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Abstract — A higher order time-frequency (TF) represen-
tation, fully concentrated up to the fourth order polynomial
phase of the signal is revisited. This representation is based on
the first derivative approximation of the phase. We propose
a realization based on the concept of windowed frequency
convolutions in order to reduce the cross-terms in multi-
component signals, following the ideas from the S-method
framework. Several numerical examples illustrate and verify
the presented theory.

Keywords — Digital signal processing, Non-stationary sig-
nals, Time-frequency signal analysis

I. INTRODUCTION

DURING the last few decades time-frequency (TF) sig-
nal analysis has been an emerging research field,

followed by numerous applications [1]– [8]. Instantaneous
frequency (IF) estimation is one of the most important
problems analyzed in wide TF analysis literature [1], [5],
[6].

The aim to reveal and extract high level signal char-
acteristics such as the IF has resulted in numerous pro-
posed time-frequency representations (TFR), [1]. Many
of these representations provide improvements in useful
signal content (auto-terms) concentration at or around
the IF, comparing with the frequently used Short-time
Fourier transform (STFT) and Wigner distribution (WD)
[3], [4]. Main problems regarding higher-order representa-
tions include high numerical complexity, noise sensitivity,
demanding parameters search, and the appearance of un-
desirable cross-terms in multi-component signals [1], [2].

Following the idea to define a representation based on
signal’s phase first derivative approximation, a higher order
representation being able to ideally concentrate signals
having up to the fourth order polynomial phase is proposed
in [7]. However, in the case of multi-component signals,
this representation produces strong cross-terms, preventing
a successful IF estimation. In this paper we present an
algorithm for the realization of this TFR with significantly
reduced cross-terms.

The paper is organized as follows. In Section II basic
theory regarding the analyzed higher order TFR is pre-
sented. Its reduced cross-terms realization is introduced in
Section III. Numerical results illustrating and confirming
the theory are presented in Section IV, whereas the paper
ends with concluding remarks.

II. BACKGROUND THEORY

Starting from the analytic signal definition

x(t) = A(t)ejφ(t), (1)
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and assuming slow amplitude variations comparing with
the instantaneous phase variations |A′(t)| � |φ′(t)|, the
IF is defined as

Ω(t) =
dφ(t)

dt
. (2)

An ideal TFR can be introduced in the following form:

ITF (t,Ω) = 2π|A(t)|2δ(Ω− φ′(t)), (3)

fully concentrating signal energy at the IF. One out of
many open topics in the TF signal analysis deals with
the development of representations having the form and
properties as close as possible to the ITF. This TFR can
be considered as the Fourier transform (FT) of function

R(t, τ) = |A(t)|2ejφ
′
(t)τ . (4)

As the signal phase first derivative can be approximated
with [1]:

Ω(t) ≈
∑
i biφ(t+ ciτ)

τ
=
dφ(t)

dt
+O(φ(p)(τ)), (5)

the general form of function (4) whose FT produces ITF
follows

R(t, τ) =
∏
i

xbi(t+ ciτ). (6)

Under the assumption of slow amplitude variations, its
influence is neglected in further analysis. General form of
TFR based on (6) reads

GD(t,Ω) =

∞∫
−∞

∏
i

xbi(t+ ciτ)e−jΩτdτ. (7)

Expanding term biφ(t+ ciτ) in Taylor series around t

biφ(t+ ciτ) ≈biφ(t) + biφ
′
(t)ciτ + biφ

′′
(t)

(ciτ)2

2!
+

+ biφ
′′′

(t)
(ciτ)3

3!
+ biφ

(4)(t)
(ciτ)4

4!
+ ...

coefficients bi i ci follow with the conditions that [1]:

• The sum of coefficients with φ(t) is equal to 1,
eliminating the signal phase influence;

• The sum of coefficients with φ
′
(t) is equal to 1, as

the goal is the first derivative approximation;
• The sum of coefficients with φ(n)(t) is equal to 0 up

to the desired order.

