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Abstract—A new algorithm implemented as combination of
gradient based and single iteration reconstruction algorithms for
compressively sensed sparse signals is proposed in the paper. A
good feature of the gradient algorithm to perform reconstruction
for a wide range of applications is combined with the speed of sin-
gle iteration algorithm in order to perform faster reconstruction
in the cases where single iteration algorithm cannot performs
reconstruction. The proposed method is of special importance
for any application where it is not possible to separate signal
components from noise in sparse domain.
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I. INTRODUCTION

Signals having small number on non-zero coefficients com-
pared to the signal length are called sparse. This kind of signals
are present in many practical application. This is the reason
why processing of sparse signals attracts significant research
interest in the last decade [1]–[4]. The area that exploit the
signal sparsity is called compressive sensing (CS). The idea
behind compressive sensing is to use just a few measurements
rather than all signal samples obtained respecting Nyquist-
Shannon sampling theorem. These measurements are linear
combinations of sparse domain coefficients [5]. There are two
directions in CS. The first one is how to obtain measurements,
and the second one is how to reconstruct original signal from
these measurements. There are many algorithms which deal
with signal reconstruction [6]–[11].

This paper propose a new method combining two algorithms
belonging to completely different classes of algorithms. The
fist one is called single iteration reconstruction algorithm [10].
It reconstructs signal in sparse domain by separating signal
components from noise (caused by missing samples). When
positions of signal components are detected, the algorithm
reconstruct complete signal in one step. However, depending
on number of missing samples (amount on noise), detection
of signal components is not always possible. The second
algorithm used in proposed method is called gradient based
signal reconstruction algorithm [11]. It is iterative algorithm,
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reconstructing time-domain missing samples in order to pro-
duce minimal concentration measure in sparse domain. It was
shown that this algorithm can be used for wide range of
applications [12], [13]. The idea behind proposed method is
to use gradient algorithm in order to reduce noise in sparse
domain, and then to apply effective single iteration algorithm
to reconstruct whole signal, when signal components can be
detected.

Without loss of generality, this paper will consider Discrete
Fourier Domain as the sparsity domain of the signal.

II. BACKGROUND

Consider N samples of time-domain signal x(n), n =
0,1, . . . ,N − 1. The DFT coefficients of this signal will be
denoted with X(k), where k= 0,1, . . . ,N−1. These two signals
are related via:

X(k) =
N−1

∑
n=0

x(n)e− j2πnk/N , (1)

x(n) =
1
N

N−1

∑
k=0

X(k)e j2πnk/N . (2)

In the matrix notation, above equations can be written as:
X = Wx and x = W−1X, where X is vector having elements
X(k), and x is vector of x(n) elements. Both vectors are
of length N, and WN×N is transform matrix with elements
exp(− j2πnk/N).

In the case when most of coefficients of signal X(k) are
zero-valued or negligible, we may say that X(k) is sparse pre-
sentation of signal x(n). Compressive sensing reconstruction
algorithms are used to reconstruct sparse signals from reduced
set of measurements. Measurements are considered to be linear
combinations of sparse domain coefficients.

Consider M randomly positioned samples of signal x(n)
denoted by y(i) = x(ni), i = 1,2, . . . ,M (y in vector notation).
The set of these samples positions will be denoted by NA ∈
{n1,n2, . . . ,nM}, while its component containing the positions
of all other samples will be denoted with NQ. These samples
may be obtained as a linear combination of X(k) coefficients
y = AX. In this case, matrix AM×N is obtained from matrix
W−1 by preserving M rows at positions NA, while the rows
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at position NQ are removed. The compressive sensing task is
to reconstruct signal X(k) (or x(n)) from y. Signal samples at
positions NA will be called available, while the ones from NQ
will be called missing or omitted. Note that missing samples
produce noise in sparse domain, and even for one missing
samples, all zero valued coefficients in sparse domain will
assume some nonzero value.

A. Single Iteration Reconstruction Algorithm - SIRA

Single iteration reconstruction algorithm [10] is based on
the idea of separating signal components from noise in sparse
domain. In the case when all signal components are detected,
the signal can be reconstructed as:

XR =
(
AT

CSACS
)−1AT

CSy. (3)

Matrix ACS is obtained from W−1 by selecting rows at
positions NA, and columns at the positions corresponding to
positions of signal coefficients in sparse domain of the signal.
Under assumption that all signal components are detected,
the reconstruction can be performed very fast. However, by
increasing number of missing samples, the noise in sparse do-
main can surpass signal coefficients, and then it is impossible
to detect signal components and therefore, reconstitution can
not be performed.

B. Gradient Based Reconstruction Algorithm - GA

Recently proposed gradient algorithm [11] for sparse signal
reconstruction is simple algorithm which belongs to the class
of gradient CS algorithms [8]. The idea behind this algorithm
is to observe missing samples in time domain as the variables,
and to adapt their values in a way to produce minimal
concentration measure in sparse domain. The main difference
of this algorithm compared to others is reconstruction of
missing samples in time domain rather than reconstruction of
sparse coefficients in transformation (e.g. DFT) domain. The
algorithm implementation is given in Algorithm 1 [11].

