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Abstract — This paper studies the discrete Hermite
transform applicability in concise representation & short-
term and windowed sinusoidal signals. Namely, the étmite
functions show similar behavior with windowed multitone
signals and filtered tones, which opens the posdiby for
signal sparsifation using an optimal transform scahg factor.
In other words, the scaling factor is optimized inorder to
enhance the transform coefficients concentration. Tda scaling
factor optimization method is based on concentratio
measures and it is further generalized to the casef 2D
Hermite transform. Numerical examples illustrate the
presented theoretical framework.

Keywords — Digital signal processing, Hermite transform,
scaling factor optimization, tone signals.

I. INTRODUCTION

tomography [6], analysis of protein structure ilbgy,
physical optics [7], radar signal processing, [ o on.

Exhibiting many interesting mathematical properties
which consequently spread the spectrum of possible
applications, this particular signal transform wasently
studied in the sparse signal processing and cosgules
sensing context [8], [10]. The reconstruction ajnsils
being sparse in the Hermite domain was studied8]n [
Therein, an efficient gradient-based reconstruction
approach was presented.

The parameter optimization of the Hermite transform
leading to the improvement of the signal's représton
in this domain was proposed in [10]. This work
emphasized the importance of the transform’s
concentration, and to this aim a parameterizatiethod

HE Hermite transform has been widely studied as d&sased on concentration measure minimization was
alternative to the commonly used Fourier transfornproposed. Namely, the time-axis scaling factor &mel

since it provides a concise representation of nsgyals
arising in different applications [1]-[10]. Namelje ultra-

time-shift of the basis functions were considered.
In this paper, we study the application perspestiok

wideband (UWB) communication signals and ECG signathis optimization approach, particularly in achiayithe

are the most representative examples [2], [3], .[20]
intensive research has been conducted recentlydsvtiae
possibilities of concise representation of QRS dexgs,
the most characteristic waves of ECG signals, lpan
significant role in medical diagnosis and treatmgijt
[41,[8]-[10]. The main motivation for these apprbas

compact representation of single-tone and multgton
windowed signals. Moreover, as the filtering iscemenon
processing technique applied on tone signals, we al
consider a possibility to sparsify the represeotatof
signals filtered using the common Butterworth dibit
filter. Next, we present the generalization of #pproach

comes from the visual similarity of UWB Gaussiarnto a two-dimensional Hermite transform. Namely,tls
doublets and QRS complexes with the basis funct@ins 2D Hermite transform can be calculated applying 1be

Hermite transform. Hence, powerful

compressioftransform on both signal dimensions successiveiis t

algorithms for QRS complexes have been developegioperty is used in the development of the germsdli

exploiting the use of the Hermite transform as acied
step for compression [2],[3]. Moreover, the clasaiion

approach.
The paper is organized as follows. A short overvidw

and detection of QRS complexes have been also widehe 1D Hermite transform is presented in Section 2.

studied in terms of the advantages provided byienite
representation. A compact representation of
complexes concentrated in a few coefficients presic
potential for efficient medical diagnosis, detentiof
anomalies, and hearth diseases such as arrhytBmid]
Besides afore mentioned applications,
transform is also exploited in many other reseandas,

the Hermite !l

Sections 3 and 4 describe the scaling factor opétitin

QR&pproach, and its 2D generalization, respectiv@gction

4 presents the numerical results, while the papéds avith
concluding remarks.

THE ONE-DIMENSIONAL HERMITE TRANSFORM
Starting from the definition of the-th order Hermite

including: digital image segmentation [5], computedolynomial [1]-[3], [8]-[10]:
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the Hermite functions of the corresponding ordee ar
defined as:

v,.0)=(c2pin) e H (o). ()



The scaling factorog controls the width of basis thatis, the optimal scaling factor can be founigiag:

functions, and its properly chosen value may leadat y
. . t ,0-
more poncentrate_d representation. _The 1I? Hermite A =argmi Z W,(t,,0) f at , )
expansion of the signftm) has the following form: . e [41/M R 0__)]2 m
- m? 1

M-1
f(t,) =D c (t,0) (3) with f(At,) calculated according to (5). The problem can
p=0

. . . . b Ived using the following iterati Igorith@®[:
where (t,)) is thep-th order Hermite basis function and © solved using the foflowing fterative aigor I

