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Abstract—In this paper, a compressed sensing approach for 

the reconstruction of 2D sparse signals with missing samples is 

presented. The statistical behavior of transform coefficients in 

the case of randomly undersampled signals is exploited as the 

basis of a simple algorithm for the signal support detection. With 

the detected signal support various reconstruction methods can 

be applied in the signal recovery: non-iterative reconstruction for 

signals with close transform coefficient values, matching pursuit 

based iterative reconstruction, or the combination of these two 

methods. As the case study, 2D discrete Fourier transform is 

observed, commonly appearing in radar imaging applications. 

The theory is confirmed through several numerical experiments, 

including the illustration of the applicability in the ISAR image 

reconstruction. 
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I.  INTRODUCTION 

Compressed sensing (CS), as a recently developed theory in 
signal processing, attracted significant research attention during 
the last decade [1]-[22]. Providing different reconstruction 
methods for signals having missing samples (measurements, 
observations), various potential applications of this theory have 
been identified. The reconstruction of radar signals, digital 
images and biomedical signals with unavailable data are just 
some representative examples of CS applications [12]-[16], 
[19]. For the context of this paper, especially interesting are the 
applications in radars, namely the ISAR imaging [13]-[22]. 

Regardless the considered application, one certain condition 
is required for possible recovery of missing samples: it is 
assumed that the signals are sparse in some transformation 
domain [8]-[10]. The sparsity denotes that the considered 
signal can be represented with a small number of non-zero 
transform coefficients [6]. For example: digital images are 
known for sparsity (or approximate sparsity) in the DCT 
domain, QRS complexes in ECG signals are well-known for 
their sparsity in the domain of Hermite transform [12], whereas 
ISAR signals appearing in radar applications are sparse in the 
domain of 2D Discrete Fourier Transform (DFT) [19], [21]. On 
the other side, in the measurement domain (usually discrete-
time domain) these signals are dense. 

The signal samples unavailability may arise as a 
consequence of sampling strategy in order to compress the 
sensed data. On the other side, signal measurements can be 
unavailable due to the physical constraints. In certain 
applications, signal samples can be highly corrupted by noise, 
and can be intentionally omitted in further processing. All these 
cases can be treated in the same way by the CS theory and 
reconstruction algorithms [1], [3], [6]. 

CS-based reconstruction exploits signal sparsity in the 
reconstruction process. This means that an adequate sparsity 
measure is needed for the reconstruction of missing values. The 
most natural choice is simply the number of non-zero values in 
the N-length transform vector X, sometimes known as ℓ0 
(pseudo) norm [6]-[10]: 
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However, based on the previous definition it can be easily 
concluded that this sparsity measure is highly sensitive even to 
small noise or quantization errors. Moreover, this function is 
non-convex, meaning that besides direct search, linear 
programming approaches, gradient-base approaches etc. are not 
applicable in the reconstruction process. This is the reason for 
the application of ℓ1-norm as the measure of signal sparsity: 
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which opened the possibility to apply afore mentioned iterative 
reconstruction approaches [6]-[10].  

 Besides exploiting ℓ1-norm in the reconstruction process, 
sometimes it is possible to determine the signal support by 
involving some, usually transform-specific theory [1]-[3], [6], 
[7]. Namely, some particular research results have shown that 
transform coefficients of randomly undersampled signals 
exhibit different statistical behavior at signal and non-signal 
coefficients positions [2]. That was the basis for the 
introduction of algorithms based on mean values analysis and 
variance analysis of transform coefficients in initial signal 
transform [1], [3], [6]. When the positions and number of non-
zero values are determined, further reconstruction is possible 
under the condition that the signals are sparse, and under 
assumption that the reconstruction conditions are satisfied 
(measurement matrices incoherence etc. [8]-[11]). The 
statistical behavior of 2D DFT coefficients is presented in [3]. 
The reconstruction algorithm based on variance behavior 
estimation for the case of 1D DFT is done in [1]. Herein we 
generalize these results for the case of 2D DFT, present two 
reconstruction algorithms and consider the reconstruction of 
ISAR images to illustrate the applicability of the presented 
approach.  

