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Vertex-Frequency Analysis: A Way to Localize
Graph Spectral Components

Ljubiša Stanković, Miloš Daković, Ervin Sejdić

I. SCOPE

CURRENTLY, brain and social networks are examples
of new data types that are massively acquired and

disseminated [1]. These networks typically consist of vertices
(nodes) and edges (connections between nodes). Typically,
information is conveyed through the strength of connection
among nodes, but in recent years it has been discovered that
valuable information may also be conveyed in signals that
occur on each vertex. However, traditional signal processing
often does not offer reliable tools and algorithms to analyze
such new data types. This is especially true for cases where
networks (e.g., the strength of connections), or signals on
vertices have properties that change over the network.

These lecture notes present a new method to analyze
changes in signals on graphs. This method, called the vertex-
frequency analysis, relies on Laplacian matrices to establish
connections between vertex changes and spectral content [2],
[3], [4], [5]. Specifically, these lecture notes aim to connect
concepts from frequency and time-frequency analyses (e.g.,
[6], [7]) to the spectral analysis of graph signals. Graph
signal processing is a major research area, however, we still
lack understanding of how to relate graph signal processing
concepts to concepts from traditional signal processing.

II. RELEVANCE

The vertex-frequency analysis presented here is a valuable
tool that can be used to analyze vertex-varying changes
in networks (graphs) such as brain networks (e.g., brain
changes during consecutive swallows [8]), changes in social
interactions in a large group of people, or to understand
traffic patterns during rush-hour in major metropolitan areas.
Theoretically, it connects principles of the Fourier analysis
and eigenvalue decomposition from undergraduate courses, to
more advanced topics such as time-frequency representations
typically taught at a graduate level.

III. PREREQUISITES

The prerequisites for understanding these lecture notes are
linear algebra and an understanding of basic signal processing
concepts.

IV. PROBLEM STATEMENT AND SOLUTION

A. Problem Statement
A graph consists of vertices and edges. If we denote the

weights of graph edges connecting vertices n and m as wnm,
then the graph Laplacian operator is defined by

L = D−W,

where the matrix W elements are weighting coefficients wnm

and D is a diagonal matrix with elements dn =
∑N

m=1 wnm.
An example of such a graph is shown in Fig.1(a).

Consider a signal x whose samples are x(n), as shown in
Fig.1(c), and these samples are assigned to (sensed at) the
graph vertices as shown in Fig.1(b). The Laplacian operator
applied to a signals on the graph is equal to Lx, with elements
Lx(n) =

∑
m wnm(x(n)− x(m)).

The spectral representation of a discrete-time signal x(n)
on the graph is defined as its expansion onto the set of eigen-
vectors (discrete-time basis eigenfunctions) of the Laplacian.
In order to accomplish this expansion, the Laplacian L is
decomposed as

L = UΛUT ,

where U is a matrix of the Laplacian eigenvectors uk and Λ
is a diagonal matrix of its eigenvalues λk.

The spectrum X(λk) of signal x on a graph is calculated
as its projection onto the corresponding eigenvectors uk of
the Laplacian:

X(λk) = uT
k x,

or in vector notation X = UTx.
Since the eigenvectors are orthogonal, the signal recon-

struction is defined as x =
∑N

k=1X(λk)uk = UX.
Spectral decomposition of a graph signal is illustrated in

Fig. 1(d). This spectrum contains three components corre-
sponding to the constant component at λ1 = 0, a low-
frequency component at λ2 = 0.6934, and a high-frequency
component at λ6 = 2.4644. We can split the signal into, for
example, its low-frequency part by summing over k = 1, 2
and the high-frequency part by using k = 6 as X(λ6)u6.

