the sampling theorem, with samples 
available at uniform points, differing from the points of 
interest tm. The values of the signal at the required time 
points tm can be acquired by using a windowed sinc 
interpolation. Namely, assuming that the signal was 
sampled uniformly to obtain the corresponding finite 
duration discrete-time values f(n), having an odd-length 
M = 2K+1, n = –K,…, K, then, according to the sampling 
theorem, the continuous-time signal can be reconstructed 
and immediately resampled at the desired points λt1, λt2,…, 
λtM by applying the following interpolation [2], [10]: 
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with  m = 1,…, M, n = -K,…, K, and t∆  denoting the 
sampling period.  
 Furthermore, as it is done in [2] and [10], instead of 
stretching and compressing basis functions varying σ , one 
may assume that 1σ = , and stretch and compress the signal 
in order to match the set of basis functions. In other words, 
the alternative parameter λ  can be introduced in (4) in 
order to represent the stretched and compressed form of 
the analyzed signal ( )mf tλ . 

There is a particularly high interest in many applications 
to represent the signals with the smallest number of 
transform coefficients. To this aim, we can optimize the 
scaling factor λ  such that it minimizes the concentration 
measure: 
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that is, the optimal scaling factor can be found solving: 
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with ( )mf tλ  calculated according to (5). The problem can 

be solved using the following iterative algorithm [10]:  

Algorithm 1: Scaling factor optimization  

Require:  

• Uniformly sampled signal f(n) of length M = 2K + 1 
• Step parameter µ 

1: Set ( )(0) / 2 ( 1) /1.7 1.8M t Mλ π ← ∆ − +
 
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6. ( 1) ( ) ( )k k kλ λ µ+ ← − ∇  

7: ( )( ) ( 1)sign k kβ −← ∇ ∇  

8: If 0β <  then / 2∆ ← ∆  

End while 

9: Return ( )kλ  

In the previous algorithm, the vector f contains 

uniformly sampled signal values, and matrices λ
±K  are 

used for the calculation of (5). The operator ( )⋅H  denotes 

the Hermite transform (4). 

IV.  THE 2D TRANSFORM AND ITS OPTIMIZATION 

The proposed scaling factor algorithm can be 
generalized to the 2D case. As for the 1D case, the signals 
that have similar waveform as some of Hermite basis 
functions are suitable for representation, in the sense of 
having a possibly compact support and a potential for 
compression in the Hermite transform domain. Let us 
observe the 2D signal ( , )m nf t t  of size M N× . The 

inverse discrete 2D Hermite transform of this signal is 
defined as follows: 
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while the 2D discrete Hermite transform is defined by: 
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with tm and tn being the roots of the M-th order and N-th 
order Hermite polynomials, and with the similar 
introduction of signal time-axis scaling factors 1λ  and 2λ  

as in 1D case, with fixed 1 21, 1σ σ= = . It is well-known 

that the 2D Hermite functions can be calculated as a 
product of the corresponding 1D Hermite functions [11]: 

 ( , ) ( ) ( )pk m n p m k nt t t tψ ψ ψ= . (10) 

If we observe (9) and (8), it can be easily concluded that 
both the direct and the inverse Hermite transform can be 
calculated by using the 1D transform pair (4) and (3) over 
one variable with the other fixed, and then repeating the 
same calculation procedure for the second variable. Hence, 
in order to find scaling factors 1λ  and 2λ  producing the 

most concentrated transform, we solve: 
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by applying the Algorithm 1 in both dimensions 
successively. The scaling factors, producing the best 
possible concentrations over the observed dimension, are 
chosen.
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Fig. 1. The Hermite transform optimization results for different types of tone signals: first row - Pure sinusoid, second row - Short-

term multi-tone sinusoidal signal, third row: Windowed multi-tone sinusoidal signal (Gaussian window), fourth row - Filtered multi-
tone sinusoidal signal 



  

V. NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate and clarify the applicability 
perspective of the approach we, observe some 
characteristic cases. 

Example 1: Let us observe the case of a pure sinusoid of 
the form (pure tone): 

 ( ) 2cos(14 / )f n n Mπ= − ,  (12) 

of length M = 100, / 2 / 2 1M n M− ≤ ≤ − . The results 
presented in Fig. 1 (first row) illustrate the fact that the 
Fourier transform is an optimal representation for this type 
of signals, outperforming the Hermite domain approach in 
sense of the coefficient’s concentration. 

Example 2: Let us observe the case of short-duration 
sinusoids appearing, for example, in the communications: 
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where M= 100, with amplitudes taking values { }1,1,1 ,iA ∈ −  

frequencies from the set { }13.5 ,5.267 ,12.1iω π π π∈  and 

phases taking values { }0, / 2,0iφ π∈  for i = 1, 2, 3 

respectively. Analyzing the results in Fig. 1 (second row), 
we may conclude that the Hermite transform (optimized 
using the presented approach) outperforms the Fourier 
transform in this case and provides a more compact 
(compressible) representation in the transform domain. 

Example 3: Consider now the windowed form of the 
sinusoidal signals (Gaussian window is applied): 

 2
0( ) 2sin(18 / )exp( ( / 2 ) ),f n n M nπ σ= − −   (14) 

with 0 3.5, / 2 / 2 1M n Mσ = − ≤ ≤ − . Obviously, the 

considered optimized Hermite transform is the most 
optimal transform for windowed sinusoids, unlike the 
Fourier transform which is spread over half of the 
frequency band Fig. 1 (third row). 

Example 4: An interesting application scenario could 
include a filtered multi-tone signal of the form: 

 ( ) cos(5.8 / ) cos(3 / )f n n M n Mπ π= −   (15) 

with M = 50, defined at discrete instants 
2 / 2 / 2M n M− ≤ ≤  (using low-pass Butterworth filter of 

5th order, and normalized cut-off frequency 0.2 (1 
corresponds to the half the sample rate)). It can be 
observed that the Hermite transform (optimized using the 
proposed approach) outperforms the Fourier transform 
based representation in this example as well, as shown in 
Fig. 1 (last row). 

Example 5: Let us observe a 2D localized signal that has 
a suitable representation in 2D HT due to the visual 
similarity with basis functions: 
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defined for instants 15 15m− ≤ ≤  and 15 15n− ≤ ≤  where 
M = 31, 0 1 1.25σ σ= = . Results are shown in Fig. 2, 

confirming the fact that the optimal concentration of the 
signal can be achieved in the 2D signal case. 
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Fig. 2. The illustration of the 2D Hermite transform optimization 

in the representation of a 2D windowed sinusoid. 

VI.  CONCLUSION 

In this paper we studied the application perspectives of 
the Hermite transform scaling factor optimization 
approach. It has been shown that the optimization 
approach provides improved Hermite representation of 
windowed single- and multi-tone signals. Moreover, the 
optimization approach is generalized by extending the 
concept to 2D signals. 
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