The paper is organized as follows. Section II contains the 
basic theory survey regarding the CS and transform 
coefficients statistics in the case of signals with missing 
samples. In Section III we present the algorithms for the CS-
based reconstruction. Numerical results are presented in 
Section IV, whereas the paper ends with concluding remarks. 



II. BASIC THEORY 

A. Compressed sensing and the 2D DFT domain 

According to the compressive sensing theory, sparse signals 
can be reconstructed from a reduced set of observations. As the 
representative example, 2D DFT is observed as a domain of 
signal sparsity. Let us consider a N M×  2D signal K-sparse in 

the 2D DFT domain: 
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where Al denotes l-th component amplitude, whereas pl and ql 

denote frequencies of this component, belonging to the set 

( , ) , 1,.... .
l l

p q l K∈ =K  By definition, 2D DFT reads: 
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{ } { }( , ) , 0,1,..., 1 , 0,1,..., 1n m n N m M∈ = − = −N . If x is used 

to denote the 1NM ×  vector of signal samples, whereas X 

denotes the  corresponding vector consisted of  2D DFT 

coefficients, then the 2D DFT transform can be written in 

matrix form as follows: 

 .=X Wx  (5) 

The 2D DFT transform matrix is defined as: 

 
1 , 1 ,D N M D N M× ×= ⊗W W W   (6) 

that is, as the Kronecker product of the two corresponding 1D 

DFT transform matrices. 
In the compressed sensing scenario, only NAMA randomly 

positioned samples belonging to the set 

 ( , ) , 1,2,..., , 1, 2,...,
u w A A

n m u N w M∈ ⊆ = =Q N   (7) 

are available, out of NM samples. Introducing partial 2D DFT 
transform matrix 

 1,−=
cs

A ΦW  (8) 

containing rows corresponding to the positions of available 

samples (Φ denotes random measurement matrix and W-1 is 

the inverse 2D DFT matrix), the random selection of missing 

samples in the compressed sensing context can be modelled 

as: 

 ,= =
cs cs

x A X Φx  (9) 

where the incoherence property of the matrix Acs
 is required in 

order to apply the linear programming in the CS-based 

reconstruction. 
Furthermore, the CS-based reconstruction problem can be 

formulated as: 
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meaning that the aim is to find the sparsest possible solution 
under the condition that the constraints dictated by the 
available measurements set of equations remain satisfied. In the 
case when it is possible to determine the set of non-zero 

coefficients positions p̂  estimating the original set K, the true 

values of transform coefficients can be determined as: 

 ( )ˆ ˆ ˆ

H H=
-1

r p p p csX A A A x .  (11) 

where the matrix 
p̂

A   is a submatrix of the measurement 

matrix Acs containing only columns corresponding to the set of 

estimated coefficients positions p̂ . Operator ( )H⋅  denotes the 

Hermitian transposition. 

B. Statistical properties of 2D DFT transform coefficients 

The respective mean values and variances of 2D DFT 
coefficients have been derived in [3], following the results for 
the 1D DFT case [2]. Therein, it has been shown that the 
influence of missing samples in measurements domain reflects 
to the corresponding transform domain representation similarly 
as an additive noise, whose statistical properties were 
determined. If X denotes the matrix of initial 2D DFT, the non-
signal coefficient mean value is equal to zero: 

 [ ]( , ) ( , ) 0, ( , ) ,
N

p q E X p q p qµ = = ∉K   (12) 

whereas the variance can be represented as 
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On the other side, the mean value of coefficients at signal 
positions have the non-zero mean value equal to: 
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The 2D DFT coefficient at the position ( , )
s s

p q ∈ K has the 

variance equal to: 
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 Comparing (13) and (15), we may conclude that the 
variances at non-signal and signal positions in the 2D DFT 
coefficient matrix differ. Namely, the variance of the 
coefficient at the signal position is reduced by the (scaled) 
amplitude value of the corresponding coefficient. This fact is 
the basic motivation for the reconstruction approach presented 
in this paper. If we are able to numerically approximate these 
variances, then we may define a criterion for the detection of 
non-zero transform coefficients, leading to a reconstruction 
approach for the missing samples, based on (11). 

