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Abstract—Rounding error in the discrete Fourier transform
calculated with fast fixed-point algorithms is considered. It is
shown that the variance of the rounding error depends on
frequency index. Theoretically obtained results for error vari-
ance are statistically checked on decimation-in-time fast Fourier
transform with two rounding methods.
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I. INTRODUCTION

Algorithms for fast Fourier transform (FFT) calculation
are intensively developed and analyzed [1]–[6]. Various im-
plementations are considered. Fixed-point arithmetics imple-
mentations are very important for low-cost energy efficient
devices with small computational power. Rounding error in
the fixed-point FFT implementations is analyzed and presented
in almost all textbooks covering digital signal processing area
[2]–[5].

In most cases, the rounding error is modeled as random
variable with uniform distribution. This model is correct only
for rounding in the first stage where arbitrary input signal
values are stored in the fixed-point registers. In the next stages
rounding error probability density function is discrete and
cannot be accurately modeled with uniform distribution. This
implies that the results obtained by simulations are close, but
not equal to the theoretically obtained results.

In this paper, we will provide rounding error variance
derivation that is very close to the results obtained by statistical
simulations. The main difference from the previous works on
this topic [7]–[11] are assumptions that the error variance is
dependent on the frequency index, and that rounding error
probability density function is of the discrete nature except in
input FFT stage. A similar approach is used in [12] where
an approximative relation for error variance is derived. Here,
we will provide exact recursive relation for error variance.
Since the rounding error is almost signal independent, the
error variance is used instead of the signal to quantization
noise ratio.

The exact formula for rounding error variance is derived
in Section II. It is shown that the error variance is frequency
dependent. Presented theory is statistically checked in Section
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III with high agreement between theoretical and simulation re-
sults. Two rounding methods are considered and error variance
bounds are derived.

II. VARIANCE DERIVATION

Let us consider fixed point implementation of the FFT
algorithm with decimation in time. Assume that signal length
is a power of two N = 2r.

In order to avoid fixed-point overflows, the coefficients are
divided by 2 in each stage. Single FFT butterfly is presented
in Fig. 1. The FFT is calculated at stages p = 1, . . . , r. At
each stage there is 2r−p FFT blocks with 2p−1 butterflies in
each block.

Denote with x(p)(n), n = 0, 1, . . . , N − 1 outputs of the
each FFT stage. Additionally, denote with x(0)(n) FFT inputs
at the first stage. They are equal to the input signal samples
with bit-reversed index. Inputs to the butterfly at stage p are

f = x(p−1)(m2p + k)

g = x(p−1)(m2p + 2p−1 + k), (1)

where m = 0, 1, . . . , 2r−p − 1 and k = 0, 1, . . . , 2p−1 − 1.
Coefficients Ck

p and Sk
p are defined as

Ck
p =

1

2
cos

(
2π

2p
k

)
Sk
p = −1

2
sin

(
2π

2p
k

)
. (2)

The outputs are

F = x(p)(m2p + k)

G = x(p)(m2p + 2p−1 + k). (3)

Relations between inputs and outputs are

<[F ] =
1

2
<[f ] + Ck

p<[g]− Sk
p=[g]

=[F ] =
1

2
=[f ] + Sk

p<[g] + Ck
p=[g] (4)

<[G] =
1

2
<[f ]− Ck

p<[g] + Sk
p=[g]

=[G] =
1

2
=[f ]− Sk

p<[g]− Ck
p=[g].

Let us now analyze discretization error propagation in
a single butterfly. Additions and subtractions do not cause
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Fig. 1. Fixed point FFT butterfly

discretization error. The discretization error is present in a divi-
sion by 2. Denote variance of this error as σ2

h. Multiplication
with coefficients Ck

p and Sk
p also cause discretization error

with variance σ2
cs.

