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Abstract—Classification of interfering signals that belong todifferent wireless standards is important topic in wireless communications. In 

this paper, we propose a procedure for separation and classification of wireless signals belonging to the Bluetooth and to the IEEE 802.11b 

standards. These signals operate in the same frequency band and may interfere with each other. The procedure is made of a few steps. In the 

first step, the separation of signal components is done using the eigenvalue decomposition approach. The second stage is based on the 

compressive sensing approach, used to reduce the number of transmitted samples. A suitable transform domain is chosen for each separated 

component using ℓ1-norm as a measure of sparsity. Since the Bluetooth signals are less sparse compared to the IEEE 802.11b signals, after 

choosing sparse domain, additional sparsification needs to performed to further enhance the sparsity. In the last step of the procedure, the 

classification is performed by observing the time-frequency characteristics of the reconstructed separated components. The theory is proved 

by the experimental results. 
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I.  INTRODUCTION 

Depending on the system requirements, wireless standards differ in data rates, energy consumption, signal modulations, 

operation distances, etc. [1]-[4]. Low power consumption and high speed transmission are desirable in all existing standards. Also, 

securing information transmission is of great importance in wireless technology. Therefore, the spread spectrum modulation is 

commonly applied modulation technique in communications, since it provides robustness to jamming, inter-symbol interference 

(ISI), noise and robustness to other environmental factors [1]-[4]. Spread spectrum modulations spread the frequency spectrum of a 

data-signal by using a code, unique for every user and uncorrelated with the observed signal. This results in much higher bandwidth 

occupancy than it is required.  

Two types of spread spectrum modulations are observed in this paper: direct sequence spread spectrum (DSSS) and frequency 

hopping spread spectrum (FHSS), due to their applications in two interfering wireless standards. First modulation technique is used 

in IEEE 802.11b standard for wireless LAN [2]. It causes phase transitions in the carrier data by applying the fast pseudorandom 

sequence. The second technique is used in Bluetooth standard and is also based on the carrier frequency shifting in a pseudorandom 

way [2]. 

These two standards are of particular interest because they share the same operation frequency band - Industrial, Scientific and 

Medical (ISM) band. Therefore, the interferences between the two types of signals are common. Also, both standards deal with the 

sinusoidal signals, but with different physical characteristics of their components. Namely, the FHSS signal has short duration 

components, while the components of the IEEE 802.11b signal have longer time duration. The physical characteristics of 

components will be exploited for classification [2], [5]-[7] after components separation is done by applying the eigenvalue 

decomposition (EVD).  

The EVD [8]-[13] has numerous practical applications, including image analysis and signal processing, for characterization of 

signals and their components [9]. In this paper the EVD is applied to separate components of multicomponent signal belonging to 



different wireless standards. As a result, the eigenvectors corresponding to the separated components are obtained [6]. Then the 

eigenvectors are under-sampled in order to decrease the amount of transmitted data and to increase the transmission efficiency. At 

the receiver side, the eigenvectors are represented in the time-frequency domain to determine the physical features used for 

classification of components.  

In the light of Compressive Sensing (CS) theory, only a small number of randomly selected samples per eigenvector are chosen 

to be sent through the communication channel. At the receiver side, all signal components need to be completely reconstructed 

from transmitted samples, where the reconstruction is performed by using complex mathematical algorithms. An important 

requirement for successful reconstruction of CS-based eigenvectors is the sparsity property [14]-[20]. This property is achieved in 

the transform domain where the signal information is concentrated into few coefficients [21]-[23]. In order to provide sparsity for 

both considered signal types, the transform domain selection is used as a special step in the proposed procedure. Due to the nature 

of the observed signal types, the choice is made between the discrete Fourier transform (DFT) and the Hermite transform (HT) 

domain [23]-[28]. The optimization of the HT parameters is applied to increase the sparsity of components [27].  

The paper is structured as follows: Section II provides theoretical background on the EVD used for components separation. 

Section III focuses on CS approach and sparse domain selection, while the proposed procedure is summarized and described in the 

Section IV. Experimental evaluation is provided in Section V. The concluding remarks are given in Section VI. 

II. THEORETICAL BACKGROUND 

 

The EVD [9]-[12] is a method used to decompose high-dimensional signals into approximately decorrelated components. In 

other words, EVD finds the directions of maximum variations in the data [29], and project the data onto these directions. Directions 

with the most variations correspond to the eigenvectors related to the largest eigenvalues of the covariance matrix. For a certain 

covariance matrix R, the EVD is defined as follows [9]: 
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where U is an eigenvectors matrix, ΛΛΛΛ is a diagonal eigenvalues matrix where eigenvalues are sorted in decreasing order, λi are 

eigenvalues and ui 
are eigenvectors. Here, the covariance matrix is defined based on the TF autocorrelation matrix. The EVD of 

this matrix produces eigenvectors that correspond to the signals components, while the eigenvalues correspond to their energy 

[8],[9].  