The meaning of weighting coefficients wnm in a graph
is highly dependent on the application, especially as the
graph Laplacian is defined by these coefficients, and the
Laplacian operator then defines the set of basis functions
for signal expansion. For example, classical Fourier analysis
can be obtained by considering the second-order derivative
estimation (Laplace operator), Box 1. The Laplacian operator
is also known as the Kirchhoff matrix in electrical circuit
theory, Box 2. In image processing, the coefficients wnm

may be proportional to the similarities of adjacent image
pixels. Similarly, graphs are widely used in neuroscience,
and edge coefficients are used to describe the strength of
interactions among brain regions. In the case of a graph signal
corresponding to a Euclidian network, the coefficient values
are related to the vertex distances. A common way to define
the coefficients in such networks is wnm = exp(−rnm/τ)
for wnm > κ and wnm = 0 elsewhere, where rnm is the
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Fig. 1: Sample graphs: (a) a graph with weighted edges; (b) a
sample graph with signal values on each vertex; (c) a signal,
x(n); (d) the spectrum of x(n).

Euclidian distance between vertices n and m, and τ and κ
are constants. This approach is used in Fig. 1(a).

The presented spectral analysis of signals on graphs pro-
vides a way to process signals in the graph spectral domain,
that is, to implement signal processing techniques such as
filtering, denoising, or to reconstruct missing signal values at
some vertices if the graph signal spectrum is sparse.

Similar to Fourier domain analysis in traditional signal pro-
cessing, the considered spectral analysis of signals on graphs
has its limitations. For example, let us consider the graph
shown in Fig. 2(a) and two signals on this graph, presented in
Figs. 2(b) and 2(c). While these two signals x1(n) and x2(n)
are obviously different, their spectral representations on this
graph |X1(λk)| and |X2(λk)| are almost the same as depicted
in Figs. 2(d) and 2(e). Hence, it would be very difficult to
implement any machine learning schema that would be able to
differentiate these two cases in the spectral domain. Therefore,
an analysis is needed, similar to the time-frequency analysis in

traditional signal processing, that is able to provide localized
vertex information about the spectrum.

B. Solution
Localizing a spectral content around each vertex n can be

achieved via vertex-frequency analysis. This analysis is an
extension of the traditional time-frequency analysis to graph
signals. As in the classical time-frequency analysis, a spectral
transformation of a signal localized around the considered
vertex n yields the basic formulation of the vertex-frequency
analysis. This spectral transformation is typically achieved
using a localization window. While different approaches exist,
we will present two of them, one based on shifting a window
in the vertex-frequency domain, and the other based on a
vertex neighborhood analysis.

1) Convolution-based Definition: In order to define a local-
ized spectrum, let us consider two signals x(n) and h(n) on a
graph with the corresponding Laplacian L, whose eigenvalues
and eigenvectors are λk and uk(n), respectively, while signal
spectra are given by X(λk) and H(λk). Here, the signal
h(n) is used to localize the spectral characteristics of x(n).
For these two graph signals Parseval’s theorem is given by∑N

n=1 x(n)h(n) =
∑N

k=1X(λk)H(λk).
The shift of a signal on a graph cannot be extended in

a direct way from the traditional signal processing theory.
Hence, a generalized convolution operator on graphs is de-
fined under the assumption that the spectrum of convolution
y(n) = x(n)∗h(n) on a graph is equal to the product of signal
spectra Y (λk) = X(λk)H(λk). The convolution is then equal
to the inverse transform of Y (λk),

y(n) = x(n) ∗ h(n) =

N∑
k=1

X(λk)H(λk)uk(n).

This is the definition of the generalized convolution operator
of two signals on a graph [3].

Convolution can be used to define the shift on a graph
as h(m − n) = h(m) ∗ δn(m) =

∑N
k=1H(λk)uk(n)uk(m)

where δn(m) is the delta function at the nth vertex. Its
spectrum ∆n(λk) is equal to the nth sample of the kth eigen-
function, since ∆n(λk) =

∑N
m=1 δn(m)uk(m) = uk(n).