Either following these conditions, or directly using the
well-known first derivative approximation of the form

Ω(t) ≈
φ(t− τ

6 )− 8φ(t− τ
12 ) + 8φ(t+ τ

12 )− φ(t+ τ
6 )

τ

=
dφ(t)

dt
+O(φ(5)(τ)),



22nd International Scientific-Professional Conference Information Technology 2017

according to (6) we get the function

R(t, τ) = x(t− τ
6

)x∗8(t− τ

12
)x8(t+

τ

12
)x∗(t+

τ

6
), (8)

whose FT is a new TF representation fully concentrating
signals up to the fourth order polynomial phase. Its form
reads

PD(t,Ω) =

∞∫
−∞

x(t− τ

6
)x∗8(t− τ

12
)×

×x8(t+
τ

12
)x∗(t+

τ

6
)e−jΩτdτ.

(9)

The discretization over the time and lag with t = m∆t and
τ = n∆t, with sampling period ∆t = 1/(12fmax), and the
discretization of frequency ω = Ω∆t using ω = πk/6N ,
lead to the discrete form of this representation

PD(n, k) = 12

6N−1∑
m=−6N

x(n− 2m)x∗8(n−m)×

×x8(n+m)x∗(n+ 2m)e−
j2πmk
N

(10)

suitable for numerical implementations. Maximal fre-
quency in signal spectrum is denoted with fmax. Note
that 6 times more samples are needed for aliasing-free
calculation of this representation, compared with the cor-
responding pseudo-WD with the same window duration.

III. PROPOSED REALIZATION

A. Continuous windowed frequency convolutions

Let us observe the definition (9) of higher order rep-
resentation PD(t,Ω), assuming, for simplicity, unit sym-
metric lag window w(τ) = 1, −T/2 ≤ τ ≤ T/2. For each
observed time instant t it can be understood as a frequency
domain convolution of the form

PD(t,Ω) = Rx2(t,Ω) ∗Ω Rx16(t,Ω), (11)

with the following definitions

Rx2(t,Ω) = FT
[
x(t− τ

6
)x∗(t+

τ

6
)
]
, (12)

Rx16(t,Ω) = FT
[
x∗8(t− τ

12
)x8(t+

τ

12
)
]

. (13)

Operator FT [·] denotes the Fourier transform over vari-
able τ . Furthermore, introducing notation Sn1

(t,Ω) =
FT

[
x(t− τ

6 )
]

and Sp1(t,Ω) = FT
[
x∗(t+ τ

6 )
]

equation
(12) can be also represented in form of a frequency domain
convolution

Rx2(t,Ω) = Sn1
(t,Ω) ∗Ω Sp1(t,Ω). (14)

Following the same approach, introducing

Wx2(t,Ω) = Sn2(t,Ω) ∗Ω Sp2(t,Ω), (15)

with Sn2(t,Ω) and Sp2(t,Ω) being defined as Sn2(t,Ω) =
FT

[
x∗(t− τ

12 )
]

and Sp2(t,Ω) = FT
[
x(t+ τ

12 )
]
, we

rewrite (13) in terms of frequency convolutions

Rx16(t,Ω) =Wx2(t,Ω) ∗Ω Wx2(t,Ω)∗Ω
∗Ω Wx2(t,Ω) ∗Ω Wx2(t,Ω).

(16)

It can be assumed that components Sp2(t,Ω) are lo-
calized in frequency, such that Sp2(t,Ω) centered at any
Ω0 is spread over a region [Ω0 − ΩL/2,Ω0 + ΩL/2]. This

means that values of Sp2(t,Ω) appart from Ω0, that is,
outside this region, are not related with value of Sp2(t,Ω0),
for observed instant t. It should be noted that there is
no assumption regarding the exact location of central
frequency Ω0. In the multi-component signal case, each
component is localized in its own region.

