6" Mediterranean Conference on Embedded Computing -.-"II' MECQ’2017, Bar, Montenegro

Decomposition of Signals in Dispersive Channels
using Dual Polynomial Fourier Transform

Isidora Stankovi¢, Milos Dakovié
University of Montenegro
Podgorica, Montenegro
Email: isidoras@ac.me, milos@ac.me

Abstract—The acoustic waves transmitted in a dispersive envi-
ronments can be quite complex for decomposition and localiza-
tion. A signal which is transmitted through a dispersive channel
is usually non-stationary. Even if a simple signal is transmitted,
it can change its characteristics (phase and frequency) during
the transmission through an underwater acoustic dispersive
communication channel. Commonly, several components with
different paths are received. In this paper, we present a method
of decomposition of multicomponent acoustic signals using the
dual polynomial Fourier transform and time-frequency methods.
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I. INTRODUCTION

The dispersivity in underwater channels has been a chal-
lenging topic in the recent years. Many channels with the
dispersion phenomena have been studied. In this paper we will
focus on the iso-velocity channels. The iso-velocity channels
are channels with the same sound velocity over all volume [1].

A dispersive channel in underwater acoustics is a system
which produces nonlinear signal transformations [1]-[5]. That
is, it shifts the propagating signal in the phase. This causes
that different frequencies are changed in time by different
time instances. Other complex problem of a dispersive channel
is that it is usually characterized by multipath propagation
producing multicomponent signals. The multipath propagation
can occur for various reasons. The main one is the scattering
of acoustic signals on the sea bottom.

Signal analysis and processing tools can help in detection,
extraction and localization of transmitted signals. The received
signal in a dispersive channel is different from the transmitted
signal. The received signal is a complex and non-stationary
signal. Typically high frequencies are less disturbed than the
lower frequencies (up to 200 Hz), [3], [4]. Because of the non-
stationary nature of these signals, the time-frequency signal
analysis is suitable tool for analysis.

In this paper, we present a method for decomposition of
a signal which was transmitted through a dispersive environ-
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ment. The decomposition was done using the dual polynomial
Fourier transform.

The paper is organized as follows. In Section II the signal
which is received from a dispersive channel in terms of signal
processing will be modelled and explained. The traditional
and the dual polynomial Fourier transform for analysis and
localization of acoustic signals will be presented in Section
III. Numerical results and conclusions are given in Sections
IV and V, respectively.

II. MODELLING OF THE RECEIVED SIGNALS
FROM DISPERSIVE CHANNELS

Let us assume that an underwater acoustic wave is trans-
mitted. We will assume that the transmitter is located at the
depth of z, meters. The receiver is located at the depth of z,
meters. The distance between the transmitter and the receiver
is denoted by r. We will consider the model as in [2]. The
transfer function can then be written as
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where ¢, are the modal functions of the mth mode and
k-(m, f) are the horizontal wavenumbers. The modal func-
tions are the solutions [2] of
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The sound speed c in the case of underwater communica-
tions is ¢ = 1500 m/s. It is obvious that the transfer function
of a dispersive channel is of a multicomponent structure. The
components depend on the wavenumber and their frequencies.
The variable

A(m, f)

At(mmfvr) = 7
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Fig. 1. The time-frequency representation of the impulse response of the five
modes

is the attenuation rate. It depends on g¢,,, k-(m, f) and 7.
The response to a monochromatic signal, exp(j2w fon), can
be written as

~ D(m, fo) exp(j2m fon — jk.(m, fo)r), (4)

where D(m, fo) is the depth of the receiver. The phase and
group velocities are

Sm(n)
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An ideal time-frequency representation of the impulsive
response of a dispersive channel environment is shown in Fig.
1.

III. DUAL POLYNOMIAL FOURIER TRANSFORM

Because of the non-stationary nature of the dispersive chan-
nels, the most suitable tool is the time-frequency analysis.
Several techniques were developed for the localization in the
underwater dispersive channels, like those using the phase
continuity of the signals, [2]. Here, we will analyze the
dispersive channel using the dual polynomial Fourier transform
(PFT) of the third order.

The idea behind the traditional PFT is to find the parameters
where the signal gives the maximum value. In this way we can
extract all components and localize their positions [6], [7]. Let
us assume a signal z(n). Its PFT is calculated as

Xoy.oaon (k) = Z I(n)efj%“(kn+azn2+a3n3+“.+mvmv)’
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where a9, a3, ..., an are the parameters.

Assume that the analyzed signal is a polynomial phase
signal (PPS) of the N-th order

z(n) Aexp( Zam)

The signal will be highly concentrated in the PFT space of
parameters where the maximum of the transform is achieved
(where the transform of this signal is the best concentrated),
ie.

max
k,a2,...,an

(dg,dg,...,[l]\/) = arg |Xa2,...,o¢N(k)|- (8)
It means that the PFT of a signal z(n) will have the best
concentration when (aw, ..., ay) = (as, ..., an). Then the goal

to estimate ag = a9, ..., any ~ apn 18 achieved.