The localized vertex spectrum (LVS) on a graph can be
calculated as the spectrum of a graph function x(n) multiplied
by a shifted window h(n−m)

LV Sx(n, λk) =

N∑
m=1

x(m)h(m− n)uk(m) =

N∑
m=1

x(m)hn,k(m),

where the localized version of the window on vertex and
frequency axes is denoted by

hn,k(m) =

N∑
l=1

[
H(λl)ul(n)ul(m)

]
uk(m)

where we can use, for example, H(λk) = C exp(−λkτ).
The inverse formula is then a sum of LV Sx(n, λk), mul-

tiplied by the shifted and modulated windows hn,k(m),

x(n) =
1∑N

k=1 |H(λk)|2|uk(n)|2

N∑
i=1

N∑
k=1

LV Sx(i, λk)hi,k(n).
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Fourier analysis and Laplacian: Fourier analysis uses
the idea that a signal, x(t), can be expanded in terms
of orthogonal basis functions cos(2ıf t) and sin(2ıf t).
In other words, the resulting Fourier representation is a
projection (scalar product) of the signal onto sinusoidal
basis functions.

Interestingly enough, the Fourier expansion can be
also considered from the Laplacian (Laplace differen-
tial operator), L{x(t)} = −d2x(t)=dt2, point of view.
The Laplacian eigenfunctions u(t) are the solutions of
L{u(t)} = –u(t). We can easily conclude that cos(2ıf t)
and sin(2ıf t) are the eigenfunctions of the Laplacian with
the eigenvalues – = (2ıf )2. Therefore, the Fourier analysis
can be defined as an expansion of the signal x(t) onto the
set of eigenfunctions of the Laplacian operator.

In the discrete-time domain the Laplacian can be defined
using a symmetric second-order difference operator

L{x(n)} = −x(n − 1) + 2x(n)− x(n + 1)

= (x(n)− x(n − 1)) + (x(n)− x(n + 1))

=
X

m∈{n−1;n+1}

wnm(x(n)− x(m)):

The Laplacian is a matrix L that can be used to
transform a discrete-time signal x(n) into its second-order
difference. Eigenvectors of this Laplacian are the discrete-
time sine and cosine functions.

A graph corresponding to circular form of this Laplacian,
sample signal x(n) and corresponding spectrum X(–k),
for N = 8, are shown in the figure. Signal values are

assigned to graph vertices, and the resulting spectrum
X(–k) is obtained by decomposing x(n) onto the Laplacian
eigenvectors. The Laplacian matrix (in a circular form) is

L =

26666664

2 −1 0 0 0 0 0 −1
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1

−1 0 0 0 0 0 −1 2

37777775 :

The Laplacian operator maintains the relationship
among vertices (signal samples) regardless of their or-
dering. Even if vertices (signal samples) are arbitrarily
reordered, the eigenvectors of the Laplacian produce the
same spectrum.

If the signal vector x is a stacked-column representation
of a two-dimensional N ×N image, then with the summa-
tion for m ∈ {n − N; n − 1; n + 1; n + N}, when wnm = 1
in L{x(n)}, the two-dimensional Fourier analysis can be
defined.

Graph Signal and spectrum

Box 1: Fourier analysis and Laplacian

Kirchhoff and “Ohm’s” laws on a graph: The Laplacian
can be considered from the basic electric circuit theory
point of view (Kirchhoff matrix). Let us assume that a
graph represents an electric circuit. Then, the signal values
x(n) represent node voltages at the corresponding circuit
vertices x(n) = v(n). The weight coefficients wnm =
1=Rnm represent conductance (reciprocal resistance Rnm)
values in the edges connecting vertices n and m, for
vertices that are not connected by an edge wnm = 0. The
value of the current in the edge from vertex n to m is
given by inm = (v(n)− v(m))=Rnm = wnm(x(n)− x(m)).
The sum of all currents going into a vertex n must be 0. In
general, the external current source connected to vertex n
is equal to the sum of all currents going from this vertex,
iG(n) =

P
j wnm(x(n)− x(m)) = dnx(n)−

P
m wnmx(m);

where dn =
P

m wnm.
The matrix form of the voltage to current relation is

Lx = iG , where L is the Laplacian of the graph (circuit).