As the symmetric lag window is assumed, the ana-
lyzed component is localized within same frequency region
[Ω0 − ΩL/2,Ω0 + ΩL/2] in Sn2

(t,Ω) = FT{x∗(t− τ
6 )},

also around central frequency Ω0. Please note that the
change in the lag sign is compensated by the signal
conjugation. Hence, (15) can be further written as:

Wx2(t,Ω) =
1

2π

∞∫
−∞

Sp2(t,$)Sn2
(t,Ω−$)d$ = (17)

1

4π

ΩL∫
−ΩL

Sp2(t,
Ω

2
+
$1

2
)Sn2

(t,
Ω

2
− $1

2
)d$1,

where substitution $1 = Ω/2 − $/2 is exploited. The
integral limits in (17) are changed according to the local-
ization assumption and doubled having in mind the length
of the resulting convolution. The signal component in (17)
is therefore spread over region [2Ω0 − ΩL, 2Ω0 + ΩL].
Note that this analysis correspond to the well-known S-
method [3] principles, leading to a significant cross-terms
reduction. The aim is to improve the signal concentration
further applying this principle, in order to obtain the higher
order representation PD(t,Ω). The next term, Rx4(t,Ω)
can be calculated as

Rx4(t,Ω) = Wx(t,Ω) ∗Ω Wx(t,Ω) =

=
1

4π

2ΩL∫
−2ΩL

Wx(t,
Ω

2
+
$

2
)Wx(t,

Ω

2
− $

2
)d$,

with new frequency region where the component is spread
being [4Ω0 − 2ΩL, 4Ω0 + 2ΩL]. The same approach is
applied until the highest order term is obtained

Rx16(t,Ω) = Rx8(t,Ω) ∗Ω Rx8(t,Ω) = (18)

=
1

4π

8ΩL∫
−8ΩL

Rx8(t,
Ω

2
+
$

2
)Rx8(t,

Ω

2
− $

2
)d$

having region of interest [16Ω0 − 8ΩL, 16Ω0 + 8ΩL].

In order to calculate (14) for the same analyzed
component, frequency regions where the component is
spread in Sn1

(t,Ω) and Sp1(t,Ω) have to be related
with corresponding region [Ω0 − ΩL/2,Ω0 + ΩL/2] for
terms Sp2(t,Ω) and Sn2(t,Ω). Based on the definitions
of Sn1(t,Ω) and Sp1(t,Ω) it can be concluded that the
components are spread over the same frequency region in
these two terms. Let us relate the region of the component
in term Sp1(t,Ω) = FT

[
x∗(t+ τ

6 )
]

with the frequency
region [Ω0 − ΩL/2,Ω0 + ΩL/2] where the component is
spread in term Sp2(t,Ω) = FT

[
x(t+ τ

12 )
]
. Conjugate

operator appearing in definition of Sp1(t,Ω) causes the op-
posite direction of frequency axis compared with Sp2(t,Ω).
Having in mind the lags τ

12 and τ
6 ratio, the component

appearing in Sp2(t,Ω) at central frequency Ω0 appears at
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frequency −2Ω0 in term Sp1(t,Ω), having a twice larger
bandwidth than the component in Sp2(t,Ω). Consequently,
the resulting frequency region for Sn1(t,Ω) and Sp1(t,Ω)
is [−2Ω0 − ΩL,−2Ω0 + ΩL].

The expression (14) now can be calculated as

Rx2(t,Ω) =
1

2π

∞∫
−∞

Sp1(t,$)Sn1
(t,Ω−$)d$ (19)

=
1

4π

2ΩL∫
−2ΩL

Sp1(t,
Ω

2
+
$

2
)Sn1

(t,
Ω

2
− $

2
)d$.

The frequency region of interest for Rx2(t,Ω) becomes
[−4Ω0 − 2ΩL,−4Ω0 + 2ΩL].

Combining (18) and (19) with (11) the resulting cross-
terms free representation can be calculated as follows

PD(t,Ω) = Rx2(t,Ω) ∗Ω Rx16(t,Ω) (20)

=
1

4π

8ΩL∫
−8ΩL

Rx2(t,−Ω

4
− $

4
)Rx16(t,Ω−$)d$.

B. Numerical implementation
Let us observe, for a fixed instant t the samples

corresponding to x(t− τ
6 ), x∗(t+ τ

6 ), x∗(t− τ
12 ) and

x(t+ τ
12 ), obtained by the discretization over τ . The use

of unit symmetric window w(n) of length N is inherently
assumed. The procedure for numerical calculation of (9),
assuming fixed point t follows:

Step 1: Calculate the set of signals xn1(n), xp1(n),
xn2(n) and xp2(n) by sampling x(t− τ

6 ), x∗(t+ τ
6 ),

x∗(t− τ
12 ) i x(t+ τ

12 ) over τ , for fixed instant t. Calculate
discrete Fourier transforms: Sn1

(t, k) = DFT [xn1
(n)],

Sp1(t, k) = DFT [xp1(n)], Sn2
(t, k) = DFT [xn2

(n)]
and Sp2(t, k) = DFT [xp2(n)], for −N/2 ≤ k ≤ N/2−1.