M is the number of basis functions used in the esipan Algorithm 1: Scaling factor optimization
Argumenttn represent sampling points equal to the rootRequire:

of the M-th order Hermite polynomial. In general, an

infinite number of basis functions is needed foe th <« Uniformly sampled signd{n) of lengthM = 2K + 1
representation of a continuous-time signal using. (3 ¢ Step parametar

However, if both the signal and the basis functiane

sampled at points$n, relation (3) is the accurate signal 1: SetA® — MAI/[Z(\/IT(M -1)/1.7+ 19}
expansion, known also as the inverse discrete Hermi

transform. If the Gauss-Hermite quadrature is &opin 2: SetA 21,

the calculation of the expansion coefficients one may 3: Sete 1070

define the 1D discrete Hermite transform as follows While A> e

13 ¢,(t,0) ;
=)y _ B C ¢ ,p=0,1,..M-1 (4
Cp M;[MM,l(tm,U)]z (L“) P () k1+1 k;z k;NI Kl Klz Km
K - k1+2 k;z k;w K- k;z k;z kM

[1l.  NON-UNIFORM SAMPLING AND PARAMETER : : .o : : S
OPTIMIZATION ki K, o K k. k, - Kk,
It is crucial to emphasize that the signal need®do

sampled at points, proportional to the roots of thd-th
order Hermite polynomial. Signals are usually sadph . sin[ﬂ( AxAX - (j-K - 1At) /At] .
accordance to the sampling theorem, with samples k= n((A£D), - (j-K -Dat) /oy Lo, ... M}
available at uniform points, differing from the ptd of
interesttn. The values of the signal at the required time M-1 M-1
points tn can be acquired by using a windowsihc 5. 00 ﬁ(z H(K;f )‘—Z‘H(KI )U
interpolation. Namely, assuming that the signal was p=0 p=0
sampled uniformly to obtain the corresponding &nit
duration discrete-time valuef§n), having an odd-length
M = 2K+1, n = K,..., K, then, according to the sampling
theorem, the continuous-time signal can be recoctstd
and immediately resampled at the desired pdintit,,...,
Jtw by applying the following interpolation [2], [10]:

sin(7r(At,, - nAt) /At) 5y  Endwhile
9: Return A

6. A _ j _
7: B « sign(D(")D(H’)

8:If f<0then A - A/2

fUt) = 2, A=y /ot

with m=1,...,M, n = K,..., K, and At denoting the i , )
. . In the previous algorithm, the vector contains
sampling period.

Furthermore, as it is done in [2] and [10], instes uniformly sampled signal values, and matric€§ are
stretching and compressing basis functions vargingone used for the calculation of (5). The operaﬂej([)] denotes
may assume that=1, and stretch and compress the signghe Hermite transform (4).
in order to match the set of basis functions. heotords,

the alternative parametet can be introduced in (4) in IV. THE 2D TRANSFORM AND ITS OPTIMIZATION
order to represent the stretched and compressed dbr  The proposed scaling factor algorithm can be
the analyzed signaf (At,) . generalized to the 2D case. As for the 1D casesitirals

There is a particularly high interest in many apations that have similar waveform as some of Hermite basis
to represent the signals with the smallest number §inctions are suitable for representation, in tbese of
transform coefficients. To this aim, we can optientne having a possibly compact support and a potental f
scaling factord such that it minimizes the concentratiorcompression in the Hermite transform domain. Let us
measure: observe the 2D signalf (t,t,) of size MxN. The

= inverse discrete 2D Hermite transform of this sigisa
M= ;|Cp| : ) defined as follows:



M-IN-1 If we observe (9) and (8), it can be easily conetlithat
Ftn to) = W ot o W (L40) (8)  both the direct and the inverse Hermite transfoem be
prof=0 calculated by using the 1D transform pair (4) aBidaver
while the 2D discrete Hermite transform is defirgd one variable with the other fixed, and then remeathe
g, . same calculation procedure for the second varididece,
ZZ & () f(AL,At) (9) 1N order to find scaling factorg, and A, producing the
et e [y (b, )] [yt )] most concentrated transform, we solve:

with t, andt, being the roots of th#&l-th order and\-th MIIN-

order Hermite polynomials, and with the similar (4.4,) =arg mlnz Zcpk ’ 11)

