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Abstract — A recently proposed strategy of selecting sam-
ples for a unique reconstruction of a signal is analyzed in this
paper. The considered signal is sparse in the discrete Fourier
transform (DFT) domain. Since the problem is of theoretical
importance, we use the basic direct search method for the
reconstruction and comparisons of sampling strategies. It is
shown that, by using the proposed sampling strategy method,
the sparsity limit for the unique reconstruction is increased
in comparison to the random selection of samples.
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I. INTRODUCTION

A sparse signal is a signal having only few nonzero en-
tries in one of its representation domains. These signals can
be reconstructed with a reduced set of measurements/sam-
ples. Advantages of compressive sensing in signal trans-
mission and storage are very important, especially in big
data setups. The field dealing with reconstruction of sparse
signals is known as compressive sensing. It is a growing
field in recent years [1]-[11]. Since the introduction of
compressive sensing, many reconstruction theorems and
algorithms were developed [1]-[7]. In real applications
many signals are sparse in a certain domain, representing
a ground for wide usage of the compressive sensing theory
in different areas of signal processing.

One of the challenging topics in the compressive sensing
is the optimal sampling strategy that will allow to recon-
struct the signal with smallest possible number of available
samples [12]. Various approaches are used to this aim, like
those that minimize the coherence index of the isometry
constant for a given signal transform. The aim of this paper
to find the theoretical minimum of the number of signal
samples for the reconstruction of signals sparse in the
discrete Fourier transform (DFT) domain. Since various,
computationally efficient, reconstruction algorithms require
more strict recovery conditions than the uniqueness of the
solution requires, here we will use the direct combinatorial
search. This method will provide exact reconstruction
results if the unique reconstruction is theoretically possible.
However, this method is computationally complex. For a
large dimension of the reconstruction problem, number of
available samples and sparsities it is NP-hard and therefore
not computationally feasible. The direct search can be
used with small dimensions of problem. Thus, we will
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test our sampling strategy on the dimensions when the
direct combinatorial search is possible. In this way we
will avoid specific reconstruction requirements imposed by
other reconstruction methods.

The paper is organized as follows. In Section II some
basic definitions of compressive sensing are introduced. In
Section III the reconstruction algorithm is presented. The
procedure for sample selection, using the uniqueness the-
orem, is presented in Section IV. Results and comparison
are shown in Section VL.

II. BASIC DEFINITIONS

Consider a complex-valued discrete signal z(n) of
length 1 < n < N. Its discrete Fourier transform (DFT) is
denoted by X (k). The signal and its transform are defined
as

N-1 N-1

z(n) =Y X(k)w(n),  X(k) =) w(n)pa(k).

k=0 n=0
In the vector form, these relations can be written as
x=W¥X and X = &x, where ¥ and ® are the direct
and inverse DFT transformation matrices. We assume
that the signal is K-sparse in the DFT domain, where
K < N. In this case, we can only use M < N samples
to reconstruct the signal of length N. The signal with
M samples/measurements/observations will be defined as
y(m). Its vector form is y.

The goal of compressive sensing is to minimize the
sparsity of X by knowing a reduced set of the available
samples/measurements y. The reconstruction of a signal
from a reduced set of data can be formulated as a opti-
mization problem

min || X||,subject to y = AX @)

where y are the samples/measurements and A is an M x N
measurement matrix. Its rows correspond to the positions
of the available samples. The fp-norm conts the number
of nonzero coefficients in X. However, this norm is not
convex and its minimization could be done only through
a combinatorial search. The direct combinatorial search
is an NP-hard problem. This norm is also very sensitive
(not applicable) to the noisy signal cases. This the reason
why, in practice and theory, more robust norms are used
to measure the sparsity. The ¢;-norm is the most frequent
used norm since it is closest convex function to the £;-
norm. It is equal to the sum of absolute values of X.
However, all norm-one reconstruction methods require
more samples/measurements than the minimal possible
number that can provide unique signal reconstruction in
theory. This is the reason why here we will use direct
combinatorial approach to the sparse signal reconstruction,



with dimensions when it is computationally feasible (for
example, N < 32).

III. DIRECT SEARCH RECONSTRUCTION

Any problem described with (1) can be solved by a
direct search over whole set of possible values of nonzero
coefficient positions. The considered algorithm is the direct
search minimisation of the fp-norm. Assume a vector X
whose sparsity is K. In the direct search we try with all
possible combinations of nonzero index values

ke {kl,k‘g, ey kK} =K

out of the set of all possible indices from 1 to N, i.e.
{k1,k2,...kx} C N, where N = {1,2,...,N}. The
vector X contains assumed K nonzero elements of X
at the positions K. The system

y=AxXgk

with M > K equations is solved by minimising the least
square error

e =(y - ArXg)?(y — AxXg) =

lyll3 — 2XE ALy + XFALAX k. )
The minimum of the error is found from
Oe?
X~ —2A%y + 2A{A Xk = 0. 3)
K

The solution is then
AZARX = Ally
-1
Xi = (AffAK) Afly. @

To find all possible combinations of {k1, ko, ..., kx} C
N, the total number of systems that should be solved is
(%) If, for example, we have N = 16 and K = 3 then the
number of possible combinations is (136) = % =
560 for k£ € K. For all solutions we check the error y —
A X . If the mean square error is zero we consider this
as the result of the reconstruction for signal X. If there is

more than one result, then the reconstruction is not unique.

