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Abstract—A precise and accurate monitoring of different 

parameters such as temperature, relative humidity or gas level, 

in cold chain logistic, is important for preserving the quality of 

the transported goods. Constant parameters monitoring requires 

a large number of sensors and a large storage capacities, and can 

cause overloading during the communication. Therefore, in this 

paper we have observed an under-sampled signal describing the 

level of CO2 in the cold chain, with an aim to recover the missing 

information by applying the Compressive Sensing approach. The 

reduced number of measurements will lead to decreased number 

of required sensors, reduced storage demands and will speed up 

the communication.  

Keywords-component; cold chain logistics, compressive 

sensing, reconstruction algorithms, table grape  

I.  INTRODUCTION  

In the era of the globalization, the distances between 
regions become much smaller in the sense of communication 
and data exchange. However, the physical distance can still be 
very challenging, especially when we consider transportation 
of goods between distant world regions. The goods can be 
exposed to complex transportation process and thus, the cargo 
can be more or less damaged. The damages may appear by 
sudden change of certain parameter during the transportation, 
such as temperature, humidity, gas atmosphere, etc. In order to 
provide undamaged transportation in medical, pharmaceutical 
and food industry, the cold chain logistics are used [1]-[5]. 

 The cold chain denotes a supply chain that is temperature-
controlled. It includes the transportation of the goods, whose 
quality is usually temperature dependent, by applying physical 
and logistical methods for their protection during the transport. 
Changes in the temperature or other factors can cause damage 
of the cold chain goods  (goods such as frozen food, 
agricultural products, various chemicals, medical drugs, etc.) 
and therefore, goods need to be held in cold stores  as longer as 
possible [1]-[5]. Transportation is usually done in the cooled 
trucks, specialized cooled cargo ships, or by airplanes. 

The temperature, humidity and gas atmosphere are 
important parameters in a cold chain logistics. The gas 
atmosphere is monitored mainly in terms of the levels of 
oxygen and carbon dioxide. A cold chain is the best way to 
preserve the quality of products, and in order to achieve this, 
the CCL parameters should be constantly monitored. The 

tolerances related to the parameters to be monitored exist, and 
they are dependent on the actual product being transported.  

In this paper, our focus is on the signal describing the 
changes in the CO2 level, in the table grape chain logistics. 
Specifically, the CO2 level signal during the grape 
transportation from Zhuolu to Tianjin, China, has been 
observed. Variations in temperature, humidity, CO2 level and 
other parameters, can affect the goods quality, since these 
variations can lead to changes in chemical processes into the 
food. CO2 level varies in different stages of the transportation: 
when goods are put in the cold storage, during the 
transportation, unloading, etc. Transportation can lasts for 
several days, and the parameters needs to be monitored almost 
in the real time during the whole process. It requires large 
number of wireless sensors to be attached and active, which 
leads to traffic and communication systems overloading. 
Therefore, in this paper we exploit the possibility to use the 
Compressive Sensing (CS) approach to collect data and to 
transmit smaller number of signal coefficients to the end user. 
It is done with a goal to decrease the storage requirements and 
to speed up the communication, but to be able to recover the 
missing data and to perform the monitoring without losing the 
quality of the final information. Traditional methods used for 
monitoring require a large number of sensors that collect data 
in real-time. This may lead to communication systems 
overloading and reduce transmission efficiency [1]. 

CS is widely studied approach for signal sampling, 
providing an alternative way of signal acquisition and allowing 
successful signal analysis from the small set of the available 
signal samples [6]-[12].  CS is based on the various 
mathematical approaches for the reconstruction of the missing 
information [12]-[18]. The approaches depend on the signal 
nature, but also differ for 1D and 2D signals. Here, we will 
apply the 2D reconstruction approach [18]-[23], that will be 
explained through the text. 

The paper is structured as follows: Section II presents cold 
chain logistics and parameter monitoring. Section III contains 
details related to the CS reconstruction procedure that is 
applied, while the experimental validation is given in the 
Section IV. Conclusion is in the Section V.  