III. SIGNAL RECONSTRUCTION 

A. Variance estimation 

Based on the well-known robust theory, we may observe 
the loss function of the error in the 2D DFT coefficients 
calculation: 
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where the function F corresponds to various norms. Namely, 

the general form assumes: 
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L
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where the choice of the parameter L dictates different 

robustness to the influence of the external additive noise. 

Herein, the value L = 2 known as the maximum likelihood 

estimate of the full set of data and Gaussian noise. The total 



error, for the randomly undersampled signal (9) can be 

expressed as follows: 
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where ˆ ( , )X p q  represents the estimate of the signal’s 2D 

DFT. For the observed case where L = 2 this estimate is 

obtained as: 
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For different L other estimates are used [1]. Furthermore, it 
can be shown that for L = 2 function (17) becomes: 

 { },( , ) var ( , ) , 1,..., , 1,..., .p q u w A AGD p q e n m u N w M= = =   (19) 

At the position of signal coefficient ( , )p q ∈K  we have: 
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meaning that GD(p, q) can be used as an indicator whether the 
observed coefficient (p, q) belongs to the signal or not. 

B. Reconstruction algorithms 

Previous analysis can be used in the reconstruction of 
missing samples. If signal amplitudes Al, l = 1, 2, …, K have 
relatively close values, the reconstruction can be done with a 
simple non-iterative procedure. As it is previously published, 
the signal support can be determined by applying a threshold T 
on the calculated generalized deviations GD(p,q). The 
threshold level can be calculated with respect to the maximal 

value of GD(p,q), that is, { }max ( , )T GD p qα=  with α being a 

constant between 0.85 and 0.95, set heuristically [1]. The 
threshold is used to determine which positions (p, q) 
correspond to signal coefficients, as the variance estimated in 
GD(p, q) is reduced when compared with non-signal positions. 
The reconstruction procedure is summarized as follows: 

Algorithm 1: Non-iterative reconstruction 

Input: 

• Measurement vector xcs 

• Measurement matrix Acs 

• Constant parameter α 
Calculations: 

1. Calculate estimation GD(p, q) according to (17) and (18) 

2. { }ˆ arg ( , )GD p q T← <p   
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Output: 

• Reconstructed signal coefficients Xr 

In previous algorithm, ˆ(:, )
cs

A p is used to denote that only 

columns p̂  are used from the matrix Acs. Furthermore, if signal 

component amplitudes differ significantly, iterative version of 
the previous algorithm can be exploited in the reconstruction.  
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Fig. 1: The synthetic signal from example 1: first row: real and imaginary part 
of the original signal, second row: real and imaginary part of the available data, 
third row: 2D DFT of the original and undersampled signal; fourth row: GD(p, 
q) calculated for the undersampled signal and the reconstructed 2D DFT 
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Fig. 2: Reconstructed signal from example 1 shown in the measurements 
domain  



Namely, when a component at position (pl, ql) is detected as 
in previous algorithm, one can simply remove its contribution 
from the available measurements, and then repeat the same 
procedure for other components. The procedure can be 
repeated until a stopping criterion is met, e.g. when the energy 
of the residual after components removal becomes smaller then 
a fixed value ε. The procedure is described as follows: 

Algorithm 2: Iterative reconstruction 

Input: 

• Measurement vector xcs 

• Measurement matrix Acs 

• Required precision ε 
Calculations: 

1. ˆ ← ∅p   

2. ←
cs

e x   
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2

2
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Output: 

• Reconstructed signal coefficients Xr 

 

Previously described algorithm can be enhanced by 
combining with the non-iterative procedure, in sense that 
coefficients blocks can be detected in every iteration.  