. . . . . . A p=0 k=0
introduction of signal time-axis scaling factods and A,

as in 1D case, with fixedr, =1, g, = 1. It is well-known

that the 2D Hermite functions can be calculatedaas
product of the corresponding 1D Hermite functioh]{

by applying the Algorithm 1 in both dimensions
successively. The scaling factors, producing thet be
possible concentrations over the observed dimensiocn

chosen.
Ypk(tmt) = t & (t g (10)
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Fig. 1. The Hermite transform optimization restdtsdifferent types of tone signals: first row -r@wsinusoid, second row - Short-
term multi-tone sinusoidal signal, third row: Winded multi-tone sinusoidal signal (Gaussian winddairth row - Filtered multi-
tone sinusoidal signal



defined for instants-15< m< 15 and -15< n< 15 where
V. NUMERICAL RESULTS AND DISCUSSION M = 31, g,=0,=1.25. Results are shown in Fig. 2,

In order to illustrate and clarify the applicaljilit confirming the fact that the optimal concentratiointhe
perspective of the approach we, observe sonségnal can be achieved inthe 2D signal case.
characteristic cases.

Example 1Let us observe the case of a pure sinusoid
the form (pure tone):

x 107 Hermite coefficients

Original signal

-10

0

-l._

f(n) =-2cos(l4m M ), (12)

of lengthM = 100, -M /2<n< M /2-1. The results
presented in Fig. 1 (first row) illustrate the fabat the
Fourier transform is an optimal representationtffis type
of signals, outperforming the Hermite domain apploin

sense of the coefficient’s concentration.

-10 0

m

10

Rescaled and resampled signal Hermite coefficients

-10
-5

c ~0.01
Example 2 Let us observe the case of short-duratio<® © T 002
sinusoids appearing, for example, in the commuicinat 12
3 - -
> Asin @04 g | ~M+ 25 ns M- 25 108 0 5 0
f(n)=1= M (13) il

Fig. 2. The illustration of the 2D Hermite transfooptimization

0,-M<sn<-M+26andM - 2&ns M in the representation of a 2D windowed sinusoid.

whereM= 100, with amplitudes taking valugsi{-1,1} ,
frequencies from the sey 0{13.57,5.2677 ,12/4 and

VI. CONCLUSION

In this paper we studied the application perspestiof

. . the Hermite transform scaling factor optimization
phases. taking valu.esq D{O,ﬂ/Z,C}. fo.r ! 1.2 3 approach. It has been shown that the optimization
respectively. Analyzing the results in Fig. 1 (set@ow), approach provides improved Hermite representatibn o
we may conclude that the Hermite transform (optadiz windowed single- and multi-tone signals. Moreovieie

using the presented approach) outperforms the &our,
transform in this case and provides a more compagg
(compressible) representation in the transform doema

Example 3 Consider now the windowed form of the

sinusoidal signals (Gaussian window is applied): (1]
f(n)=-2sin(18&m /M )expt 0 /2,3 ) (14) 2]
with  0,=3.5-M /2sn<M /2-1 Obviously, the

considered optimized Hermite transform is the mosgl
optimal transform for windowed sinusoids, unlikeeth
Fourier transform which is spread over half of thes)
frequency band Fig. 1 (third row).

Example 4 An interesting application scenario could

include a filtered multi-tone signal of the form: 5]
f(n) =cos(5.8m /M ) cos(8n M (15) [6]
with- M = 50, defined at discrete instants

-2M /2<n< M /2 (using low-pass Butterworth filter of [7]
5" order, and normalized cut-off frequency 0.2 (1
corresponds to the half the sample rate)). It can kfs]
observed that the Hermite transform (optimized gighe
proposed approach) outperforms the Fourier tramsfor
based representation in this example as well, agrshn ol
Fig. 1 (last row).

. . 10
Example 51 et us observe a 2D localized signal that ha[s ]

a suitable representation in 2D HT due to the vVisua
similarity with basis functions:

[11]
f(m, n):—SSin[m:n)j ex;{— ”i— ﬁzj (16)
M 207 207

timization approach is generalized by extendihg t
ncept to 2D signals.
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