II. COLD CHAIN LOGISTICS 

 Cold Chain Logistics (CCL) [1]-[5] involves the 
transportation of various products in the temperature controlled 



conditions. A large amount of products (food, medical drugs, 
etc.) are being damaged during the transport and have poor 
quality at the final destination, caused by changes in 
temperature, gas atmosphere, humidity, etc. during the 
transport. Various environmental factors affect quality and 
safety of perishable foods throughout the supply chain [2]. 
When considering the food CCL, levels of CO2 and O2 
concentrations affect fruit metabolism and fruit shelf life [5]. 
That is the reason why constant and efficient gas atmosphere 
monitoring is important in food CCL.  

Visibility and controllability in CCL is achieved by 
designing a system that will be able to monitor the whole 
process and to provide information between customers and 
suppliers. In that sense, technologies such as sensors, Radio 
Frequency Identification (RFID) and wireless networks are 
used.  

In this paper our focus is on the CO2 level monitoring in 
CCL of the grape. Having in mid their moisture content, table 
grapes can be easily damaged by pathogen infection, caused by 
changes in air quality, temperature and humidity during the 
transport. As transportation may last for several days, the real 
time monitoring can be time and power consuming. Therefore, 
the possibility to apply the CS approach to lower the amount of 
information required for efficient monitoring of the parameters 
of interest. Here, we assume two scenarios: 1) we have small 
signals recorded on daily of half-daily basis or in some other 
time interval, and 2) we deal with the whole signal (recorded 
during the whole CCL process). We try to recover the signals 
from the small set of randomly chosen samples that are sent to 
the end user. The original signal of interest is reconstructed 
from the received signal parts at the end user side. Note that the 
end-user will not have information in the real-time, but with 
the acceptable delay. The delay is caused by waiting sufficient 
number of samples to be received based on which the signal 
can be reconstructed.  

 

III. CS-BASED UNDER-SAMPLING/RECONSTRUCTION 

PROCEDURE OF THE COLD CHAIN CO2 SIGNAL  
 

Until recently, signal acquisition is made according to the 
Sampling theorem – with a sampling frequency at least two 
times maximal signal frequency. After the acquisition, 
compression is common step in majority of the applications. 
CS aims at performing the compression during the acquisition. 
It is achieved by acquiring sparse signals according to the CS 
rules – random sampling showed to be the common CS 
sampling approach. The CS signal acquisition rate is much 
smaller than that required by the Shannon-Nyquist sampling 
theorem. However, much smaller number of samples is 
available in compare with the number of samples produced by 
sampling according to the sampling theorem. Various 
algorithms that recover signal information are developed. Some 
of them are more complex but also more precise, such as 
convex optimization [7], [13], [21], but there are also greedy 
approaches [15], [15], threshold based solutions [16], [21], etc.  

An N-dimensional signal could be written in terms of its 
transform domain representation, as: 
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where Fi is weighting coefficient, ψi is basis vector, Ψ denotes 

N×N transform matrix. Domain Ψ is domain of sparsity – 

here, the signal is represented with small number of non-zero 

coefficients. If we model random acquisition of the M signal 

measurements (where M<<N holds) with the measurement 

matrix ϒ (of size M×N), then the vector of the available signal 

samples fa, of M×1 size, is modeled as: 

 ,a ϒ ϒΨ Ωϒ ϒΨ Ωϒ ϒΨ Ωϒ ϒΨ Ωf = F = Ff =  (2) 

where Ω is a CS matrix. CS deals with the undetermined 

systems of equations, such as (2), since there is smaller 

number of equations then unknowns. Optimal solution, i.e. the 

most sparse one among the infinite number of possible 

solutions, is obtained through an optimization algorithms 

usually based on norm-minimizations. Commonly used is the 

ℓ1 norm minimization [11], [21]:  
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The observed CO2 level signals do not exhibit sparsity 

property neither in time, nor in the frequency domain. 