IV. RECONSTRUCTION UNIQUENESS

In the theory of compressive sensing, the restricted
isometry property is the condition which has to be satisfied
for the signal to be uniquely reconstructed. However, this
condition is of high computational complexity and very
strict. Also, in many practical cases, it is very pessimistic
and discards many settings of the measurement matrix that
can produce a unique solution. A uniqueness theorem for
signals sparse in the DFT domain, reconstructed using a
reduced set of samples, is recently introduced in [13], [14].

The signal sparsity in the DFT domain is K. The DFT is
calculated with N = 2" samples. The solution uniqueness
can be checked by using Theorem 1 and Corollary 2.
Sparsity limit obtained by Theorem 1 is strict. It has been
shown that many cases included in Theorem 1 are zero
probability events, leading to a relaxed uniqueness check,
formulated by Corollary 2. Zero probability events that
reconstructed signal components and their amplitudes are
fully correlated to the positions of missing samples are
neglected here.

Theorem 1 Consider a signal x(n) that is sparse in the
DFT domain with unknown sparsity. Assume that the signal
length is N = 2" samples and that () samples are missing
at the instants ¢, € Ng. Assume that the reconstruction
is performed and that the DFT of reconstructed signal is
of sparsity K. The reconstruction result is unique if the
inequality

K<N- {2"(Quwm — 1)} - K

max
=0,1,....,r—1

holds. Integers Qqn are calculated as

Qon = ) {card{q : ¢ € Ng, mod(q,2") = b}}

max
b=0,1,...,2" —

Corollary 2 Consider the signal x(n) that is sparse in the
DFT domain. Assume that signal length is N = 2" samples
and that () samples are missing at the instants ¢, € Ng.
Also assume that the reconstruction is performed and that
the DFT of reconstructed signal is of sparsity K. Assume
that the amplitudes of signal components are arbitrary with
arbitrary phases so that the case when all of them can be
related to the values defined by using the missing sample
positions is a zero-probability event. The reconstruction
result is not unique if the inequality

K>N - {2 Qe — 1)} —1

holds. Integers Qon are calculated in the same way as in
the Theorem 1.

h=0,1,....r—1

Proof of the Theorem 1 and Corollary 2 is given in [13].

Example: Consider a signal of length N = 2* = 16
and M = 10 available samples which mean that there are
@ = N — M = 6 missing samples. The goal is to find the
maximum sparsity when the uniqueness is satisfied. Also,
we will find the limit when we are sure that the signal
cannot uniquely be reconstructed. Consider an example of
missing samples at the positions

4m € Ng = {0,1,5,8,10,11}.

1) Firstly we take h = 0 which means that Q0 = @
and 2°(Qe0 — 1) =Q — 1 =5.

2) When h = 1, the value (051 is taken as the maximum
value between the total numbers of even and odd positions
of the missing samples. That is,

card{q : ¢ € Ng, mod(q,2) = 0} = card{0,8,10} = 3.
card{q : ¢ € Ng, mod(q,2) = 1} = card{1,5,11} = 3.

So Qg = max{3,3} =3 and 21 (Qa — 1) = 4.

3) For h = 2, the total number of missing samples
whose positions are a multiple of 4, with starting counting
positions b = 0,1, 2,3, are taken to get the value Qo2 =
max{card{0, 8}, card{1, 5}, card{10}, card{11}} =
max{2,2,1,1} = 2 with 2%(Qy2 — 1) = 4.

4) The last case for this /N is when h = 3. Then
@23 is found as the maximal number of missing samples
with positions at a multiple of 8, with starting counting
positions b = 0,1,2,3,4,5,6,7. We calculated that Q53 =
max{2,0,1,1,0,0,0,0} = 2. and 23(Qqs — 1) = 8.

Going back to the theorem, the signal is considered as



uniquely reconstructible, if the sparsity K is
K<N - 2" -1} -K
<N -, max {2 (Qx — 1)}

K < 16 — max{5,4,4,8} — K
K < 4.

Using Corollary 2, we can claim that the signal will not
be uniquely reconstructed when

K > 16 — max{5,4,4,8} — 1
K>T.

V. SAMPLING STRATEGY

The positions of the samples which are taken for the
reconstruction (or missing samples) play a very important
role for the uniqueness of the reconstruction. Note that
higher values of (y» produce lower sparsity limits and
vice versa. Also note that the reconstruction will be unique,
with a high probability, if the conditions from Corollary 2
are not satisfied.

