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Abstract—A method for reconstruction of sparse signals is pre-
sented in this paper. It is an improved version of the direct-search
method for finding the set of non-zero coefficients representing
the solution in sparsity domain. The proposed random search
procedure is performed assuming the largest possible number of
non-zero coefficients still satisfying the available measurements
system. In the sparse signal processing and compressive sensing
theory, this number should be smaller than or equal to the
number of measurements. For each possible arrangement of
the examined non-zero coefficients, the reconstruction is done
by solving the system of equations in the least square sense,
until the solution is found. Benefits of the proposed method
are discussed. The calculation complexity improvement of the
proposed method, compared to the direct-search, is analytically
expressed. It depends on the total number of signal samples,
number of measurements and the signal sparsity. The presented
theory is confirmed with numerical examples.
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I. INTRODUCTION

A signal with a small number of nonzero coefficients (sparse
signal) can be reconstructed from a reduced set of available
samples/measurements [1]–[11]. The reduced number of mea-
surements can be a consequence of various circumstances. It
can occur as a result of a sampling strategy developed with
the aim to reduce the storage requirements for the data. Mea-
surements can be unavailable due to physical constraints or
their intentional omitting due to a high noise corruption [11].
The analysis and reconstruction of sparse signals was the topic
of many research papers [1]– [15]. Numerous reconstruction
theorems and algorithms were developed [1], [2], [4]–[8].

Many signals in real applications can be considered as
sparse in a certain transformation domain, meaning that the
idea of sparse signal reconstruction can be exploited in dif-
ferent areas of signal processing. For example, digital images
can be considered as sparse in the domain of discrete cosine
transform (DCT), whereas radar ISAR data are sparse in the
domain of two-dimensional Fourier transform [16].

One of the challenging topics in the compressive sensing
is the optimal sampling strategy that will allow to reconstruct
the signal with smallest possible number of available samples
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[12]. Various approaches are used to this aim, like those that
minimize the coherence index of the isometry constant for
a given signal transform. The direct search method provides
exact reconstruction results if the unique reconstruction is the-
oretically possible. However, this method is computationally
complex. For a large dimension of the reconstruction problem,
number of available samples and sparsities, it is NP-hard and
therefore not computationally feasible.

In this paper, we introduce an improvement in the compu-
tation of signal reconstruction by modifying the direct search
strategy. It is known that for an observed sparsity level,
compressive sensing algorithms, for instance `1-norm based or
iterative, greedy, and other proposed algorithms [5], require a
larger number of available measurements than the one required
in `0-norm minimization. The aim is to overcome this issue
by exploiting the possibility to reduce the number of trials in
the direct search reconstruction procedure.

The paper is organized as follows. Basic compressive sens-
ing definitions are presented in Section II. In Section III
the direct search reconstruction algorithm is presented. The
proposed, random search method, is introduced in section
Section IV. Results and comparison are shown in Section V
whereas the paper ends with concluding remarks.

II. BASIC DEFINITIONS

Let us consider a complex-valued discrete signal x(n) of
length N and its corresponding transformation domain X(k)

x(n) =

N−1∑
k=0

X(k)ψk(n), X(k) =

N−1∑
n=0

x(n)ϕn(k), (1)

or in vector form x = ΨX and X = Φx. The inverse and the
direct transform matrices are denoted as Ψ and Φ, respec-
tively. We say that a signal is K-sparse in the transformation
domain if the number of nonzero coefficients K is much
smaller than the total length of signal N , i.e., K � N . Then
a sparse signal can be reconstructed with M < N measure-
ments. The signal with M samples/measurements available is
denoted as y(m)

y(m) =

N−1∑
k=0

X(k)ψk(m). (2)

Previous definition can be written in a vector form as

y = AX (3)



where A is the measurement matrix of size M × N .
It is formed based on the matrix Ψ, containing rows
that correspond to the positions of the available measure-
ments/observations, whereas the rows corresponding to the
missing samples are omitted.