Now we can write

σ2
<[F ] =

1

4
σ2
<[f ] + (Ck

p )2σ2
<[g] + (Sk

p )2σ2
=[g] + σ2

h + 2σ2
cs

σ2
=[F ] =

1

4
σ2
=[f ] + (Sk

p )2σ2
<[g] + (Ck

p )2σ2
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h + 2σ2
cs

σ2
<[G] =

1

4
σ2
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p )2σ2
<[g] + (Sk

p )2σ2
=[g] + σ2

h + 2σ2
cs

σ2
=[G] =

1

4
σ2
=[f ] + (Sk

p )2σ2
<[g] + (Ck

p )2σ2
=[g] + σ2

h + 2σ2
cs,

(5)

or

σ2
F =

1

4
σ2
f +

(
(Ck

p )2 + (Sk
p )2
)
σ2
g + 2σ2

h + 4σ2
cs

σ2
G =

1

4
σ2
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(
(Ck

p )2 + (Sk
p )2
)
σ2
g + 2σ2

h + 4σ2
cs. (6)

Having in mind that coefficients Ck
p and Sk

p satisfy

(Ck
p )2 + (Sk

p )2 = 1/4, (7)

we can write

σ2
F =

1

4
σ2
f +

1

4
σ2
g + 2σ2

h + 4σ2
cs

σ2
G =

1

4
σ2
f +

1

4
σ2
g + 2σ2

h + 4σ2
cs. (8)

The above relations are derived having in mind that coeffi-
cients Ck

p and Sk
p does not have special properties. They are

correct for each k except for k = 0 and for k = 2p−2. Let us

analyze these special cases. For k = 0 we have C0
p = 1/2 and

S0
p = 0 resulting in output variances
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h
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4
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4
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The same variances are obtained for k = 2p−2 when Ck
p = 0

and Sk
p = −1/2.

Now we can write recursive formula for discretization error
variance at each stage as

σ2
p(k) =

1

4
σ2
p−1(k) +

1

4
σ2
p−1(2p−1 + k) + δk,p (11)

δk,p =

4σ2
h for k = 0 or k = 2p−2

2σ2
h + 4σ2

cs otherwise,
(12)

where p = 1, 2, . . . , r and k = 0, 1, . . . , 2p−1 − 1. Note that
each σ2

p(k) is periodic in k with period 2p−1.
Discretization error at input stage is caused by simple

rounding input values and it will be denoted with σ2
r producing

initial conditions for the previous recurrence in the form

σ2
0(k) = σ2

r , (13)

for each k = 0, 1, . . . , N − 1.

III. VARIANCE ANALYSIS AND VERIFICATION

Results given in the previous section will be analyzed and
verified through examples. In the first example, we will assume
that each division by 2 is performed by binary shift-right of the
magnitude. In this case, LSB of the input value is discarded,
and the result of the division is always rounded toward zero.

In the second example, we will assume that division by 2 is
performed with random tie-breaking. In this case, if the LSB
of the input value is equal to one the result is rounded up or
down with equal probabilities.

A. Example 1

Assume that real and imaginary parts of the input signal are
limited to range (−1, 1) and that all operations are performed
with b+ 1 bits precision. The discretization step is ∆ = 2−b.

Consider a case when division by 2 is performed by the
binary shift-right operation. If negative numbers are saved in
sign-magnitude representation, then the discretization variance
σ2
h will be

σ2
h =

1

16
∆2 = 2−2b−4. (14)
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Note that this rounding is biased with bias equal to ∆/4 for
positive and −∆/4 for negative numbers.

Error caused by discretization after signal multiplication
with non-integer factors is uniformly distributed over the
interval from −∆/2 to ∆/2 producing variance

σ2
cs =

1

12
∆2 =

1

3
2−2b−2. (15)

This rounding is unbiased.
By replacing these values into (11) and (12), we obtain

recursive relation

σ2
p(k) =

1

4
σ2
p−1(k) +

1

4
σ2
p−1(2p−1 + k) + δk,p (16)

δk,p =


1

4
∆2 for k = 0 or k = 2p−2

11

24
∆2 otherwise,

(17)

where p = 1, 2, . . . , r and k = 0, 1, . . . , 2p−1 − 1.
Discretization error at input stage is caused by simple

rounding input values and it is equal to

σ2
0(k) =

1

6
∆2, (18)

for each k = 0, 1, . . . , N − 1.
The lowest variance is obtained when, for the considered

sample, we have k = 0 or k = 2p−2 at each stage. It is equal
to

σ2
min = 2−r

∆2

6
+

∆2

4

(
1 +

1

2
+

1

4
+ · · ·+ 1
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)
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(
1

2
− 1

3
2−r
)
. (19)

This variance is obtained for frequency index k = 0, k = N/4,
k = N/2, and k = 3N/4.