III. PROPOSED METHOD

Advantages of both previously mentioned algorithms are
combined in order to perform fast and accurate reconstruction,
which can be performed with single iteration algorithm, for
wide range of applications, which gradient algorithm deals
with. The problem of SIRA is detection of signal components
in the case when noise caused by missing samples surpass
the signal components. Figure Fig.1(a) shows this case. Green
circles indicate signal components, while the red cross is used
to mark S highest components generally. As we can see signal
components and largest components do not match. Therefore,
we cannot perform reconstruction with SIRA, since the po-
sitions of signal components are not known. This problem
can be overcome if we perform few iterations of gradient
algorithm. The sparse domain after first, second, and third
iteration is shown in Fig.1(b),(c), and (d), respectively. After
only three iterations of GA, all signal components become
largest in sparse domain (green circles matches red crosses).

Algorithm 1 Gradient Algorithm
Require:

• Set of missing/omitted sample positions NA
• Available samples y(n)

1: x(0)(n)← y(n) . for n ∈ NA
2: x(0)(n)← 0 . for n ∈ NQ
3: m← 0
4: ∆←max |x(0)(n)|
5: repeat
6: repeat
7: x(m+1)(n)← x(m)(n) . for each n
8: for ni ∈ NQ do
9: X1(k)← DFT{x(m)(n)+∆δ (n−ni)}

10: X2(k)← DFT{x(m)(n)−∆δ (n−ni)}

11: g(ni)←
1
N

N−1

∑
k=0
|X1(k)|− |X2(k)|

12: x(m+1)(ni)← x(m)(ni)−g(ni)
13: end for
14: m← m+1
15: until stopping criterion is satisfied
16: ∆← ∆/3
17: until required precision is achieved

Output:
• Reconstructed signal xR(n) = x(m)(n)

Now, instead of performing large number of iterations, for
examples, 10 (Fig.1(e)) or 40 (Fig.1(f)), with GA in order to
remove all noise, a simple and fast reconstruction with SIRA
algorithm can be performed. This reconstruction will remove
all noise, i.e. reconstruct original signal in just one iteration
(3).

However, there is still important task, and it is to detect
situation when SIRA performed accurate reconstruction, since
the single iteration is performed after each gradient iteration.
This issue has been overcome by combining reconstruction
properties of two algorithms. Signal reconstructed with SIRA
is sparse domain signal X(k). Applying (2) on it, time domain
signal x(n) is obtained. Comparing values of available time
domain samples, whose positions are from NA with the same
ones obtained with SIRA algorithm, we can detect situation
when they match, and that is the sign that signal is correctly
reconstructed with SIRA algorithm.

The pseudo-code for proposed method is given in Algorithm
2. In contrast to standard GA, the lines 7–11 are added in order
to detect signal components and perform reconstruction with
SIRA, while lines 12–15 are used to check if reconstructed
signal matches original one.

IV. RESULTS

In order to check performances of proposed method, a
different reconstruction conditions regarding to signal length,
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Fig. 1. Single iteration reconstruction performed during gradient alorithm
iterations: (a) initial state, (b) after first GA iteration, (c) after second GA
iteration, (d) after third GA iteration, (e) after 10th GA iteration, (f) after
40th GA iteration. Green circles indicate positions of nonzero coefficients of
original signal. Red marks ”x” indicate maximal coeficients of signal to be
reconstructed.

sparsity and number of available samples are set in order to
compare SIRA, GA and proposed method (GASI). The results
are averaged over 50 independent realizations, and are shown
in Table I, where: N-signal length, S-signal sparsity, M-number
of available samples, SIrec-number of correct reconstructions
with SIRA algorithm, GArec-number of correct reconstruc-
tions with GA, GA[s]-average time needed for reconstruction
with GA, GASIrec-number of correct reconstructions with
proposed method,GASI[s]-average time needed for recon-
struction with proposed method, Rat.-ratio between averaged

Algorithm 2 Proposed method – GASI
Require:

• Set of missing/omitted sample positions NA
• Available samples y(n)
• Sparsity S

1: x(0)(n)← y(n) . for n ∈ NA
2: x(0)(n)← 0 . for n ∈ NQ
3: m← 0
4: ∆←max |x(0)(n)|
5: repeat
6: repeat
7: X (m)(k)← DFT{x(m)(n)}
8: p← argmax

k1,k2,...,kS

∣∣∣X (m)(k)
∣∣∣

9: ACS← A(NA,p)
10: XR(k) =

(
AT

CSACS
)−1AT

CSy
11: xR(n) = DFT-1{XR(k)}
12: if ∑

n∈NA

∣∣∣xR(n)− x(m)(n)
∣∣∣< 0.01 then

13: x(m)(n)← xR(n)
14: STOP ALGORITHM
15: end if
16: x(m+1)(n)← x(m)(n) . for each n
17: for ni ∈ NQ do
18: X1(k)← DFT{x(m)(n)+∆δ (n−ni)}
19: X2(k)← DFT{x(m)(n)−∆δ (n−ni)}