Step 2: Calculate Wx(t, k) = DFT [xn2(n)xp2(n)] as
convolution of the form

Wx(t, k) =
∑

p
Sp2(t, p)Sn2(t, k − p), (21)

We assume that Sn1
(t, k) and Sp1(t, k) are localized in

discrete frequency domain, i.e. that the component centered
at frequency k0 is spread over region [k0 − L, k0 + L].
Under the assumption of symmetric window, this com-
ponent is localized in the same region for both consid-
ered terms. This means that for each k in (21), region
[k − L, k + L] is considered. The limits for p in (21) are
obtained eliminating k0 from the system of inequalities
k0 − L ≤ p ≤ k0 + L and k0 − L ≤ k − p ≤ k0 + L :

k/2− L ≤ p ≤ k/2 + L. (22)

Component being centered at k0 in Sn1
(t, k) and

Sp1(t, k) is centered at 2k0 in resulting Wx(t, k), spreading
over region [2k0 − 2L, 2k0 + 2L]. The number of fre-
quency points in Wx(t, k) is 2N − 1.

Step 3: Following the previous analysis calculate:

Rx4(t, k) =
∑

p
Wx(t, p)Wx(t, k − p), (23)

Rx8(t, k) =
∑

p
Rx4(t, p)Rx4(t, k − p), (24)

Rx16(t, k) =
∑

p
Rx8(t, p)Rx8(t, k − p). (25)

According to the analysis in Step 2, the limits for p
in (23) are: k/2 − 2L ≤ p ≤ k/2 + 2L. The signal
component in term Rx4(t, k) corresponding to the compo-
nent at k0 in Sn1

(t, k) and Sp1(t, k), is spread over region
[4k0 − 4L, 4k0 + 4L]. Convolution Rx4(t, k) is consisted
of 4N − 3 frequency samples. Similarly, this compo-
nent is spread over region [8k0 − 8L, 8k0 + 8L] in term
Rx8(t, k), whereas the limits for p in the calculation of (24)
are given with k/2 − 4L ≤ p ≤ k/2 + 4L. The resulting
convolution Rx8(t, k) is consisted of 8N − 7 samples. For
convolution Rx16(t, k) = DFT

[
x8
n2

(n)x8
p2(n)

]
the limits

for p read k/2− 8L ≤ p ≤ k/2 + 8L. The analyzed com-
ponent is placed in interval [16k0 − 16L, 16k0 + 16L],
whereas the number of frequency samples is 16N − 14.

Step 4: Let us calculate the next convolution

Rx2(t, k) =
∑

p
Sn1

(t, p)Sp1(t, k − p). (26)

Following the continuous-time analysis, the component
appearing in Sn1

(t, k) appears in the same region and
central frequency in Sp1(t, k). The component located in
terms Sn2(t, k), and Sp2(t, k) at frequency k0 is spread
over region [−2k0 − 4L, − 2k0 + 4L] in terms Sn2(t, k)
and Sp2(t, k). Convolution (26) is calculated with follow-
ing p limits: k/2 − 4L ≤ p ≤ k/2 + 4L. The new region
of interest is [−4k0 − 8L, − 4k0 + 8L], and the resulting
number of points is 2N − 1.

Step 5: The resulting TFR is finally obtained as

PD(t, k) =
∑

p
Rx2(t, p)Rx16(t, k − p). (27)

It is important to note that the terms order in con-
volution is crucial as obtained regions for Rx2(t, p) and
Rx16(t, k − p) differ. Following the results presented in
previous steps, the resulting component is spread over
[16k0 − 16L, 16k0 + 16L], whereas p is calculated within
limits obtained eliminating the unknown k0 from inequal-
ities −4k0 − 8L ≤ p ≤ −4k0 + 8L and 16k0 − 16L ≤
k − p ≤ 16k0 + 16L:

−k/3− d16L/3e ≤ p ≤ −k/3 + d16L/3e , (28)

where d·e denotes the rounding to the nearest greater
integer. Previous algorithm is presented assuming that
samples xn1(n), xp1(n), xn2(n) i xp2(n) are obtained by
discretization over τ . The calculation of discrete represen-
tation PD(n, k) based on x(n) assumes a discretization
of x(t) over t following the sampling theorem. Samples
not appearing on the discrete axis n, that correspond to
continuous-time signals x(t− τ

6 ), x∗(t+ τ
6 ), x∗(t− τ

12 )
and x(t+ τ

12 ), are obtained by interpolation based on zero-
padding in the frequency domain [1].

IV. NUMERICAL RESULTS

Example 1: An FM signal being defined as x(t) =
exp (j(20 sin(6πt) + j9cos(8πt) + j5cos(10πt)) is con-
sidered, for −1 s ≤ t ≤ 1s and sampled with period
∆t = 0.002. Four TFRs are calculated: STFT (t,Ω),
Pseudo-WD(t,Ω), S-method SM(t,Ω) with Ld = 10 and
PD(t,Ω) with L = 3. All transforms are calculated using
a Hanning window of length N = 256 (0.512s). The results
shown in Fig. 1 (a)-(d) respectively confirm that PD(t,Ω)
calculated according to the proposed realization preserves
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t

Ω
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1
0
3
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(a) |STFT (t,Ω)|

−1 −0.5 0 0.5 1

−1

0

1

t

(b) |WD(t,Ω)|

−1 −0.5 0 0.5 1

−1

0

1

t

Ω
[×

1
0
3
]

(c) |SM (t,Ω)|

−1 −0.5 0 0.5 1

−1

0

1

t

(d) |PD(t,Ω)|

−1 −0.5 0 0.5 1

−1

0

1

Fig. 1. Comparison of PD(t,Ω) with various TF representations in the
case of a fast varying FM signal.

high concentration, while significantly reducing the inner
interferences, when compared with other TFRs.

Example 2: Let us observe signals defined for −1 s ≤
t ≤ 1s, sampled with period ∆t = 0.002. Han-
ning window of width 0.512s (N = 256 samples)
is assumed in PD(t,Ω) calculations. Following sig-
nals are considered: (a) mono-component FM signal of
the form x1(t) = exp (j50 cos(5πt) + j50 sin(2πt));
(b) two-component FM signal consisted of one sinu-
soidally modulated and one LFM component, i.e. x2(t) =
exp (−j(20 sin(6πt)− 200πt))+exp

(
j50πt2 + j100πt

)
;

(c) two-component signal consisted of third order poly-
nomial phase signal (PPS) and LFM signal with Gaus-
sian amplitude: x3(t) = exp

(
j100πt3 − j200πt

)
+

exp
(
−10(t− 0.1)2

)
×exp

(
j20π(t+ 0.4)2

)
; and (d) five-

component signal consisted of stationary signals hav-
ing Gaussian amplitudes, defined as follows: x4(t) =∑5
i=1 exp

(
−500(t+ ai)

2
)

exp (jbiπ(t+ ci)), with ai =
[0.2,−0.5, 0.5, 0.5,−0.5], bi = [40, 200, 200,−200, 200]
and ci = [0.2,−0.5, 0.5, 0.5, 0.5], for i = 1, ..., 5.

Calculated representations PD(n, k) are shown in Fig.
2 (a)-(d), where L = 3 is used. One can observe that a
high concentration is obtained, and that inner interferences
and cross-terms are significantly reduced. The cross-term
reduction and a comparison of the proposed realization
method with PD(n, k) calculated by definition is shown
in Fig. 3 for the case of a two-component signal.

V. CONCLUSION

The concept of windowed frequency convolutions, being
originally proposed in the S-method theoretical framework,
is applied in the realization of a higher order TFR, aiming
cross-terms reduction in multi-component signals. The pro-
posed realization method preserves high concentration of
the considered representation. Presented results imply that
the S-method based implementation approach is general
and applicable in higher-order TF analysis. Noise influence
on the considered TFR is the part of our further research.
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[7] M. Brajović, M. Daković, and LJ. Stanković, “Vremensko-
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