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1Abstract — This paper introduces a new generalized concept of 

cognitive inspired learning motivated by the basic principles used 

in the compressive sensing theory. The aim is to introduce a new 

perspective on the learning process which uses sparsity as a main 

premise. Cognitive inspired learning is observed as one of the 

possible learning modes, where the subject learns about the 

unknown phenomenon by identifying a sparse set of features 

belonging to different known basis. Rather than offering an 

algorithm for gaining the knowledge, we would like to draw 

attention to the new learning model which could potentially be 

used in the areas of learning applications.        
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I.  INTRODUCTION  

 
The concept of learning can be defined as a process of 

describing a certain phenomenon by a set of features bringing a 
better knowledge and understanding of the particular event, 
instance or case. Generally, this process is conducted through 
the stage of observation, foreknowledge-based contemplation, 
empirical feature selection, optimization toward efficient 
description, incrementing knowledge with compact 
information. For simplicity we might observe three levels of 
learning: 

• Observation learning 

• Empirical concluding 

• Optimization of learning patterns 
 

Observation learning is related to the function of perceiving 
certain process and its behavior, being able to remember and/or 
replicate the observed behavior. The observation learning can 
be also seen as an act of getting aware and storing of another 
situation, phenomenon, process, behavior or similar. The 
empirical concluding represents a process of comparing the 
observed behavior/phenomenon with the previous experience 
or background knowledge. This process is related to the 
cognitive ability to select the familiar and unfamiliar features 
and classify them based on the foreknowledge. This level of 
learning also includes the comprehension of important and 
desired range of properties that are identified to describe the 
observed phenomenon. The third level of learning is devoted to 
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the optimization of phenomenon representation based on the 
previously identified features and properties called learning 
patterns. Therefore, starting from the raw observed data in the 
first learning phase, we obtain compact information about the 
observed process as a result of the third phase of learning. This 
compact information brings a certain amount of knowledge that 
is amenable to further amelioration through a new learning 
cycle. 

The idea of modeling the concept of learning has been 
widely explored in machine learning applications [1]-[3]. 
Machine learning rely on computer algorithms for learning 
which are based on the observation data, instructions for 
behavior in situations covered by the background knowledge, 
and training experience from which the system will constantly 
learn. Certainly, the learning performance of the system will 
depend on the quality of training data and the type of training 
experience. Moreover, an important issue in machine learning 
applications is defining a type of knowledge that will be learnt 
or in other words the learning task [2]. This issue is usually 
formulated as a problem of learning certain target function. The 
target function should be designed or chosen to provide the 
optimal move in a certain situation. In practice, it is generally 
not possible to define an ideal optimal target function, but 
rather an operation description or the so called function 
approximation. Finally, for the learning algorithm we need also 
to choose an appropriate representation that will allow the 
algorithm to make the most of its capability.        

In this paper we introduce a new mathematical modeling of 
learning concept which is based on the principles used in 
Compressive sensing (CS) theory. Particularly, we explore the 
concept of sparsity [4]-[6] in order to select the most prominent 
features from the observed phenomena with the aim to obtain 
the most compact optimal representation bringing the useful 
information as an increment of knowledge.  The observation 
data can be viewed as an immense dense forest and as such it is 
non-optimized and illegible representation. Hence it is just an 
input set from which it is difficult to gain any knowledge 
directly. If we are able to classify and count the trees by the 
type, then we will have a sparse optimized representation that 
brings the information about the forest. It further means that the 
learning process progresses through the compact selected 
information about the observed phenomena. Since the sparsity 
and compact representation are the essence of the compressive 
sensing principles, this learning process will be referred as 
cognitive learning based on the CS postulates. Finally it is 



important to note that the purpose of this paper is not in 
providing a learning algorithm neither the approach for solving 
the described concept, but rather to bring to light the question 
of using the CS postulates in certain areas of learning, 
especially in the part of machine learning. 

The paper consists of four sections. The problem 
formulation is given in Section II. The review of Compressive 
sensing theory and its prerequisites is given in Section III. The 
mathematical concept of cognitive inspired learning by 
sparsifying the representation of phenomena is given in Section 
IV. The concluding remarks are given in Section V. 

