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Abstract—Images are commonly analysed by the discrete co-
sine transform (DCT) on a number of blocks of smaller size. The
blocks are then combined back to the original size image. Since
the DCT of blocks have a few nonzero coefficients, the images
can be considered as sparse in this transformation domain.
The theory of compressive sensing states that some corrupted
pixels within blocks can be reconstructed by minimising the
blocks sparsity in the DCT domain. Block edges can affect
the quality of the reconstruction. In some blocks, a few pixels
from an object which mostly belongs to the neighbouring blocks
may appear at the edges. Compressive sensing reconstruction
algorithm can recognise these pixels as disturbance and perform
their false reconstruction in order to minimise the sparsity
of the considered block. To overcome this problem, a method
with overlapping blocks is proposed. Images are analysed with
partially overlapping blocks and then reconstructed using their
non-overlapped parts. We have demonstrated the improvements
of overlapping blocks on images corrupted with combined noise.
A comparison between the reconstructions with non-overlapping
and overlapping blocks is presented using the structural similar-
ity index.
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lapping blocks, gradient algorithm, noisy image

I. INTRODUCTION

An image is said to be sparse if it consists of only few
nonzero coefficients in a transformation domain. A sparse
image can be reconstructed with a reduced set of pixels. The
processing and reconstruction of such images are examined
within the theory of compressive sensing (CS) [1]-[9]. The
theory of CS is widely used in various applications in the area
of digital signal processing, since many real signals are sparse
in a certain transformation domain. Numerous reconstruction
algorithms for different kinds of signals have been developed
within this field. They can be divided in several groups.
The algorithm considered in this paper is from the group of
algorithms based on the minimisation of the sparsity measure
by using the gradient of the L;-norm [10]. In this algorithm,
the image is reconstructed in the spatial (pixels) domain. The
corrupted pixels are detected, declared as unavailable (missing)
and considered as the minimisation variables. This property
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makes the algorithm suitable for denoising of corrupted pixels
in a noisy environment.

Common images have a small number of nonzero coeffi-
cients in the two-dimensional discrete cosine transform (2D-
DCT) space. A reduced set of pixels can be used to reconstruct
sparse images. Different reasons can cause that only a reduced
set of pixels is available. One reason can be in heavy pixels
corruption. Corrupted pixels may be declared as unavailable.
Then the image is reconstructed using the CS methods. The
impulsive noise is example of such a disturbance. It can appear
due to analog to digital conversion errors, communication
errors, dead pixels in image acquisition equipment, etc. Here
we will consider a form of impulsive noise known as the salt
and pepper noise with an addition of noise whose values are
within the range of the original image pixels.

The paper is organised as follows. In Section II, theoretical
background of sparse signal processing is presented. In Section
III, the reconstruction algorithm is introduced. Section IV
explains the idea of adding the overlapping block step. In
Section V, the results and comparison using the structural
similarity index is shown. In Section VI, conclusions are
presented.

II. THEORETICAL BACKGROUND

Let us consider a grayscale image I(m,n) of size N X N.
Based on the JPEG standard, we will split the image into
blocks of size B x B. We will assume that a image block
starting at pixel (mq,ng) is defined as

x(m,n) = I(mo+m,ng+n), m,n=0,1,...,B—1. (1)

Its 2D-DCT representation is denoted by X (k,!). The vector
notations of the image blocks and their 2D-DCT are

x = ¥X and X = &x )

where ¥ and ® are the transform and inverse transform
matrices with rearranged elements of the 2D-DCT. Vectors x
and X are obtained by stacking columns of the corresponding
block pixels and 2D DCT transform.

The sparsity of one image block is K < (B x B). From
the compressive sensing theory we know that, if an image is
of a sparsity K, it can be reconstructed from less than B x B
pixels/measurements. The measurements are denoted by y

y = [2(my1,n1), x(ma, n2), ..., x(mar, nas)] 3)



where M is the number of pixels/measurements used in a
block. The relation between the values is K < M < B x B.
Our goal, in the sparse signal processing sense, is to recon-
struct an image using the available pixels/measurements by
minimising the sparsity, i.e.

min || X[, subject to 'y = AX “4)

where A is an M x N measurement matrix obtained from
matrix ¥ by selecting rows that correspond to the available
pixels. The measurements are the available (uncorrupted)
pixels in the image

y(i) = z(my,n;). 5)

Positions of the available pixels/measurements are (m;,n;) €
M = {(m1,n1), (m2,n2), ..., (mar, nar) }. If we have an 8-bit
B x B image block, corrupted with salt and pepper noise, the
block can be then written as

ng) (m,'fl) = x(m, ’I’L), for (ma n) eEM (6)
0 (or 255), elsewhere

where 0 and 255 are salt and pepper noise. If an uniform
noise is used then the values are between 0 and 255, In the
next section we will present an algorithm used for the recovery
of the noisy pixels.

III. RECONSTRUCTION ALGORITHM

The algorithm was introduced in [10], [11]. It is based on
the minimisation of the gradient of corrupted pixels. Consider
a corrupted image block as presented in equation (6). In the
initial stage, we add an arbitrary value +A to the corrupted
pixels

x:; (TTL, n) = 1-(17) (TTL7 n) + A(5(m —m;,n — TLZ) )
z; (m,n) = z® (m,n) — As(m —ms,n — n;)
where p is the iteration index. In the initial stage p = 0.