IV. EXPERIMENTAL RESULTS 

Example 1: Let us observe a sparse signal in the 2D HT 
domain. Signal size iz 64 64M N× = ×  and only 596 samples 

are available (14.6%) at random positions. Real and imaginary 
parts of the signal are shown in Fig. 1: first row, whereas 
available data are shown in Fig. 1, second row. Dark blue parts 
denote positions of unavailable samples. Absolute values of the 
2D FT of the signal with all samples available and the 
undersampled signal are shown in Fig1, third row. 

 The function GD(p, q) was calculated according to (17) and 
it is shown in Fig. 1, fourth row (left). The Algorithm 1 was 
exploited in the successful reconstruction of the signal, and its 
output is shown in Fig. 1, fourth row (right). The reconstructed 
signal in the measurement domain is shown in Fig 2. 

Example 2: Commonly used MIG 25 test ISAR data is 
considered in this example [4]. It has 64 pulses with 64 
samples within each pulse. As the target motion was not 
completely compensated and the motion was not completely 
uniform, we sparsified the signal by setting smallest 
coefficients to zero before further processing. Various percents 

of missing samples and pulses at random positions are 
considered: 29%, 49% and 68%.  
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Fig. 3: ISAR image of MIG 25, obtained based on the full set of data 
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Fig. 5: The ISAR image reconstruction - MIG 25 example. The 
reconstruction is performed based on signals having 25%, 49%, and 68% of 
samples/pulses unavailable. Images without reconstruction are shown left, 
whereas the reconstructed images are shown right. 

 

ISAR image obtained based on the full set of data is shown 
in Fig. 3., whereas the reconstruction was performed based on 
Algorithm 2 and the results are shown in Fig. 4. The ISAR 
images obtained directly from the available samples (with all 
missing samples set to zero)  are  shown  on  the  left  side.  



V. CONCLUSION 

 In this paper, an efficient method for the compressed 
sensing based reconstruction of 2D signals having missing 
samples is presented. Based on the transform coefficients 
variance for randomly undersampled signals, a criterion for 
signal coefficients detection is presented. It is the basic step in 
simple reconstruction algorithms. First algorithm is non-
iterative, and it is suitable for the recovery of signals having 
components with similar amplitude values. The iterative form 
is a general reconstruction algorithm.  The second algorithm 
can be easily generalized such that blocks of coefficients are 
recovered, instead of a single component in every iteration. 

 These algorithms have a potential for the robust 
reconstruction of undersampled signals in impulsive noise 
environments. Moreover, by modifying a parameter in the 
calculation of generalized deviations, its applicability can be 
extended for other types of noises. 

ACKNOWLEDGMENT 

 This research is supported by the project “New ICT 

Compressive Sensing Based Trends Applied to: Multimedia, 

Biomedicine and Communications (CS-ICT)” (Montenegro 

Ministry of Science, Grant No. 01-1002) 

 

REFERENCES 

[1] S. Stanković, LJ. Stanković, and I. Orović, “A Relationship between the 
Robust Statistics Theory and Sparse Compressive Sensed Signals 
Reconstruction,” IET Signal Processing, 2014 

[2] LJ. Stanković, S. Stanković, and M. Amin, “Missing Samples Analysis 
in Signals for Applications to L-estimation and Compressive Sensing,” 
Signal Processing, vol. 94, Jan 2014, pp. 401-408 

[3] S. Stanković, and I. Orović, “An Approach to 2D Signals Recovering in 
Compressive Sensing Context,” Circuits, Systems & Signal Processing, 
in print, doi 10.1007/s00034-016-0366-8 

[4] V. C. Chen, H. Ling, Time-frequency transforms for radar imaging and 
signal analysis, Artech House, Boston, USA, 2002.   

[5] L. Stanković, M. Daković and T. Thayaparan, Time–frequency signal  
analysis with application, Artech House, 2013 

[6] LJ. Stanković, M. Daković, S. Stanković, and I. Orović, “Sparse Signal 
Processing - Introduction ,” Wiley Encyclopedia of Electrical and 
Electronics Engineering, John Wiley, 2017. 