The simplest case, when K = 1, can analytically be
analyzed. Consider that we have only M = 2 available
samples, which is, in this case, enough for the recon-
struction. If we select the first sample at any position,
the second sample should not be at the even distance
from the first sample. The probability of the unique re-
construction failure is then (N/2 — 1)/(N — 1). If we
take M = 3 available samples, when we set the first
sample at an arbitrary position, the second and the third
sample should not be at even distance positions from the
first one. The probability of unique reconstruction failure
is (N/2—1)(N/2—2)/[(N —1)(N —2)] and so on. For M
observations the unique reconstruction failure probability
is
(N/2-1)(N/2—-2)....N/2 — M + 1)

(N-1)(N-2)...N-—M+1)

This probability is calculated when the random selection
of samples is used.

The sample selection procedure inspired by Theorem 1
was introduced in [14]. The main goal for selection of the
samples for the reconstruction is to spread the elements
of the set of missing samples as much as possible over
each partition and obtain minimal possible (5» in Theorem
1 (and Corollary 2). The MATLAB code for proposed
selection procedure is given in Algorithm 1.

It means that we have to minimize factors (Jo» for any
h. That would be achieved if we equally spread the missing
sample positions over sets {q : ¢ € Ng, mod(g,2") = b},
b=0,1,...,2" — 1. If we write missing sample positions
in binary format it would mean that for A = 1 an equal
number of missing sample positions should have 0 and 1
as the last digit. Then, for h = 2 there should be the same
number of positions with last two digits 00, 01, 10 and 11,
and so on.

The sampling strategy is tested on more examples in the
next section.

Pr =

&)

VI. RESULTS

Consider a signal of length N = 16, with sparsity K =
4 and M = 8 available samples. The reconstruction using
the random selection of available samples and selection

Algorithm 1 Samples selection — MATLAB code

1 function Nq = Select_Samples(N,Q)

2 A = zeros(1,Q);

3 b = nextpow2(Q);

4 for k = 0:(b—-1)

5 for p = 0:2°k—1)

6 S = find (A==p);

7 m = round( length(S)/2 + 0.1x(rand—0.5) );
8 A(S(1:m)) = A(S(1:m)) + 27k;

9 end
10 end
11 B = randperm(N,Q) —1;
12 Nq = sort( A + 2"bxfloor(B/2°b) );
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Fig. 1. Sparsity limits in 100 realizations when N = 16, M =8, K =4

by using random selection (left) and proposed selection (right)
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Fig. 2. Sparsity limits in 100 realizations when N = 16, M =6, K =5
by using random selection (left) and proposed selection (right)

using the proposed strategy and the uniqueness theorem is
shown in the Fig. 1. The reconstruction was done in 100
realizations. It is shown that 99 out of 100 are uniquely
reconstructed using the random selection and 100 out of
100 using the uniqueness theorem.

Consider now a more strict case, when N = 16 total
samples, sparsity K = 5 and only M = 6 available
samples. The reconstruction using random selection of
available samples and selection using the uniqueness theo-
rem is shown in the Fig. 2. The reconstruction was done in
100 realizations. In this case, it is shown that only 75 out of
100 are uniquely reconstructed using the random selection
and 100 out of 100 using the uniqueness theorem.



TABLE I
PERCENTAGE OF THE UNIQUELY RECONSTRUCTED SIGNALS WITH N = 16 FOR VARIOUS M AND K

Random selection sparsity K

Deterministic selection sparsity K

M 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2 61 X X X X X X x | 100 X X X X X X X
3 74 58 X X X X X x | 100 100 X X X X X X
4 93 83 61 X X X x x| 100 100 100 x X X X X
5 98 97 82 73 X X X x | 100 100 100 100 X X X X
6 99 100 94 88 74 x x x| 100 100 100 100 100 X X X
7 | 100 100 99 90 86 69 x x | 100 100 100 100 100 100 X X
8 | 100 100 100 98 94 87 68 x | 100 100 100 100 100 100 100 X
9 | 100 100 99 100 99 94 8 68 | 100 100 100 100 100 100 100 100
10 | 100 100 100 99 98 98 97 90| 100 100 100 100 100 100 100 100
11 | 100 100 100 100 100 99 99 97| 100 100 100 100 100 100 100 100
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In Table I, we present the percentage of uniquely recon-
structed signals in 100 realizations when N = 16 is used.
We assume that the number of available samples and the
sparsity varies. The sign *x’ means that the reconstruction
is not possible with these values since K > M. Note
that when number of available samples M is high there
is no significant difference between random and deter-
ministic sample selection procedure. The advantage of the
deterministic selection is evident when number of available
samples M is low.

In Table II are the values for deterministic and random
sample selection with N = 32 and different M and K. The
tables show that in more cases the deterministic way of
selection gives better results in comparison to the random
selection. Only when we have more available samples, then
the results are similar between the two strategies.

VII. CONCLUSION

In this paper we analyzed the optimal strategy for
selecting available samples using the uniqueness theorem.
The analyzed strategy increases the sparsity limit for an
unique reconstruction of a signal. It is statistically shown
that the sparsity can be increased, in comparison to the
random selection of samples.
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