The arbitrary value A is usually the maximal uncorrupted
pixel value, i.e. A = max,, ,(y). For the corrupted pixels at

positions (m;,n;) ¢ M the gradient value is estimated as

1 _
g(mi,ni) = ﬁ( ||X;LH1 - HXa ||1) ®)

where XF are the 2D-DCT domain values of the signals in
(7). Note that the gradient value for the uncorrupted pixels
will be zero. Based on the gradient value, the corrupted pixel
x(m;,n;) is updated. Each corrupted pixel value is changed
in the direction opposite of the gradient for a step p

2P (my, ;) = 2P (mi,n) — pg(ma,ng).  (9)

Because of the shape of the gradient and norm-one sparsity
measure, when the values are close to the true signal val-
ues, they will oscillate around the solution. The oscillations
are proportional to the step size. When the oscillation is
detected, the step sizes A and p are reduced. These new
parameters continue approach to the true signal values until
a new precision is reached. The procedure is repeated until

the desired reconstruction accuracy is achieved. One of the
stopping criterion for the algorithm can be if the change in
two successive iteration is smaller than some desired accuracy.

Note that only corrupted pixels (which are changed during
reconstruction steps) contribute to this change. This is the
basic reconstruction algorithm when the positions of the
corrupted pixels are known (if, for example, the pixels are
distinguishably corrupted).

If other noise types are used, then an additional step is
proposed in [12], [13]. Since the positions of the corrupted
pixels are unknown, we repeat Eq. (7) and (8) for all pixels
(corrupted and uncorrupted). Each time we take the pixel with
the largest gradient, reconstruct it and eliminate it from the
array of possible values. This will be repeated until the error
of two successful iterations is below an acceptable level.

IV. OVERLAPPING BLOCKS

Let us consider an image of size N x IV and that we split the
image in number of blocks of size B x B. Each block has M
available/uncorrupted pixels. Within blocks we have corrupted
pixels with salt and pepper noise and a uniform noise, whose
values are similar to the uncorrupted pixels.

Assume that there are a few uncorrupted pixels at the edges
which are not of the same or similar value as the other pixels
in the block. These pixels mainly belong to the object of a
neighbouring block. The compressive sensing theory looks for
the sparsest possible solution as the reconstruction result. The
sparsest solution of the considered block would be obtained
by taking the uncorrupted pixels (which are part of the
neighbouring object) as the corrupted ones, since these pixels
significantly differ from the majority of the other uncorrupted
pixels in that block. In this sense, a method will be falsely
reconstruct these pixels as the pixels of similar values to the
other pixels within the block.

To overcome this problem, we introduce the overlapping
blocks. The idea is to take a bigger block to analyse the objects
in surrounding blocks. Then we reconstruct the block and use
only a smaller central part of the analysed block in the final
image reconstruction. The method of overlapping blocks is
suitable as an addition to the algorithms which are based on
the detection and reconstruction of the noisy pixels itself, not
the transformation domain coefficients.

As an illustration, let say that the block for analysis is of
size B x B = 32 x 32. The size B, x B, will denote the
size of the part which will be used in the final reconstruction.
Obviously it must hold that B, < B. We assume that we will
use the central block of size B, x B, = 16 x 16. Illustration
of this kind of blocks is presented in Fig. 1. Bigger blocks
represent the blocks for analysis, which are of size B x B,
and smaller blocks are the blocks for final reconstruction. They
are of size B, x B,. Note that for the blocks which are at the
edges of the whole image, we use the reconstruction from the
edge analysis blocks.

V. RESULTS

In this section we will present reconstruction results using
the method presented in the previous sections. Note that the
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Fig. 1. Tllustration of two overlapping blocks. Bigger block is used for the
analysis and the smaller one is used for the final reconstruction

idea of overlapping blocks can be considered as an improve-
ment to the reconstruction algorithms for the edges of objects
in images. The algorithm was tested using overlapping and
non-overlapping blocks. It was tested on a grayscale 512 x 512
image “Lena” with 50% of salt and pepper noise and 12.5% of
random noise. It is considered that 10% of components in each
block are nonzero in the 2D-DCT domain. The original image
and the noisy image are presented in Fig. 2. The reconstruction
without using overlapping blocks is shown in Fig. 3 (top). In
the overlapping case the blocks for analysis are of size 32 x 32
and the part used for the final reconstruction is the central part
of size 16x 16. The result is shown Fig. 3 (bottom). The images
zoomed in to the upper right corner are shown in Fig. 4.

A. Comparison

The comparison between the reconstructions using non-
overlapping and overlapping blocks is presented using the
localized structural similarity (SSIM) index. The SSIM index
is a comparison parameter between two images. It is defined
in [14] as

(22, prz, + €1)(204,2, + C2)
(13, + 12, +a)loz, oz +c2)

where x,,%, are the original and the reconstructed image,
respectively. The values i, (5, are the mean values of the
images, 04, s, 1S the covariance between the two considered
images, and afco, U%T are the variances of the two images. The
values c1, co are used as stabilisation variables. If SSIM index
is close to 1 the images are similar, if it is close to O they are
not similar. The SSIM index of the zoomed images from Fig.

4 are shown in Fig. 5.

SSIM(x,,x;) = (10)

VI. CONCLUSIONS

A method for improving the reconstruction of noisy images
using overlapping blocks is proposed. It is an improvement
of the methods for reconstruction algorithms which are based
on the detection of the corrupted pixels in spatial domain.
The reconstruction of the images using non-overlapping and
overlapping blocks is shown. The use of overlapping blocks
improved results in the denoising of images.

Original image

Noisy image

Fig. 2. Original image (top); Noisy image (bottom) used for the reconstruction
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Fig. 4. Zoomed reconstructed images: with 32 X 32 non-overlapping blocks
(top); with overlapping blocks (bottom)
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Fig. 5. SSIM index of the zoomed reconstructed images: with 32 x 32 non-
overlapping blocks (top); with overlapping blocks (bottom)