[7] S. Stanković, I. Orović, and E. Sejdić, Multimedia Signals and Systems: 

Basic and Advance Algorithms for Signal Processing,. Springer-Verlag, 
New York, 2015 

[8] D. Donoho, “Compressed sensing,” IEEE Trans. on Information Theory,  
vol. 52, no. 4, 2006, pp. 1289–1306.   

[9]  R. Baraniuk, “Compressive sensing,” IEEE Signal Processing 
Magazine,  vol. 24, no. 4, 2007, pp. 118–121.     

[10]  E. Candes, J. Romberg and T. Tao. “Robust uncertainty principles: 
Exact  signal reconstruction from highly incomplete frequency 
information,”  IEEE Trans. on Information Theory, vol. 52, pp. 489–
509, 2006.   

[11]  E. Sejdić, A. Cam, L.F. Chaparro, C.M. Steele and T. Chau, 
“Compressive  sampling of swallowing accelerometry signals using TF 
dictionaries  based on modulated discrete prolate spheroidal sequences,” 
EURASIP  Journal on Advances in Signal Processing, 2012:101 
doi:10.1186/1687–  6180–2012–101 

[12] M. Brajović, I. Orović, M. Daković, and S. Stanković, “Gradient-based 
signal reconstruction algorithm in the Hermite transform domain,” 
Electronics Letters, Volume 52, Issue 1, pp.41-43, 2016 

[13]  L. Zhang, M. Xing, C. W. Qiu J. Li, Z. Bao, “Achieving higher 
resolution  ISAR imaging with limited pulses via compressed sampling,” 
IEEE  Geoscience and Remote Sensing Letters, Vol.6, No.3, 2009, 
pp.567–571  

[14]  J. H. G. Ender, “On compressive sensing applied to radar,” Signal  
Processing, Vol. 90, No. 5, 2010, pp.1402-1414  

[15]  Y. S. Yoon, M. G. Amin “Compressed sensing technique for 
highresolution  radar imaging,” Proc. SPIE 6968, Signal Processing, 

Sensor  Fusion, and Target Recognition XVII, 69681A (April 17, 2008);  
doi:10.1117/12.777175  

[16]  V.M. Patel, G.R. Easley, D. M. Healy Jr., R. Chellappa, “Compressed  
synthetic aperture radar,” IEEE Journal of Selected Topics in Signal  
Processing, Vol.4, No.2, 2010, pp.244-254   

[17]  G. Zhao, Z. Wang, Q. Wang, G. Shi, F. Shen, “Robust ISAR imaging  
based on compressive sensing from noisy measurements,” Signal 
Processing,  Vol. 92, No. 1, 2012, pp.120-129   

[18]  X. C. Xie, Y. H. Zhang. “High-resolution imaging of moving train by  
ground-based radar with compressive sensing.” Electronics letters, Vol.  
46, No. 7, 2010, pp.529-531.  

[19]  L. Stanković, ”On the ISAR Image Analysis and Recovery with 
Unavailable  or Heavily Corrupted Data”, IEEE Trans. Aerospace and 
Electronic  Systems, Vol.51, July 2015.     

[20]  W. Qiu, E. Giusti, A. Bacci, M. Martorella, F. Berizzi, H. Z. Zhao, Q.  
Fu, “Compressive sensing for passive ISAR with DVB-T signal,” 14th  
International Radar Symposium (IRS), June 2013, pp.113-118.  

[21]  W. Qiu, M. Martorella, F. Berizzi, “Interferometric ISAR imaging 
based  on compressive sensing.” 2nd International Workshop on 
Compressed  Sensing Applied to Radar, Sept. 2013, Bonn, Germany.     

[22]  Y. Wang, H. Ling, V. C. Chen, “ISAR motion compensation via 
adaptive  joint time-frequency technique,” IEEE Trans. Aerospace and 
Electronic  Systems, Vol.34, No.2, 1998, pp.670–677 

 