If a monocomponent signal x(n) is observed, the autocorrelation matrix can be defined as: 
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denotes complex conjugate of the vector x(n). By summing up the right side of (2), the autocorrelation matrix for K-

component signal is obtained:   
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The right side of (3) can be defined by using the inverse form of the Wigner distribution: 
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where N is the signal length, WD denotes the Wigner distribution 
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If there is no overlapping in the TF plane, the sum of Wigner distributions of signal components is equal to the S-method of the 

multicomponent signal. Therefore, (4) can be modified as follows [8],[9]: 
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where SM denotes the S-method. In other words, 
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where RK is a square autocorrelation matrix. Then, the EVD of the square matrix RK could be written as: 
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resulting in eigenvalues and eigenvectors that will correspond to the signal components. 

 

III. A CS APPROACH AND SPARSE DOMAIN SELECTION 

 

In order to decrease the amount of data transmitted through the communication channel, the eigenvectors are randomly under-

sampled by applying the compressive sensing paradigm. Along with a random selection of signal samples that will guarantee 

incoherence, sparsity is another required CS condition. The sparsity means that majority of the coefficients are zeros (or 

negligible) in certain transform domain, i.e., the signal information is condensed into a small number of non-zero coefficients. 

Depending on the signal nature and required reconstruction accuracy, different algorithms can be used for recovering under-

sampled sparse signals [16]-[20].  

Let us now describe the procedure for obtaining CS-based eigenvectors. If the discrete eigenvector u of length N is sparse in 

the transform domain Ψ, it can be represented in terms of basis vectors as follows: 
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where U denotes transform domain coefficients of the eigenvector (where only S<<N coefficients are non-zero). By introducing 

the matrix ΘΘΘΘ, that models random samples selections from the starting eigenvector, the vector of available measurements y (of 

length Ma<N) can be defined as: 

 

 y U= ΘΨ .      (9) 

The system of equations (9) is undetermined, since the number of available samples Ma is smaller than the total number of 

samples N. In order to obtain a unique solution, the optimization algorithms are used such as greedy ones (e.g. OMP, CoSaMP), 



thresholding algorithms (e.g. IHT, IST), Automated Threshold Based Iterative Solution, Adaptive Gradient-Based Algorithm, etc. 

[16]-[20]. 

 

Sparse transform domain selection 

 

 Having in mind that the DSSS modulated components by their nature correspond to the full-time duration sinusoids, the DFT 

domain is suitable to reveal the sparsity. On the other side, the FHSS signals are characterized by short-duration sinusoidal 

components, producing spectrum leakage around in the DFT domain, thus ruining sparsity. Moreover, due to the shape similarity 

between the FHSS components and Hermite functions, we may conclude that the Hermite transform (HT) is more suitable choice 

compared to DFT. Hence, the decision on the sparsity domain is made by measuring the concentration using the ℓ1-norm: 
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where Ψ-1 can be either DFT or HT matrix.  Discrete Hermite function of an order p is defined as [23]-[27]: 
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while HT matrix can be defined as: 
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and its inverse form: 
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The parameter M denotes the number of Hermite functions used to represent the signal, i.e. M is the order of the Hermite 

polynomial. The Hp denotes the Hermite polynomial whose zeros are tm. The factor σ is a scaling factor and it is used to stretch 

and compress the Hermite functions. This means that each function can be adapted to the observed signal which will provide an 

additional sparsification. 

When applying the HT, the eigenvectors of length N should be resampled at non-uniform points being proportional to the 

roots of the N-th order Hermite polynomial. For that purpose, sinc interpolation function can be used to obtain the values at the 

requested non-uniform points as follows: 
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where m = 1,…,N, ∆�  is the sampling period and is time-axis scaling factor, that is used instead of σ . In order to improve the 

sparsity, the procedure for the optimization of λ is employed. The concentration measure based on the ℓ1-norm is used to find the 

value of λ producing the lowest sparsity: 
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IV. A CS-BASED WIRELESS SIGNALS CLASSIFICATION PROCEDURE 

 

The procedure aimed to separate and classify the components of the interfering Bluetooth and IEEE 802.11b signals is 

summarized in the sequel. It is consisted of six steps, and based on the previously described EVD and CS approaches.  

 

A. First the TF representation of the input signal is calculated using the S-method that provides good concentration of auto 

components and avoids cross terms in the observed multicomponent signals. The S-method calculation is based on the short-Time 

Fourier transform (STFT): 
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where x(n) is an input signal and w(n) is a sliding window.  