The node (vertex) voltage vector v = x is determined
(up to the constant referent voltage) from the vector of
external currents iG via a system of linear equations.

As in the Fourier analysis, the solution of this system
can be simplified using the spectral decomposition of the
current and the node voltage vectors onto the set of eigen-
vectors of the Laplacian. Starting with Lv = UΛUT v =iG
and understanding that UT U is a unitary matrix, we obtain
ΛUT v =UT iG. This represents an Ohm’s law analogue on
a graph, –kV (–k) = I(–k), where V (–k) = uT

k v and
I(–k) = uT

k iG are the spectral coefficients of the vertex
voltage x(n) = v(n), and the external vertex current iG(n)
on the graph.

A similar analysis can be performed for a heat trans-
fer flux, with edge weights representing heat transfer
coefficients in an appropriate thermodynamics problem
definition.

Box 2: Laplacian, Kirchhoff and “Ohm’s” laws on an electric circuit graph
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Fig. 2: Graph signal processing in action: (a) a graph with shaded nodes belonging to a localization window centered at the first
vertex (the green shaded vertex); (b) a sample signal, x1(n); (c) a sample signal, x2(n); (d) the graph spectrum, |X1(λk)|, of
x1(n); (e) the graph spectrum, |X2(λk)|, of x2(n); (f) a vertex-frequency representation of x1(n); and (g) a vertex-frequency
representation of x2(n).

It should be mentioned that the outlined approach [3] can
be computationally expensive, and a fast implementation
algorithm is proposed in [9].

2) Definition Based on Vertex Neighborhood: To obtain
a localized spectrum of a graph signal, we can utilize
localization functions (windows) corresponding to window
functions in classical signal processing. As in classical signal
processing, a window function should be narrow enough to
provide good localization of the spectral components, but
wide enough to produce high resolution of such components.
In other words, the window should contain the considered
signal sample and some neighboring vertex samples. That is,
the window is defined by a set of vertices that contain the
current vertex n and all vertices that are close to the nth
vertex.

There are several ways to define the local neighborhood for
a vertex. For example, we can consider that two vertices are
close if there is an edge between them, or if there is a path
with its length (number of edges) smaller than an assumed
threshold. Edge weights could also be taken into consideration
to decide whether two nodes are close enough or not.

Commonly, the edge weights are given by wnm =
exp(−rnm/τ) for rnm < κ, and wnm = 0 otherwise. Here,
rnm denotes a distance between vertices, while τ and κ are
constants. If we consider two arbitrary vertices n and m on a
graph, then the path weight between these two vertices can be

defined as the product of all edge weights that are included in
the considered path: pnm = wnk1

wk1k2
· · ·wkbm. If there is

more than one path between nth and mth vertices, the shortest
path (with the highest pnm value) is considered. It can also be
stated that the vertex m belongs to the local neighborhood of
the nth vertex if pnm ≥ hT , where hT is a threshold defining
the window size.

The simplest window has a value of hn(m) = 1 for
all vertices m that belong to the window centered at the
nth vertex, and hn(m) = 0 otherwise. It is analogous to
a rectangular window in traditional signal processing. When
hn(m) = 1 for each m, the standard spectrum is obtained
on a graph. We can define window function values hn(m)
based on the distances pnm that will attenuate farther vertex
samples. Now we can define the signal localized around the
nth vertex as xh(m) = x(m)hn(m). The corresponding local
spectrum is then defined as:

LV Sx(n, λk) =

N∑
m=1

x(m)hn(m)uk(m),

and the inverse definition follows from the inverse spectrum
relation with additional summation over all vertices:

x(n) =
1∑N

i=1 hi(n)

N∑
i=1

N∑
k=1

LV Sx(i, λk)uk(n).
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Fig. 3: Vertex-frequency analysis of a graph signal: (a) a graph and a window centered at the fourth vertex (the vertices included
in the window are shaded); (b) a graph signal and its spectrum; (c) a vertex-frequency representation of the graph signal; and
(d) an instantaneous (vertex-based) frequency representation.