 

II. PROBLEM FORMULATION  

Let assume that we have an unknown process, situation or 
phenomenon of particular interest as the input data. This data 
are generally called observations. In the physical processes 
these observation are conveyed in the form of signals with 
content exhibiting time or space variation captured by sensors. 
Hence, the observations are something that we need to learn 
about during the learning process in order to understand and 
acquire knowledge about the phenomenon we observe. The 
process of learning is understood as a process of describing the 
observed phenomenon using a relatively small set of features 
that allows an optimal sparse representation as an 
approximation function derived from the observations. The 
concept of sparsity is crucial in Compressive sensing for signal 
representation and reconstruction. Hence, the sparse 
representation allows us to learn about signal components that 
will be revealed using optimal transform domain 
representation. In other words, this is the way we learn about 
the signal nature and behavior.  

Nevertheless, this problem formulation can be adapted to 
other learning systems as well. Let us observe an example from 
the educational system – process of learning in professional 
education. We can identify the following concepts: 

- Observations – a set of actions, works, activities, goals 
conveying the information about all qualifications 
required for a certain profession 

- Features – a set of a few qualifications that best cover 
the observed professional behavior.  

- Optimal sparse representation - described by the set of 
subjects/courses matching the identified qualifications.         

 

 
Fig. 1. Sparse representation describing the type and level of features used 
to describe certain qualifications in a general education system  
 

The optimal sparse representation assumes also different 
levels for different courses, which indeed corresponds to the 
intensities of the components. Fig. 1 illustrates a set of 8 

selected features (courses) with their own intensities (levels) 
required to describe certain professional knowledge and 
qualifications. 
 

III. COMPRESSIVE SENSING THEORY 

 
Compressive sensing is a new sensing theory in signal 

processing area that benefits from the two important properties, 
namely the sparsity and the incoherence property [4]-[13]. It 
has been developed as an alternative to the classical sensing 
approach where the number of measurements required to gain 
the complete information about certain process is defined by 
the sampling theorem: the sampling frequency should be at 
least twice higher than the maximal signal frequency. In many 
real cases, it produces a large number of 
samples/measurements. In CS, this number can be significantly 
reduced.    

Observe a signal in Rn represented by using certain basis 

vectors �������
�  [6]: 
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i ii
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=
= =∑s Ψx , (1) 

where � is N×1 vector of weighting coefficients, while ΨΨΨΨ is the 
transform domain matrix (inverse). Thus, a signal s can be 
represented as a linear combination of N basis functions ��  
multiplied by certain weights (coefficients) xi. As mentioned 
before, N could have a large value in real applications. In CS, 
instead of s we are dealing with an incoherent set of 
measurements y having M<<N elements. The incoherent linear 

measurement process is modelled by the matrix ΦΦΦΦ: 
 

   = =y=Φs ΦΨx Ax , (2) 

where =A ΦΨ  is usually referred to as CS matrix. Relation 
(2) represents a system of M linear equations with N 
unknowns: x=[x1, …, xN]. The system seems to be under-
determined. However, CS concept relies on a very important 
sparsity assumption. In most common signal cases, the 
transform domain vector x has K out of N non-zero samples, 
where K<M<<N. In that sense, we can say that s is sparse when 
represented as a transform domain vector x, in transform basis 

defined by ΨΨΨΨ. More precisely, only the K elements in x are 
significant, while the remaining N-K could be neglected. It can 
be observed that an important issue in CS is to choose a 

suitable transform representation, i.e., suitable ΨΨΨΨ, that will 
provide sparse representation x. The problem of signal 
reconstruction using a set of M measurements in y is defined as 
[8]:  

   

 0ˆ min || ||=x x  subject to y = Ax , (3) 

where the 0ℓ -norm represents the measure of sparsity. This 

means that we are looking for the sparsest x that corresponds 

to the set of measurements y. The 0ℓ -norm based 

optimization problem is NP hard and does not give 

satisfactory results for signals that not strictly sparse. 