Commonly applied 1D reconstruction algorithms fail to 

provide an accurate signal recovery, even if set of the 

available samples is large. Therefore, the reconstruction in 2D 

domain is proposed, by using the Total Variation (TV) 

minimization which are usual method for the reconstruction of 

the under-sampled 2D data [21]-[23]. It is based on the image 

gradient minimization. 

 Firstly, 1D CO2 level signal f is reshaped into the matrix I 

that will act as an image to be under-sampled and recovered. 

The reshaping is done column-wise and quadratic matrix is 

obtained: 

 (((( )))), ,N N====I fρ , (4) 

where ρ denotes the vector-matrix conversion operator. The 

image is of N N×××× size. In the case when N  is not an 

integer, the signal is zero-padded in order to obtain an integer 

value for .N  As a domain of sparsity, a two dimensional 

discrete cosine transform (2D DCT) domain is considered.  

 Let us now denote a set of image measurements as Da, 

taken from the 2D DCT domain, in a random manner from the 

zig-zag reordered 2D DCT coefficients (the matrix Ψ 

corresponds to the 2D DCT matrix). The image is 

reconstructed from the acquired measurements by solving an 

optimization problem. The optimization problem is defined as:  

 min ( ) subject to a ΩΩΩΩF F f Fℑ = , (5) 

where ℑℑℑℑ  denotes TV operator, defined as a sum of the 

magnitudes of discrete gradient at each point: 

 ,, 2
( ) i ji j dF Fℑ = ∑ , (6) 

where the gradient approximation for the pixel ij, di,j, is 

described as: 

 ,
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IV. EXPERIMENTAL RESULTS 

In the sequel, the reconstruction of the under-sampled CO2 
level signals is considered. Two cases are observed and 
described in the sequel. The temperature, humidity and CO2 
level in the table grape cold chain were acquired and monitored  
by using the sensor AM2322 (AOSONG, Guangzhou, China) 
for digital temperature and relative humidity measurements and 
CO2 sensor ATI (analytical technology incorporated, New 
York, NY, USA). The range of temperature, humidity and CO2 

were from -40℃ to 80℃ , 0% to 99.9%, and 0%-5% 

respectively, and the accuracy was ±0.3℃, ±2% and ±0.1%. 
 

Example 1: CO2 signal during the transportation process 
  
In the first example, part of the CO2 signal, related to the 

changes during the transportation process only, is used. The 1D 
signal is converted into the image, according to equation (4). 
Then, the 45 % of the image samples is chosen randomly and 
served as available samples used in the reconstruction process. 
After image reconstruction, the 1D signal is extracted using 
procedure that is reverse to image forming. The original and  

 

 

 
reconstructed images, as well as original and reconstructed 
signals are shown in Figure 1. 

The zoomed regions of the original and reconstructed 
signals are also shown. Mean square (MSE) and relative mean 
square (RMSE) errors of the reconstruction, for different 
number of available samples, are shown in Table 1.  

 

Example 2: CO2 signal recorded during the whole process 
 

In the second example, the whole CO2 level signal is 

observed. It includes parts when grape is put in the cold 

storage, cargo, transport and unloading. As in the previous 

example, the 1D signal is converted to the image firstly, and 

then the 45 % of the image samples is chosen randomly. The 

reconstruction is done using the acquired samples and the 1D 

signal is extracted. The original and reconstructed images, as 

well as original and reconstructed signals and their zoomed 

regions are shown in Figure 2, while MSEs and RMSEs for 

different number of available samples, are shown in Table 1. 
 