The sparse signal reconstruction can be defined as the
solution of the optimization problem

min ‖X‖0 subject to y = AX. (4)

Having an undetermined system of linear equations defin-
ing the available measurements, the solution of the signal
reconstruction problem is the one satisfying this system of
equations, and being the sparsest possible. That is, the aim is to
minimize the sparsity of X using the available measurements
y. This is achieved by exploiting a sparsity measure. A
natural choice for this measure is the so-called `0-norm which
counts the number of nonzero coefficients in X, although
not satisfying norm properties in a strict mathematical sense.
However, this function is not convex and its minimization
could be done only through a combinatorial search. Moreover,
it can be easily shown that a direct combinatorial search
is not computationally feasible for a reasonable length of
the considered signal, its sparsity and number of available
samples. This pseudo-norm is also very sensitive to the noise
influence and quantization errors. This is the reason why,
in practice and theory, more robust norms are exploited as
sparsity measures.

The `1-norm is the most frequent used norm since it
is closest convex function to the `0-norm. It is equal to
the sum of absolute values of X. However, all norm-one
reconstruction methods, as well as other standard algorithms
developed within the fields of sparse signal recovery and
compressed sensing, require more samples/measurements than
the minimal possible number that can provide a unique signal
reconstruction in theory. Motivated by this fact, we try to
reduce the computational cost of the combinatorial approach,
with the aim to obtain the results similar to the direct search
in sense of the minimal required number of measurements
needed for a successful unique reconstruction.

III. DIRECT SEARCH RECONSTRUCTION

Any problem described with (4) can be solved by a direct
search over the whole set of possible values of nonzero
coefficient positions. This procedure is defined as the direct
search minimisation of the `0-norm. Assume a vector X with
sparsity K. We try to detect indices of the nonzero values
k ∈ {k1, k2, ..., kK} out of the set of all possible indices
between 1 and N

k ∈ K ⊂ N (5)

where K = {k1, k2, ..., kK}, N = {1, 2, ..., N}. The vector
XK contains assumed K nonzero elements of X at the
positions from set K. The system

y = AKXK (6)

with M > K equations is solved by minimising the least
square error

e2 = (y −AKXK)H(y −AKXK) =

||y||22 − 2XH
KAH

Ky + XH
KAH

KAKXK . (7)

The minimum of the error is found from

∂e2

∂XH
K

= −2AH
Ky + 2AH

KAKXK = 0. (8)

The solution is calculated as

AH
KAKXK = AH

Ky

XK =
(
AH
KAK

)−1

AH
Ky. (9)

For all solutions we check the error y − AKXK . The
reconstruction of the signal X is exact when the mean square
error is equal to zero. The reconstruction is not unique if there
is more than one solution.

IV. RANDOM SEARCH RECONSTRUCTION

In the direct search procedure we should check all combi-
nations of K nonzero out of N coefficients in total. To find
all possible combinations of {k1, k2, ..., kK} ⊂ N, the total
number of combinations is equal to(

N

K

)
(10)

and it could be very large. The expected number of checked
combinations is

Td =
1

2

(
N

K

)
. (11)

Even though the direct search is an accurate method, it
is computationally not feasible to get a solution for a large
signal. For the random search procedure, we will consider a
system with M unknowns. Taking M − 1 > K equations in a
combination, less trials will be needed to find the solution. Let
us consider a random combination of M−1 nonzero positions.
The new system is then

y = AselXsel (12)

with M equations. If the considered combination includes all
K nonzero positions from X, then the system (12) of M
equations with M − 1 unknowns have the unique solution.
Note that only K coefficients in the solution are nonzero and
remaining M − 1−K coefficients are zero valued.

Considering the new system (12), the probability that we
find the solution is

Ps =

(
N−K

M−1−K
)(

N
M−1

) . (13)

The expected number of trials can be estimated as

Tr =
1

Pe
=

(
N

M−1

)(
N−K

M−1−K
) . (14)
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Fig. 1. The improvement in the calculation complexity over the direct search,
when the random search is applied on signals with various sparsity K, length
N = 128 and number of available samples M = 2K + 1.

The improvement in speed of the proposed random search
procedure compared to the direct-search is

S =
Td
Tr

=
1

2

(
N
K

)(
N−K

M−1−K
)(

N
M−1

) . (15)

The amount of the speed improvement will be illustrated by
several examples in the next section.