Therefore, in practice the 1ℓ - norm minimization is used 

instead: 

   1ˆ min || ||=x x  subject to y = Ax . (4) 

IV. COGNITIVE INSPIRED LEARNING BASED ON THE SPARSE 

REPRESENTATION 

 As discussed in the previous Section, a certain process has 

sparse representation if it can be completely described as a 

combination of a few basic elements or features. For instance, 

if processes are modeled as geometrical shapes as shown in 

Fig. 2 a and b, then we might say that the star-like shape in 

Fig.2a can be completely covered using 12 tringles, while the 

rectangular shape in Fig. 2b can be completely covered by 

using 9 squares. The triangles and squares are called basis 

shapes (basis functions in signal analysis) or the features of 

the learning process. In other words, these features are 

building elements that allow us to assemble compact 

information about a form, process, phenomenon or similar.    
 

  
  a)                        b) 

Fig. 2 Sparse single basis representations of different spaces (phenomena 
or processes): a) triangle basis is used for sparse representation of star-like 
space, b) square basis is used for sparse representation of rectangular 
space 

 
In real situations, we usually do not deal with processes that 

are sparse in certain basis (such as triangle basis or square basis 
in our example). Moreover, we are usually faced with a 
complex non-sparse process that we want to learn about. It 
means that the process cannot be represented as a simple 
combination of elements belonging to one basis. Then, based 
on the experience or the background knowledge about the 
observed process we need to choose several basis and a desired 
number of basis functions i.e., features from every considered 
basis. An illustration is given in Fig. 3.  

We may observe that the unknown shape can be 
represented as a combination of N=4 elements from basis B1, 
M=3 elements from B2, K=5 elements from B3, L=3 elements 
from B4, and P=2 elements from basis B5:  

 

{ }

{ }
{ }

{ }

{ }

1 1 1 1

2 2 22

3 3 3 3

4 4 4 4

5 5 55

: , 1,...,

: , 1,...,

: , 1,...,

: , 1,...,

: , 1,...,

i

j

k

l

p

B i N N shapes in B

B j M M shapes in B

B k K K shapes in B

B l L L shapes in B

B p P P shapes in B

ψ

ψ

ψ

ψ

ψ

= = −

= = −

= = −

= = −

= = −

Ψ

Ψ

Ψ

Ψ

Ψ

 (5) 

 
a) 
 

 
b) 
 

Fig. 3 An illustration of a space that that is not sparse in any of the 
basis Bi neither as a linear combination of different basis functions 

 

Each of the elements 1
iψ , 2

jψ , 3
kψ , 4

lψ , 5
pψ could be also 

multiplied by the corresponding weights, earlier referred to as 
levels or intensities. In this case, the weights allow scaling of 
the element surface to fit best. Hence, according to the notation 
in the CS theory we might say that unknown process can be 
approximated as:  
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In a more general form, a certain process p that is subject of 

learning can be modelled using a space S: p=℘℘℘℘{S}, ℘℘℘℘ 
represents the modeling operation (or set of transformations 
transformations).  Describing the space S means representing S 
as a union of subspaces Si and remaining area R 
(approximation error or remainder).  

 1 2 3 1... n n−= ∪ ∪ ∪ ∪ ∪ ∪S S S S S S R ,  (7) 

where:   

 1 ⊂S S , 2 ⊂S S ,…, n ⊂S S , (8) 

i j∩ =∅S S . 

The subspaces of the same type do not have to be cohesive 
but they represent a part of the same basis:   

 4 4 4 4a b c= ∪ ∪S S S S . (9) 



 
Fig. 4 Space S as a union of subspaces 

 
Hence, the subspaces of the same type such as S4a, S4b and 

S4c could be positioned/located in the remote (distant) 
instances, but they are treated as a single subspace S4. 

Furthermore, the subspaces Si may have different number of 
elements representing a group of features. The total number of 
features (NoF) in S is:  

 { } { }
1

n

i
i

NoF card card
=

= =∑S S . (10) 

The features within the subspaces Si may have various 
intensities which can be described by the non-uniform 
weighting functions Wi. In that sense the representation of S 
can be modified as follows: 

 

 1 1 2 2 3 3 ... n n→ ∪ ∪ ∪ ∪ ∪S W S W S W S W S R , (11) 

{ }1 2, ,..., , ( )
i i i

i p iW W W and p card= =W S . 

