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Abstract—Neural networks application to the analysis and
prediction of the hydro-meteorological data is presented. The
neural networks are trained and tested with water-level and
water-flow data measured at three stations in the Neretva
river basin. Estimation of the water-level based on water-
flow and vice versa is presented. These data are highly (byt
nonlineary) correlated. The proposed approach can be used
to reconstruct missed measurements caused, for example, by
measurement equipment failure. In this way an accurate and
complete set of measurements can be obtained. Estimation of
downstream measurements based on upstream data is also
analysed. It is shown that highly accurate estimations can be
obtained when there is no tributaries between measurement
stations.
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I. INTRODUCTION

THE acquisition and analysis of the hydro-
meteorological data is a very important topic

today [1]–[6]. These data are crucial for hydro-electric
power plants operations, and for avoiding emergency
situations.

In this paper we will focus on hydro-meteorological
data analysis for Neretva basin measured at three measure-
ment stations: Mostar, Baćevići and Žitomislići. Although
specific basin and measurement stations are considered,
the proposed methods are not limited to this scenario and
could be applied to any other river basin.

The water-flow and water-level are the main hydro-
meteorological parameters measured on several stations
in the Neretva basin. The measurements are provided
by the Agency for watershed of Adriatic sea – Mostar.
Time interval between successive measurements varies
from 15 min to 1 hour. Some of the measurements
are unavailable due to recording problems, measurement
devices failure, and other unclassified problems. Very
often we have water-level data but do not have water-flow
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Fig. 1. Locations of the measurement stations (Source: Google Earth)

TABLE I
MEASUREMENT STATIONS, MEASURED VARIABLES, NUMBER OF

MEASUREMENTS, MINIMAL AND MAXIMAL VALUE, AND SAMPLING
INTERVAL

Station Variable Nm Min Max Sampl. int.

Mostar level (cm) 33656 230 794 15(30) min
flow (m3/s) 33626 45 684 15(30) min

Baćevići level (cm) 17568 165 469 30 min
flow (m3/s) 17568 58 721 30 min

Žitomislići
level (cm) 4194 76 211 30 min
flow (m3/s) 1252 103 334 30 min

data and vice versa. Here, we propose a method for data
restoration based on neural networks. It is obvious that
water-level and water-flow data are mutually dependent
but the dependence is hard to be expressed in an analytic
way. Here we identify a possible application of neural
networks in order to find the dependence between water-
flow and water-level data at the considered measurement
station.

In Section II we will briefly describe the data used in the
rest of the paper. The neural network model is introduced
in Section III. The obtained results are presented in
Section IV.

II. DATA DESCRIPTION

The analyzed data are collected on three hydro-
meteorological stations located at Mostar, Baćevići and
Žitomislići, Fig. 1. Water flow and water level are mea-
sured and brief data description is presented in Table
I. Within the analyzed data not all measurements are
available. Some measurements are skipped due to the
station or measurement failure. Sampling interval is 30
min, while at Mostar station significant part of the data
are measured every 15 minutes. In this paper we work
with raw (unprocessed) data.



III. NEURAL NETWORK

Herein, the neural networks are used for several pur-
poses. The used networks are feed-forward with one
hidden layer [7]. We assume that neurons in the hidden
layer have bias, and that the output neuron is unbiased.
The bias is modeled as an additional input to the neural
network with constant input value equal to one. Network
function is weighted sum of all inputs

u =

M∑
k=0

wkxk (1)

while activation function is unipolar sigmoid defined by

fa(u) =
1

1 + e−u
. (2)

It is assumed that neurons in the input layer transfer the
input value to the output lines without any transformation
(weighting or activation function). The network topology
of neural networks is presented in Fig. 2 and Fig. 3.

The error backpropagation algorithm is used for net-
work training. For each epoch and for each input-output
pair, the network output and error are calculated, and
neurons weights are updated according to

h = fa(Wx),

Y = fa(uh)

δo = Y (1− Y )(y − Y )

δh = h� (1− h)� uT δo

unew = uold + µδoh
T

Wnew = Wold + µδhx
T

where h is output vector for neurons in the hidden layer,
x = [1, x(n)]T is input vector, W is weight matrix of
the neurons in the hidden layer, Y is network output, u is
weighting row-vector of the output neuron and y is desired
network output. Element-by-element product is denoted
with �.

The error, mean squared error (MSE), and root mean
squared error (RMSE) are used for evaluation of the
trained network. The error is defined as difference between
desired and actual output for i-th data pair, ei = yi−Yi for
i = 1, 2, . . . , Nm where Nm is total number of available
input–output pairs. The MSE (in dB) and RMSE are
calculated as

MSE = 10 log10

(
1

Nm

Nm∑
i=1

e2i

)
,

RMSE =

√√√√ 1

Nm

Nm∑
i=1

e2i .

It is very important to properly select the number of
neurons in the hidden layer. A large number of neurons
could lead to a slow training procedure, while the output
error can be too high if the number of neurons is too low.
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Fig. 2. Simple network topology for algebraic input-output functional
dependence.
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Fig. 3. Autoregressive network topology.

IV. RESULTS

The first type of neural network is designed to provide
water-flow data if water-level is available and vice versa.
Topology of the used network is presented in Fig. 2.
Neurons in the hidden layer are biased and bias is im-
plemented as an additional input with constant value. The
output neuron is of the same type as neurons in the hidden
layer without bias input. The networks are trained for
each measurements station by using part of the data (1000
input-output pairs) for training and all available data for
verification. The number of neurons in the hidden layer is
varied from 1 to 6. The results are presented in Fig. 4.
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Fig. 4. MSE (in dB) for various number of neurons in the hidden layer
and for various input-output combinations. The number of neurons varies
form 1 to 6 and it is presented by color.
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Fig. 5. Learning curve (upper subplot), network output and error (lower
subplot). The neural network is trained with water flow as input and
water level as output for data measured at station Baćevići. The training
dataset was consisted of 1000 randomly positioned measurements out of
total 17568 available measurements.