V. EXAMPLES

Example 1: Let us consider a signal of length N = 128,
having M = 15 available samples and sparsity K = 7. The
total number of direct-search combinations for this case is(

N

K

)
∼ 1010.

Probability that we guess solution by proposed method is

Ps ≈ 3.6× 10−8

whereas the expected number of trials equals

Tr ≈ 2.75× 107.

The proposed method is S ≈ 1700 times faster than direct-
search (in average).

Let us now observe a signal having the same length N =
128, and M = 31 available samples with sparsity K = 15.
Following the previous analysis, the calculation speed-up is

S ≈ 7.7× 107.

The expected number of trials in the random search procedure
applied in this case is

Tr ≈ 8.5× 1010.

Example 2: For signal of length N = 128 we vary sparsity
K from 7 to 60 and assume that the number of available
samples is M = 2K+1 for each observed sparsity. The speed
improvement of the proposed method over the direct search,
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Fig. 2. The expected number of trials in direct search and random search for
signal of length N = 128 with various sparsity K and number of available
samples M = 2K + 1.

calculated according to (15) is shown in Fig. 1. The expected
trials number is also calculated for both procedures, according
to (11) and (14). The results are shown in Fig. 2.

Example 3: The main motivation to introduce an improved
version of the direct search lies in the fact that standard sparse
reconstruction algorithms, including those based on `1-norm
require a larger number of available samples for the recovery
of missing samples than the reconstruction based on the
corresponding direct search aiming to minimize the `0-norm.
In order to illustrate this issue, we observe a N = 20 length
signal K-sparse in the discrete Fourier transform domain. The
signal has the following form

x(n) =

K∑
i=1

Aie
j2πki

n
N , (16)

with amplitudes and frequencies having random values with
uniform distribution, satisfying 0 ≤ Ai ≤ 2 and 0 ≤ ki ≤
N − 1. Number of available samples was varied from M = 1
to M = 19 whereas for each number of available samples
sparsity was varied from K = 1 to K = 19. Note that in
cases when K > M the reconstruction is not possible.

The proposed random search is compared with Orthogonal
Matching Pursuit (OMP), a representative algorithm from the
compressive sensing framework introduced in [5]. The random
search procedure terminates when the solution is found, or
the number of trials exceeds

(
N

M−1

)
. The experiment was

conducted based on 100 independent realizations of signals
with random missing samples positions and the probability of
successful reconstruction is calculated.

The results are shown in Figs. 3 and 4. Comparing these
results, it can be seen that the OMP-based reconstruction
requires a larger number of available samples M (for a given
sparsity K) than the corresponding random search procedure.
For example, in the OMP case with K = 2 accurate recon-
struction in 100% of trials requires exactly M = 9 available
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Fig. 3. The probability of successful reconstruction using OMP as an example
of standard sparse signal recovery algorithms. The results, shown for various
K and M are obtained based on 100 independent realizations of signals with
random missing samples positions, amplitudes and frequency positions. The
signal length is N = 20.
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Fig. 4. The probability of successful reconstruction using the proposed
random search procedure. The results, shown for various K and M are
obtained based on 100 independent realizations of signals with random
missing samples positions, amplitudes and frequency positions. The signal
length is N = 20.

samples, whereas the proposed procedure requires only M = 4
available samples.

VI. CONCLUSIONS

In this paper we propose a method for sparse signal recon-
struction based on the random search for K nonzero coefficient
positions in the sparsity domain. Since we have M available
measurements, in each trial M−1 randomly selected positions
are considered. If the considered combination includes all the
nonzero coefficients, then the reconstruction is done success-
fully. Transform coefficients with wrongly assumed nonzero
values are automatically set to zero using the partial sensing
matrix pseudo-inversion involved in the signal reconstruction.

Taking more positions in one trial will converge to the solution
faster than the direct-search procedure. The random search
method is compared with the direct-search, showing noticeable
improvement in the calculation cost. The basic motivation for
this research is the fact that standard algorithms from the
compressed sensing framework require a larger number of
available samples for the successful reconstruction than it is
required by the direct search based reconstruction. This issue
is illustrated in comparison with OMP algorithm. The obtained
results confirm that the calculation improvements in the direct
search based signal recovery represent important and open
topics for further research.
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