 
 

a)  
b) 

Figure 1.  a) First row: original image; Second row: image reconstructed using 45 % of the available samples; b) First row: original signal; Second row: signal 

reconstructed using 45% of the available samples; Third row: Zoomed regions of the original signal –blue and reconstructed signal – red  

 
 

a) 
      

b) 

 

Figure 2.  a) First row: original image; Second row: image reconstructed using 45 % of the available samples; b) First row: original signal; Second row: signal 

reconstructed using 45% of the available samples; Third row: Zoomed regions of the original signal –blue and reconstructed signal – red 
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TABLE I. MSEs and RMSEs between original and reconstructed signals for 

different percentage of available samples 

 

Percentage of the 

available samples 

Signal from 

example 1: 
MSE (RMSE %) 

Signal from 

example 2: 
MSE (RMSE %) 

30% 18.38 (3.56*10-4) 9.51*103 (0.037) 

35% 16.29 (3.16*10-4) 2.89*103 (0.0112) 

40% 14.71 (2.85*10-4) 1.07*103 (0.0041) 

45% 12.75 (2.47*10-4) 532.04 (0.0021) 

50% 12.03 (2.33*10-4) 239.25 (9.26*10-4) 

55% 10.7 (2.07*10-4) 149.95 (5.8*10-4) 

60% 10.24 (1.98*10-4) 133.57 (5.17*10-4) 

65% 9.67 (1.88*10-4) 130.39 (5.05*10-4) 

70% 9.16 (1.77*10-4) 107.6  (4.16*10-4) 

V. CONCLUSION 

The possibility to apply CS approach in the table grape cold 

chain logistic is considered in the paper. The parameter that is 

observed is the CO2 level signal, within two cases: first - 

during the grape transportation and second - during the whole 

CCL process. It is shown that the signals can be reconstructed 

if only 45 % of the total number of samples is available. The 

reconstruction quality is measured by MSE and RMSE. Here, 

the 2D reconstruction is applied. It is done by firstly 

converting the signal into an image and then under-sampling. 

The same approach can be applied in the real-time monitoring. 

The proposed method may have benefits in reducing the 

number of sensors and avoiding communication systems 

overloading, that is common in traditional monitoring 

approach. 

ACKNOWLEDGMENT  

This work is supported by the Montenegrin Ministry of 
Science, project grant: “New ICT Compressive sensing based 
trends applied to: multimedia, biomedicine and 
communications (CS-ICT)” (Montenegro Ministry of Science, 
Grant No. 01-1002), and Bilateral project China-Montenegro 
titled “Compressive sensing methods with applications”. 

REFERENCES 

[1] X. Xiao, Q. He, Z. Fu, M. Xud, X. Zhang, “Applying CS and WSN 
methods for improving efficiency of frozen and chilled aquatic products 
monitoring system in cold chain logistics”, Food Control, Volume 60, 
February 2016, Pages 656–666. 

[2] M. M. Aung, Y. S. Chang, “Temperature management for the quality 
assurance of a perishable food supply chain”, Food Control, Volume 40, 
June 2014, Pages 198–207. 

[3] C. C. Emenike, N. P. Van Eyk, A. J. Hoffman, "Improving Cold Chain 
Logistics through RFID temperature sensing and Predictive Modelling," 
2016 IEEE 19th International Conference on Intelligent Transportation 
Systems (ITSC), Rio de Janeiro, 2016, pp. 2331-2338. 

[4] X. Xiao, Q. He, Z. Li, A. O. Antoce, X. Zhang, “Improving traceability 
and transparency of table grapes cold chain logistics by integrating WSN 

and correlation analysis”, Food Control, Vol. 73, Part B, March 2017, 
Pages 1556–1563. 

[5] X. Wang, M. Matetić, H. Zhou, X. Zhang, T. Jemrić, “Postharvest 
Quality Monitoring and Variance Analysis of Peach and Nectarine Cold 
Chain with Multi-Sensors Technology”, Applied Sciences, 7(2), 133, 
2017. 

[6] LJ. Stankovic, S. Stankovic, M. Amin, "Missing Samples Analysis in 
Signals for Applications to L-estimation and Compressive Sensing," 
Signal Processing,  vol. 94, Jan 2014, pp. 401-408,  2014. 

[7] E. J. Candes, and M. B. Wakin, “An Introduction to Compressive 
Sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21, 30, 
March 2008.  