Note that for the windowed signal x(m)hn(m) only M ≤
N samples are nonzero, meaning, it can be considered as
a zero padded signal. To reconstruct this signal, we only
need M spectral coefficients LV Sx(n, λk) for M different
values of λk. The remaining coefficients can be calculated
from the system of equations obtained by using the fact that
x(m)hn(m) = 0 outside the window support. It produces a
system of N−M linear equations

∑N
l=1 LV Sx(i, λk)uk(n) =

0 for vertices outside the window support. This system pro-
vides conditions for the spectral coefficients “interpolation”
using M calculated values LV Sx(n, λk).

In order to visualize the local spectral content, we should
order vertices, i.e. find the Hamiltonian path in the corre-
sponding graph. This ordering is not unique, and a possible
way for ordering is to keep in mind that neighboring vertices

have the highest possible edge weights.

V. NUMERICAL EXAMPLES

Example 1: Let us first consider a vertex-frequency analysis
of two graph signals shown in Figs. 2(b) and 2(c). For
each vertex n we can define a window hn(m) and calculate
the local spectrum LV Sx(n, λk) of the windowed signal. A
localized support for a window, centered at the 1st vertex, is
presented in Fig. 2(a) with red shaded vertices correspond-
ing to the window support. In this way, we obtain a 2D
representation LV Sx(n, k) of the analyzed signal presented,
as a function of the vertex and eigenvalue index, in Fig.
2(c). We can see that different signals, having almost the
same spectrum on graph, have different vertex-frequency
representations.
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Example 2: Consider a signal, x(n), defined on a graph with
N = 64 vertices as presented in Fig. 3(a). Let’s assume that
the signal values x(n) are defined with Laplacian eigenvectors
uk(n) as: x(n) = u17(n) for 17 ≤ n ≤ 32, x(n) = u30(n)
for 33 ≤ n ≤ 48, and x(n) = u10(n) otherwise.

Signal samples and its spectrum are given in Fig. 3(b).
The signal spectrum clearly depicts peaks at k = 10, k = 17
and k = 30. Small spectrum values (side lobes) around these
eigenvalues exist since the components are not complete over
all vertices. The vertex-frequency analysis of this signal is
performed using localization window hn(m). A localization
area for the h4(m) window, centered at the 4th vertex, is
shown in Fig. 3(a) (red shaded vertices). The local spec-
trum LV Sx(n, λk) of the windowed signal is calculated and
presented in Fig. 3(c). From this representation, we can see
localized signal components at “frequencies” k = 10, k = 17
and k = 30.

Finally, an instantaneous frequency representation is pro-
vided in Fig. 3(d). It should be noted that the “instantaneous
frequency” definition for graphs is different from such a
definition in traditional signal processing, where instantaneous
frequency is defined as a signal’s phase derivative with respect
to time. Here, we determine the “frequency” (eigenvalue)
index at each vertex, and this “frequency” index represents the
kth index for which the spectrum reaches maximum at that
particular vertex. Next, we can plot vertical lines with their
lengths and colors proportional to the position (frequency) of
the spectral maximum for each vertex as depicted in Fig. 3(d).
This essentially yields a vertex-based instantaneous frequency
representation depicting the localization of signal components
on graph vertices.

VI. WHAT WE HAVE LEARNED

Graph signal processing is a new field that compliments
traditional signal processing. While traditional signal process-
ing techniques for the analysis of time-varying signals are
well established, the corresponding graph signal processing
equivalent approaches are in their infancy. In these lecture
notes, we presented novel algorithms for the analysis of
vertex-varying graph signals. We expect that the considered
technique will find its many uses in neuroscience, social sci-
ences, and genome processing, as graphs (networks) in those
applications tend to be “non-stationary” and current analytical
tools widely ignore this fact. Hence, the vertex-frequency
analysis is of paramount importance for such applications.
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