Finally, an optimal approximation of S, using the known 
subspaces S1, S2, …, Sn can be written in the form of 
minimization problem: 

 

 
0

min S  subject to p=℘℘℘℘{S} and 
2

ε<R ,  (12) 

or,  

1 0
min ... n∪ ∪S S  subject to  

 S= 1 1 2 2 ... n n∪ ∪ ∪ ∪W S W S W S R  and 
2

ε<R . (13) 

The nonconvex 0ℓ -norm optimization can be written in the 

form of convex programming using the 1ℓ -norm: 
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Here it is assumed that the observations and the 
representation of phenomenon can be interpreted as a set of 
values (measurable quantities). When the unknown process p is 
described as an optimal set of features from different subspaces 
Si (basis), then we can say that we have learnt about p, such 
that we are able to make comparison with known processes and 
to drive conclusions.    

Another important and very efficient measure of sparsity 
that can be applied to the numerical representations is called 
Gini coefficient. For a given set of representation elements x=[ 

x(1), x(2), …, x(N)], and its sorted version xs: |xs(1)|≤ |xs(2)|… 

≤|xs(N)|, the Gini coefficient is calculated as follows [14],[15]: 
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The Gini coefficient is independent on the size of 

representation, it is scale invariant, and suitable for comparing 
sparsity between different representations. Hence it is able to 
identify the sparsest domain to represent the observations, as 
will be shown in the numerical example.  

Lastly, the remainder R can be used as an input of the next 
level of learning. After learning a set of features from the initial 
observations, we may continue the learning process using R as 
observations that need to be analyzed further, hence allowing a 
kind of deep learning. For instance, the remainder can be 
further represented using sparse set of features corresponding 
to the subspaces/basis having the highest concentration (Gini 
coefficient can be used again as an indicator in the case of 
phenomena with measurable quantities).    

V. NUMERICAL EXAMPLE 

This example aims to illustrate the application of the 

presented concept in the numerical analysis of signals. Hence 

we are faced with the set of observations which are time 

domain samples of the unknown signal. In order to simplify 

the example, we assume only two possible basis: B1- Discrete 

Fourier transform (DFT) basis, B2- Hermite transform (HT) 

basis [16], [17]. Next we measure the sparsity in both basis 

using the Gini coefficient such that the G1(DFT)=0.66 and 

G2(HT)=0.42 (first column in Table 1). The DFT and HT of 

the observation vector is shown in Fig.5. Accordingly, we can 

firstly identify two components (features) in the DFT domain 

as shown in Fig. 5. Then we remove identified components 

from the observation and calculated the Gini coefficient again 

(second column in Table 1). Now we can for example decide 

to identify 3 prominent components in the HT domain (Fig.5), 

and remove them from the observations. We might say that 

with this step we have finished the first phase of 

learning/analysis.  

The next level of learning starts from the current remainder. 

According to the values for the Gini coefficient of the DFT 

and HT calculated for the remainder (third column in Table 1), 

we may conclude that the dominant features are in the DFT 

domain. Hence we may select additional three prominent 

components in the DFT domain (Fig.6). Then we are left with 

the final remainder which is negligible when compared with 

initial observations. The analysis has shown that the unknown 

process can be observed as a mix of 5 DFT components 

(sinusoids) and 3 Hermite components. This compact 

representation of features is suitable for machine learning 

applications.   

 
Table 1. Gini coefficients for DFT representation G1 and HT representation G2 

 

 I II III 

G1 0.66 0.52 0.81 

G2 0.42 0.64 0.58 



 
Fig. 5. Observations vector, DFT and HT representation, and identified 

feature in these two transform domains 

 

 
Fig. 6. DFT of the remainder after the first phase, the identified DFT 

components within the remainder, and the final remainder 

VI. CONCLUSION 

 

A new model of learning based on the sparse representation of 

unknown observations is presented. The learning is interpreted 

as process of finding optimal sparse representation of 

phenomenon consisted of features from different known basis. 

The results of the learning process will definitely depend on 

the number of known basis and the number of expected 

features within the basis. These factors are assumed to be the 

subject of experience or pre-knowledge, and could be treated 

separately in different learning areas, which might be 

interesting for further research. Finally for the phenomena that 

could be described by the measurable quantities (numerical 

values), the learning process is modeled using optimization 

problem and Gini coefficient as a sparsity measure.     
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