[8] I. Orovic, S. Stankovic, M. Amin, “Compressive Sensing for Sparse 
Time-Frequency Representation of Nonstationary Signals in the 
Presence of Impulsive Noise,” SPIE Defense, vol. 8717, US, 2013. 

[9] S. Stanković, I. Orović, “An Approach to 2D Signals Recovering in 
Compressive Sensing Context,”  Circuits, Systems & Signal Processing, 
Pages: 1-14, DOI: 10.1007/s00034-016-0366-8. 

[10] R. E. Carrillo, K. E. Barner, T. C. Aysal, “Robust sampling and 
reconstruction methods for sparse signals in the presence of impulsive 
noise,” IEEE Journal of Selected Topics in Signal Processing, vol. 4, 
no.2, pp. 392–408, 2010. 

[11] I. Orovic, A. Draganic, S. Stankovic, "Sparse Time-Frequency 
Representation for Signals with Fast Varying Instantaneous Frequency," 
IET Radar, Sonar & Navigation,  Volume: 9, Issue: 9, Pages: 1260 - 
1267, Print ISSN: 1751-8784, DOI: 10.1049/iet-rsn.2015.0116.,  2015 

[12] R. Monteiro, I. Adler, “Interior path following primal-dual algorithms. 
Part I: Linear programming, Mathematical Programming,” 44 (1989), 
pp. 27–41. 

[13] A. Draganic, I. Orovic, S. Stankovic, X. Li, Z. Wang, "Reconstruction 
and classification of wireless signals based on Compressive Sensing 
approach," 5th Mediterranean Conference on Embedded Computing,  
MECO 2016. 

[14] S. Stankovic, LJ. Stankovic, I. Orovic, "Relationship between the 
Robust Statistics Theory and Sparse Compressive Sensed Signals 
Reconstruction," IET Signal Processing, Special issue on Compressive 
Sensing and Robust Transforms, Vol. 8, Issue: 3, pp. 223 - 229, ISSN: 
1751-9675, May,  2014. 

[15] M. A. Davenport, M. B. Wakin, “Analysis of Orthogonal Matching 
Pursuit Using the Restricted Isometry Property,” IEEE Transactions on 
Information Theory, vol.56, no.9, pp. 4395-4401, September 2010. 

[16] S. Stankovic, I. Orovic, LJ. Stankovic, “An Automated Signal 
Reconstruction Method based on Analysis of Compressive Sensed 
Signals in Noisy Environment,” Signal Processing, vol. 104, Nov 2014, 
pp. 43 - 50,  2014. 

[17] J. Music, T. Marasovic, V. Papic, I. Orovic, S. Stankovic, "Performance 
of compressive sensing image reconstruction for search and rescue," 
IEEE Geoscience and Remote Sensing Letters,  in print,  2016. 

[18] M. Lustig, D. L. Donoho, J. M. Santos, J. M. Pauly, “Compressed 
Sensing MRI,” IEEE Signal Processing Magazine, March 2008. 

[19] J. Romberg, “Imaging via Compressive Sampling,” Signal Processing 
Magazine, IEEE , vol. 25, no. 2, pp. 14, 20,  March 2008. 

[20] I. Orovic, A. Draganic, S. Stankovic, “Compressive Sensing as a 
Watermarking Attack,” 21st Telecommunications Forum TELFOR 
2013,  Novembar,  2013. 

[21] S. Stankovic, I. Orovic, E. Sejdic, "Multimedia Signals and Systems: 
Basic and Advance Algorithms for Signal Processing," Springer-Verlag,  
New York,  2015. 

[22] L. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise 
removal algorithms”, Physica D, 60:259-268, 1992. 

[23] A. Chambolle, “Total variation minimization and a class of binary MRF 
models,” Proceedings of the 5th international conference on Energy 
Minimization Methods in Computer Vision and Pattern Recognition, 
Lecture Notes in Computer Science Volume 3757, 2005, pp. 136-152. 

 