The highest variance is obtained when special cases k = 0
or k = 2p−2 in (17) are avoided whenever it is possible. Note
that this is not possible for p = 1 or p = 2. We get

σ2
max = 2−r

∆2

6
+

11

24
∆2

(
1 +

1

2
+

1

4
+ · · ·+ 1

2r−3
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4
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(
1

2r−2
+

1

2r−1

)
= ∆2

(
11

12
+

23

16
2−r
)
. (20)

This variance is obtained for every odd frequency index k.
For large N = 2r we can approximate output variance

bounds as
1

2
∆2 ≤ σ2 ≤ 11

12
∆2. (21)

The results are presented in Fig. 2 for N = 32, 64, 128. Cal-
culations are performed with b = 12 bits precision. Statistical
results are averaged over 5000 realizations of the complex-
valued random input signal with uniformly distributed real and
imaginary parts from −1 to 1. The results are compared with
statistically estimated error variances. It can be concluded that
theoretically derived variances are very close to the statistically
obtained results.
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Fig. 2. Fixed point FFT normalized discretization variance for a) N = 32, b)
N = 64 and c) N = 128. Rounding toward zero is used. Theoretical results
are presented with line and statistical results obtained by averaging over 5000
realizations by dots. The variance is normalized with ∆2.

B. Example 2

Here we will consider situation when division by 2 is
performed with random tie-breaking, i.e., the situation when
the discretization error, caused by division by 2, is discrete
with possible values −∆/2, 0, and ∆/2 that occurs with
probabilities 0.25, 0.5, and 0.25 respectively. In this case the
discretization variance σ2

h will be

σ2
h =

1

8
∆2 = 2−2b−3. (22)

Note that this rounding is unbiased.
Variance σ2

cs is same as in the previous example.
By replacing these values into (11) and (12) we obtain

σ2
p(k) =

1

4
σ2
p−1(k) +

1

4
σ2
p−1(2p−1 + k) + δk,p (23)
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δk,p =


1

2
∆2 for k = 0 or k = 2p−2

7

12
∆2 otherwise,

(24)

where p = 1, 2, . . . , r and k = 0, 1, . . . , 2p−1 − 1.
The lowest variance is obtained as

σ2
min = 2−r

∆2
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2
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1 +

1

2
+
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4
+ · · ·+ 1
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)
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(
1− 5

6
2−r
)
. (25)

This variance is obtained for frequency index k = 0, k = N/4,
k = N/2, and k = 3N/4.

The highest variance is

σ2
max = 2−r

∆2

6
+

7
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(
1 +

1

2
+
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4
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1
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7

6
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23
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This variance is obtained for every odd frequency index k.
For large N = 2r we can approximate output variance

bounds as
∆2 ≤ σ2 ≤ 7

6
∆2. (27)

Signal to quantization noise ratio (SQNR) bounds are
10.79 dB < SQNR < 11.46 dB.

The results are presented in Fig. 3 for N = 32, 64, 128. The
results are compared with statistically estimated error vari-
ances. It can be concluded that theoretically derived variances
are very close to the statistically obtained results.

IV. CONCLUSION

In this paper, we derive recursive formula for discretization
error variance for common decimation-in-time FFT algorithm.
It is shown that discretization error depends on frequency
index k. Upper and lower bounds are derived as well. The
formula is statistically checked for two rounding methods and
high accuracy is obtained.

Future work on this topic could include other FFT algo-
rithms and various rounding procedures.
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