20: g(ni)←
1
N

N−1

∑
k=0
|X1(k)|− |X2(k)|

21: x(m+1)(ni)← x(m)(ni)−g(ni)
22: end for
23: m← m+1
24: until stopping criterion is satisfied
25: ∆← ∆/3
26: until required precision is achieved

Output:
• Reconstructed signal xR(n) = x(m)(n)

reconstruction times of GA and proposed method. The average
time calculated for GA and GASI is obtained using realizations
when observed algorithm performed accurate reconstruction,
i.e.

1
N

N

∑
n=1
|x(n)− xr(n)|< 0.01

The mean absolute value of 0.01 is considered as good
reconstruction. This value can be changed if lower or higher
accuracy is needed. Since the SIRA reconstruction could not
be performed in the majority of cases, so speed comparison
was calculated for GA, and GASI. It is obvious that a
significant increase in reconstruction speed is achieved when
GASI is used instead of GA.
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TABLE I
TABLE SHOWING RECONSTRUCTION PERFORMANCES AVERAGED OVER 50
INDEPENDENT REALIZATIONS, FOR EACH COMBINATION OF N , S, AND M

SHOWN IN FIRST THREE COLUMNS.

N S M SI GA GASI Rat.rec rec [s] rec [s]
128 20 96 42 50 0.06 50 0.053 15
128 16 70 19 50 0.16 50 0.013 29
128 12 50 9 49 0.43 50 0.003 50
128 10 32 4 26 1.22 45 0.004 94
256 40 192 31 50 0.15 50 0.004 17
256 30 140 5 50 0.49 50 0.003 24
256 16 100 16 50 0.74 50 0.003 41
256 8 64 29 50 1.29 50 0.003 76
512 50 384 47 50 0.48 50 0.003 17
512 40 280 16 50 1.31 50 0.003 24
512 30 200 4 50 2.88 50 0.003 27
512 20 128 4 50 6.53 50 0.003 34

TABLE II
AVERAGE NUMBER OF GA ITERATIONS BEFORE THE SINGLE ITERATION

RECONSTRUCTION COULD BE PERFORMED.

Sparsity S
14 16 18 20 22 24 26 28 30

N
um

be
r

of
av

ai
la

bl
e

sa
m

pl
es

38 1 1 1 1 2 2 2 2 2
42 1 1 1 2 2 2 2 3 3
46 1 1 2 2 2 2 2 3 3
50 1 2 2 2 3 3 3 4 5
54 1 2 2 2 4 4 4 9 15
58 2 2 3 3 4 6 5 9 15
62 3 3 4 4 7 7 12 25 29
66 3 3 5 8 8 16 27 – –
70 4 8 10 15 19 41 40 – –
74 4 9 15 22 40 – – – –
78 6 10 16 29 – – – – –
82 12 18 – – – – – – –

Example 1: Consider a signal

x(n) =
K

∑
i=1

Ai cos(2πkin/N +φi)

with N = 128. In order to test reconstruction speed of proposed
method, sparsity of this signal S = 2K was changed from 2
to N/2, while the randomly chosen amplitudes, frequencies
and phases were within 1 ≤ Ai ≤ 2, 1 ≤ ki ≤ 63, and 1 ≤
φi ≤ 2π . Results are averaged over 50 realizations for each
combination of sparsity S and number of available samples M.
Results shown on Fig.2 presents reconstruction time reduction
(reconstruction speed increase) when the proposed method is
used instead of standard GA. The reconstructions are up to 80
times faster depending on S and M, when proposed method is
used. Table II showing average number of GA iterations which
was performed in order to successfully apply single iteration
reconstruction. This number is significantly smaller then the
number of over 100 iterations which must be performed in
order to achieve successful reconstruction when standard GA
is used.
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Fig. 2. Reconstruction speed increase as a function of sparsity S and number
of available samples M . White color corresponds to the region where
reconstruction succes was not above 90% with both of algorithms.

V. CONCLUSION

The algorithm combining gradient based and single iteration
reconstruction algorithms is proposed in the paper. Situation
when separation of signal components from noise caused by
missing samples is not possible is considered. A few iterations
of gradient algorithm are used to reduce noise in sparse
domain in order to correctly detect signal components, and
to perform fast single iteration reconstruction. The proposed
method is tested on numerous examples, considering variety of
sparsity and number of available samples. It has been shown
that proposed method is, depending on condition, 10–100
faster than gradient algorithm, while reconstruction is possible
whenever the gradient algorithm can perform reconstruction.
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[13] I. Stanković, and W. Dai, “Reconstruction of Global Ozone Density Data
using a Gradient-Descent Algorithm,” 58th International Symposium
ELMAR-2016, Zadar, Croatia, September 2016.