Input and output variables are given below the MSE
bars where B stand for Baćevići, M for Mostar, and Z
for Žitomislići station. Index l indicates water-level data
while index f denotes water-flow data. From Fig. 4 we
can conclude that four neurons in the hidden layer are
sufficient in all considered cases, while in some cases even
two neurons are enough.

The neural networks are trained with 1000 epochs and
learning rate µ = 20. The input and output data are scaled
with factor 1000 in order to fit data into range [0,1]
according to minimum and maximum values presented
in Table I. If any of the data are unavailable at the
considered time instant, the corresponding input-output
pair is removed from the training and verification sets.

The training results for Bf → Bl network with 3
neurons in the hidden layer and 1000 epochs are presented
in Fig. 5 as well. The learning curve (MSE versus epoch)
is presented in the upper subplot. The network output
and error is presented in the lower subplot. It is obvious
that trained network achieves low error, and that MSE is
almost constant for epochs from 800 to 1000. The similar
results are obtained in all considered cases.

The presented networks can be used to interpolate
missing data pairs, i.e. when either water-flow or water-
level is unavailable at the considered time instant it can
be replaced with output of the corresponding network.
Note that in the considered setup for measurement station
Žitomislići there are only 1252 water-flow measurements
and 4194 water-level measurements, so by using neural
network trained to give water-flow based on water-level
input we can obtain reliable data for any further analysis.

Next we will train neural networks for future value

TABLE II
RMSE ERROR FOR WATER LEVEL DOWNSTREAM PREDICTION FOR

VARIOUS NUMBER OF USED PAST VALUES M

M Ml → Bl Ml → Zl Bl → Zl

0 22.4 31.4 22.9
1 13.7 26.6 16.5
2 9.1 23.3 13.5
3 8.7 19.5 11.6
4 8.6 15.7 11.0
5 8.6 12.9 10.7

TABLE III
RMSE ERROR FOR WATER FLOW DOWNSTREAM PREDICTION FOR

VARIOUS NUMBER OF USED PAST VALUES M

M Mf → Bf Mf → Zf Bf → Zf

0 13.3 20.0 15.9
1 8.5 18.4 13.9
2 5.8 17.3 13.6
3 5.4 16.2 12.9
4 5.7 15.7 12.8
5 5.9 15.8 13.1

prediction of the water-level and water-flow data. In order
to obtain more a reliable prediction, current and M past
values of the input data are used as the neural network
input, Fig 3.

When the desired network output is future value of the
input measurements for a single measurement variable, the
obtained errors after network training were only few dB
below the simplest predictor x(n + 1) = x(n). Here we
vary the number of neurons form 1 to 30, the number of
past signal values form 1 to 48 (whole day with 30min
sampling interval) and the learning rate from 2 to 30. This
results are not promising and lead us to the conclusion that
neural networks future value prediction, based on a single
input (with current and past values), can be replaced with
a simple and efficient predictor without high loose in the
prediction error.

Next we will utilize neural network in order to esti-
mate values of water-level and water-flow for downstream
stations based on values measured on upstream stations.
The neural network topology is presented in Fig. 3. The
number of neurons in the hidden layer is 5. The networks
are trained on a subset of 1000 data and tested on all
available data.

Neural networks are tested with various number of
inputs (current value and M past values). The results for
water level are presented in Table II and the results for
water flow prediction are given in Table III. In both cases
root mean squared error is calculated for M = 0, 1, . . . , 5.

In this case the results are much more accurate. The
prediction results for water level data by using current
and M = 5 past values of water level measured at the
upstream station are presented in Fig. 6. The output value
and estimation error are presented. Top subplot is for
water level at Baćevići station, predicted from the Mostar
data. Middle subplot is water level at Žitomislići station
estimated with Mostar input data, and bottom subplot is
water level at Žitomislići station predicted from Baćevići
data. The error is smallest in the first considered case.
Increased error for Žitomislići station can be explained
with several tributaries between Baćevići and Žitomislići.
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Fig. 6. Water level data obtained by using upstream station data as
input to the neural network. Top subplot: Mostar→Baćevići, middle
subplot Mostar→Žitomislići, and bottom subplot Baćevići→Žitomislići.
Network output (blue) and error (green) are presented.

Downstream water flow prediction is presented in Fig.
7. As in the previous case prediction at Baćevići station
based on Mostar data is highly accurate while prediction
at Žitomislići have moderate accuracy due to tributaries.

V. CONCLUSION

We considered three measurement stations where water-
level and water-flow data are available, and we performed
network training with varying number of neurons in the
hidden layer for each station. It is shown that with appro-
priately trained neural networks the missing measuremens
can be restored with high accuracy. We conclude that four
neurons in the hidden layer is enough for all considered
stations, although for some of them even smaller number
of neurons could be sufficient.

Next, we analyzed possibility of downstream measure-
ments prediction based on the upstream measurements.
High prediction accuracy is obtained in the case when
there is no tributaries between measurement stations.
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Fig. 7. Water flow data obtained by using upstream station data as
input to the neural network. Top subplot: Mostar→Baćevići, middle
subplot Mostar→Žitomislići, and bottom subplot Baćevići→Žitomislići.
Network output (blue) and error (green) are presented.

Jadranskog mora Mostar” for providing raw data mea-
surements.
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