Then the S-method can be calculated as: 
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where the parameter L usually takes values between 3 and 6.  
 

B. Next, the autocorrelation matrix RK used in the EVD, is calculated as an inverse of the S-method, according to (6).  
 
C. The choice of sparsity domain is done by measuring the concentrations of the DFT and HT for each eigenvector, based on 

the ℓ1-norm and according to (10). 

 

D. The next step assumes random under-sampling of the eigenvectors, which is done by simply selecting certain percent of 

random samples.  
 



 
 

Figure 1.  The algorithm for components separation and classification based on the EVD and CS approach 

 

 

E. After transmission, the vectors are reconstructed by using the optimization algorithms. Here, the ℓ1-norm minimization is 

used for the vector reconstruction: 

 �
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The solution of the ℓ1 minimization problem is based on the basis pursuit primal-dual, and performed by using the L1-magic solver.  

 

F. Finally, the S-method is calculated for each individual reconstructed eigenvector. Then the eigenvector features in the TF 

plane are used to make decision about the specific component type (related to the communication standard). The whole procedure 

is described in the Figure 1 diagram. 

The proposed procedure does not require the a priori knowledge of the components’ frequencies. Hence, the procedure 

provides blind sinusoidal components separation belonging to different frequencies, as long as there are no overlapping and 

intersections between components in time or in frequency. The FHSS and DSSS modulations use different frequency channels in 



the ISM frequency band. FHSS components appear over 79 channels, while DSSS modulation uses 14 channels. Therefore, 

intersections and overlapping do not appear between the components belonging to different signals.  

Regarding the energies of the signal components, it is important to note that the eigenvalues λi, that are result of the EVD 

procedure, correspond to the energies of the signal components. The greatest eigenvalue will correspond to the first eigenvector, 

i.e. the strongest signal component, while the second one will correspond to the second greatest component, and so on. Therefore, 

the strongest component will be extracted at the first place, followed by the components that have lower energy.  

 

V. EXPERIMENTAL RESULTS 

 

The proposed procedure is tested on synthetic signal. Signal contains both interfering standards: signal belongs to the Bluetooth 

standard and the IEEE 802.11b standard. The signal length is 256 samples and contains seven components: four components are 

FHSS modulated, while three components are DSSS modulated.  

The S-method of the combined signal is shown in Figure 2.  

We may observe that the Bluetooth signal components have higher energy compared to the components of the IEEE 802.11b 

signal. Therefore, the first four eigenvectors obtained from the EVD will correspond to the components of higher energy, i.e., 

components of the Bluetooth signal, while the 5th, 6th and 7th eigenvectors will correspond to the IEEE 802.11b components. 

 

Figure 2.  The S-method of the original signal; x-axis is time, y-axis is frequency 

 

After the eigenvectors are obtained, the sparsity domain is chosen for each of them, based on the ℓ1-norm sparsity measure. The 

values of the concentration measure for 7 observed eigenvectors are given in Table 1. Also, for the first four eigenvectors we 

provide their DFTs and optimized HTs in in Figure 3a. Both transform domains are plotted in order to illustrate that the HT 

provides better sparsity compared to DFT for the FHSS components. The last three eigenvectors are illustrated in the DFT as a 

dominant sparsity domain, Figure 3b. 

 
Table 1: Eigenvectors concentration measures calculated for both, HT and DFT domains 

 

Eigenvector 

No 

Sparsity 

measure-

Hermite 

transform 

Sparsity 

measure-

Fourier 

transform 

Sparsity 

domain 

1 27.9601 37.3387 HT 

2 28.4100 36.2452 HT 

3 32.7542 41.4611 HT 

4 27.8796 37.4397 HT 

5 68.2208 22.9848 DFT 

6 67.7154 19.7623 DFT 

7 94.0820 25.4799 DFT 
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Figure 3.  a) First 4 eigenvectors (first column, x-axis is time, y-axis is amplitude) and their corresponding DFTs (second column, x-axis 

is frequency, y-axis is amplitude); Optimized HTs for the first 4 eigenvectors (third column, x-axis denotes order of the Hermite 

coefficient, y-axis is amplitude);  b) 5th, 6th and 7th eigenvector (first column, x-axis is time, y-axis is amplitude) and their DFTs (second 

column, x-axis is frequency, y-axis is amplitude); 
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Figure 4.  Separated components of the Bluetooth signal – blue is the original component, red is the CS reconstructed component. The percent of the randomly 

selected samples is 45% (x-axis is time, y-axis is amplitude) 

 

 
 

 
 

Figure 5.  Separated components of the IEEE 802.11b signal – blue is the original component, red is the CS reconstructed component. The percent of the 

randomly selected samples is 45% (x-axis is time, y-axis is amplitude) 

Based on the sparsity measure, HT is chosen as sparse domain for the first four eigenvectors, while DFT is chosen for the three 

remaining eigenvectors. After selecting the transform domain, the HTs of the corresponding eigenvectors are additionally 

optimized in order to improve the sparsity as described in Section III. 