For the signals whose spectral content is concentrated within
short time interval, with changes in frequency the dual PFT is
more appropriate tool. The discrete dual PFT is defined as:

ZX

The maximum of dual PFT, i.e., the maximum of the Eq. (9)
is achieved when
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A local form of the dual PFT, corresponding to the local
PFT (known as LPFT) would be obtained using a frequency
domain window function W (k). It reads

ZW
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This kind of transform can be used for analysis of quite com-
plex non-stationary acoustic signals in the dispersive media.

IV. NUMERICAL RESULTS

Let us consider a dispersive channel with M = 5 modes.
The channel depth is D = 20 meters and the distance between
the transmitter and receiver is » = 2000 meters. The frequency
range f is between f,,;, = 250 Hz and f,,,, = 500 Hz.

We consider the system with impulse response shown in
Fig. 1. Its analytic form in the frequency and time domain is

M

k) =" Amexp (jke(m, f)r) (11)
m=1

n) =" Apsm(n), (12)

where s,,(n) is defined by Eq. (4). It contains k,.(m, f) which
is defined by

kT(m’ f) =

The impulse response of each mode independently is shown
in Fig. 2 (top). The frequency response of each mode sepa-
rately is shown in Fig. 2 (bottom). Since each mode is in

(2nf/c)? = ((m—0.5)r/D)*.  (13)
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Fig. 2. Impulse and frequency response of the dispersive channel 6000
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the range between 250 and 500 Hz, their magnitudes are set oo
on the top of each other. Amplitude is attenuated and it is 2000
Ap, = (6— m)W(f) where W(f) is the Hanning window in . = . ™
frequency domain, for the considered example. 0 200 400 600 800 1000 0 200 400 600 800 1000
We will use linearly frequency modulated signal as the Optimal PFT for mode #4 Optimal PFT for mode #5
. . . . 4000 2000
transmitted signal, i.e., as input to the analyzed system
1 2 3000 1500
u(n) =™, (14)
2000 1000 q
Received signal can be obtained as the convolution of the |
1000 500 |
!
oy Y

xz(n) = u(n) x h(n). (15)

For the analysis of this signal we have used the dual PFT
of the third order as in Eq. (9),

T, 5,(n) = Y X(k)ed RGOS - (16)
k

Variables (33 are arbitrarily varied in the range of —0.2
to 0.2 and —0.3 to 0.3, respectively. The received signal
(the signal which goes through the dispersive environment)
is shown in Fig. 3 (top left).

The optimal parameter values for various modes are detected
iteratively. When we find the first set of parameters (2, O3
the peak in the dual PFT correspond to single mode. We
can remove the peak from the dual PFT and continue to
estimate other components. The parameters corresponding to
the maximal values for each component/mode are shown in
Table 1.

The decomposition results are non-stationary single com-
ponent signals. They are shown in the time-frequency domain

0 iy
0 200 400 600 800 1000 0 200 400 600 800 1000
time index n time index n

Fig. 3. Decomposition of the modes in time-domain: Received signal (top
left); Optimal dual PFT for each mode separately. Samples associated to the
current mode are marked with red circles.

using the S-method representation. For the S-method, we need
the short-time Fourier transform (STFT) of signal. The STFT
is defined as

N,/2—1
STFT(n, k) = Z x(m + n)w(m)e_j?"%mk, (17)
m=—Ng/2

where w(m) is analysis window of length N,. The S-method
is calculated as [6], [8]

L
SM(k,n) = > STFT(n,k+p)STFT*(n,k —p), (18)
p=—L

where 2L + 1 is window width (in the frequency domain).
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Fig. 4. S-method of the decomposed modes 1, 2, 3, 4 and 5 and sum of the
normalized representations of all modes.

Since all analyzed modes (components) are spread over
a wide frequency range, we will analyze the signal in the
frequency domain using the dual STFT. It is defined by

N./2—1
STFTp(k,n)= Y. X(p—k)W(p)e ¥, (19)
p=—N;/2

where X (k) is Fourier transform of the considered component
and W (k) is the analysis window.

Therefore, the dual S-method could be then calculated as

L
SMp(k,n) = Y STFTp(k,n+i)STFT}(k,n—i) (20)
i=—L

where 2L + 1 is the time domain window size [6], [8]. In this
paper, the S-method with L = 16 and the Hanning window of
size Wy = 512 for dual STFT calculation is used.

The S-method of the five modes, obtained by decomposition,
is shown in first five subplots of Fig. 4. Sum of the normalized
representations of the five modes is shown Fig. 4 (bottom right
subplot). Sum of the decomposed components and amplitudes
of individual components are given in Fig. 5.
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Fig. 5. Sum of the reconstructed modes (top) and amplitudes of individual
modes (bottom)

V. CONCLUSIONS

Decomposition of acoustic signals using a dual polynomial
Fourier transform is shown in this paper. The signal is con-
sidered to be transmitted in a dispersive underwater channel
environment. Received signal is decomposed using dual PFT
and individual modes are obtained.
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