 The obtained eigenvectors are randomly under-sampled to be transmitted with lower amount of data. Only 45% of the total 

number of samples is chosen from each eigenvector. At the receiver side, the eigenvectors’ reconstruction is done by using basis 

pursuit primal-dual reconstruction algorithm. The original (blue) and reconstructed (red) eigenvectors are shown in Figures 4 and 

5: FHSS modulated components are shown in Figure 4, while DSSS modulated components are shown in Figure 5. The last step 
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is the calculation of TFR for the reconstructed components. The S-methods of the separated signal components are shown in 

Figure 6.  

Classification of the signal components is done here by observing the TF representations of each separated component. The time 

durations of the components are extracted from the TF representation, and based on their values, the classification to the 

Bluetooth or IEEE 802.11b standard is done. The features extraction and signal classification based on the TF representations, is 

proposed in [2]. The durations of the separated components, estimated from the components S-methods, are given in the Table 2. 

As it can be seen, the FHSS components has shorter duration compared to the IEEE 802.11b signal components. The 

reconstruction errors are provided within the Table 3. The mean square error (MSE) between original and reconstructed 

eigenvector is observed. 

 Note that components classification can also be done in the step C. of the algorithm, based on the value of the concentration 

measure. In the case of HT domain, the FHSS signal components will have lower concentration measure compared to the IEEE 

802.11b signal components.  

 

 

 

 

             

Figure 6.  S-method of the separated components: first 4 figures correspond to the S-method of the FHSS modulated signal, while remaining 3 figures correspond 

to the S-method of the DSSS modulated signal (x-axis is time, y-axis is frequency) 

 

Table 2: Components duration, estimated from the TF representations of the separated components 

Component 

No 

Duration (number of 

samples) 

Signal 

1 21 FHSS 

2 20 FHSS 

3 18 FHSS 

4 20 FHSS 

5 108 IEEE 802.11b 

6 112 IEEE 802.11b 

7 102 IEEE 802.11b 

 

 Table 3: The MSEs between original and reconstructed eigenvectors, for 45% of the available samples 

 

Component No MSE 

1 0.0103 

2 0.0087 

3 0.0077 

4 0.0122 

5 2.3406*10-4 

6 3.06781*10-4 

7 2.5467*10-4 

 



Noisy signal case: 

 

In the sequel, the performance of the decomposition procedure in the noisy environment is considered in terms of the number 

of extracted eigenvectors (that correspond to the signal components) from noisy signal. It is assumed that the signal is corrupted 

by the Gaussian noise. Noise, affecting the signal, is distributed in the time-frequency plane. By using the time-frequency domain 

to extract eigenvectors belonging solely to the signal components, a certain percent of the noise will be eliminated from the 

signal.  

 The results for different signal-to-noise ratio (SNR) are shown in Table 4.  The number of extracted components from the total 

number of components is provided within the Table 4. It is shown that all signal components (i.e. eigenvectors that correspond to 

the signal components) can be successfully separated if the SNR is above – 4 dB. Number of EVD iterations in this case should 

be slightly higher than number of signal components (in this case, number of EVD iterations is 8 for the SNR=-3.7823 dB, while 

the number of signal components is 7). 

 

Table 4: Number of extracted eigenvectors that correspond to the signal components, in the case of noisy signal. Different SNRs are observed 

SNR (dB) Number of extracted 

eigenvectors 

Number of EVD 

iterations 

-4.6599 5 15 

-3.7823 7 8 

-2.0454 7 8 

-0.3898 7 7 

0.4935 7 7 

1.9965 7 7 

 

VI. CONCLUSION 

The procedure proposed in this paper aims at separation and classification of the signals that belong to two interfering wireless 

standards. Separation procedure is based on the eigenvalue decomposition approach while for the classification, time-frequency 

representations of the separated components are observed. Classification is done on the randomly under-sampled separated 

components. It is shown that more than 50% of the signal samples can be avoided during the transmission, and component can be 

still recovered with the high accuracy. In order to successfully reconstruct randomly under-sampled components, a suitable sparse 

domain has to be chosen. Due to the nature of the observed signals, it is shown that HT domain can be used as a sparsification 

domain for the FHSS modulated signals, while for the DSSS modulated signals the DFT shows to be better choice. 
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