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Abstract—A time-frequency analysis based approach for the
decomposition of bivariate signals is presented. In particular,
the well-known problem of two components overlapping in
the time-frequency plane while having non-linear instantaneous
frequencies is considered. The bivariate form of data leads to a
significant modification of the Wigner distribution cross-terms.
Therefore, the eigenvalue decomposition of Wigner distribution
based signal autocorrelation matrix produces two significant
eigenvalues instead of one in the common Wigner distribution. It
is shown that the two corresponding eigenvectors can be linearly
combined in order to produce fully separated signal components.
The unknown coefficients are found by minimizing the time-
frequency concentration measure of these particular eigenvectors
linear combination. The presented approach is illustrated on
the decomposition of a fast-varying real-valued signal with
small instantaneous frequencies, so that its positive and negative
frequency parts are so close that they degrade the analytical
signal representation.

Index Terms—bivariate signals; concentration measure; digital
signal processing; time-frequency signal analysis

I. INTRODUCTION

Time-frequency (TF) signal analysis is especially useful for

signals with a time-varying spectral content [1]– [25], which

therefore cannot be analyzed using the conventional Fourier

analysis. A large number of time-frequency representations

(TFR) has been proposed for the processing and characteriza-

tion of univariate signals with a time-varying spectral content

[6], [8], [9], with instantaneous frequency (IF) estimation

being the central problem in this research field [7].

Multichannel signals, a form of multivariate data, arise

routinely through recent sensor technology developments (for

example, 3D inertial body sensors or 3D anemometers) [9],

however, the processing of such signals is an ongoing research

challenge [9]– [12], [17]– [21]. Recently developed concepts

of modulated bivariate and multivariate data oscillations have

opened the way to exploit multichannel signal interdepen-

dences, especially in time-frequency signal analysis [10], [11]

[12]. In particular, the recently introduced concept of joint IF

aims to characterize the multichannel data [10] and is defined

as a weighted average of IFs in all individual channels, with

the aim to capture their combined frequency characteristics.

This concept stems from the multivariate oscillation model,

which assumes one common oscillation that fits best all

individual channel oscillations.

The multivariate signals IF estimation has been studied

within the synchrosqueezed transform context in [9] as well

as in the context of wavelet transform [10]. Empirical mode

decomposition of multivariate data has also been recently

considered [17]- [24].

The term multicomponent signals refers to signals that

can described as a linear combination of independent signal

components [1], [6]. In many applications, it is important to

analyze every signal component independently, and therefore,

decomposition of multi-component signals has attracted a

significant research attention [1]– [6], [13], [14]. It has been

shown that the decomposition of multi-component univariate

signals can be performed using the S-method, under the

condition that the components are not overlapping in the

time-frequency plane [1]. However, in the case of overlapped

components, the convenient condition of mutual orthogonality

is violated, method presented in [1] cannot be applied and

such cases are still subject of much research. For some

specific cases, under the restricting assumptions of linearly

or sinusoidally modulated components, such decomposition is

possible [13]–[16]. However, in general, the univariate signals

with components overlapped in the time-frequency plane can-

not be decomposed. For multivariate signals, even with the

multi-component signal decompositions using the EMD, this

is possible only in cases of non-overlapped components.

The eigenvector decomposition of the univariate Wigner

distribution (WD) autocorrelation matrix leads to one non-zero

eigenvalue. As the S-method [1] of multicomponent signal

having non-overlapped components can be expressed as the

sum of WDs of individual components, this fact was used in

the method presented in [1]. Decomposition of of overlapped

non-linear components is still a challenging topic. In this

paper, we demonstrate the possibility of the decomposition

of two components in overlapped bivariate two-component

signals, where [1] cannot be applied. Namely, in this case the

autocorrelation matrix of the bivariate WD has exactly two sig-

nificant eigenvalues. Each corresponding eigenvalue contains a

linear combination of individual signal components. The idea

is to apply the concentration measures on a time-frequency

representation of eigenvector linear combination, in order to

find coefficients producing the best possible concentration,

corresponding to individual components.



The paper is organized as follows. Basic theory regarding

Wigner distribution of bivariate signals and instantaneous

frequency are presented Section II. The WD of two-component

bivariate signals is analyzed in Section III. In Section IV

we present the basic theory leading to the decomposition of

bivariate multi-component signals. The theory is illustrated on

a numerical example with real bivariate signal in Section V.

II. BACKGROUND THEORY

The bivariate signal of the form

x(t) =

[

a1(t)e
jφ1(t)

a2(t)e
jφ2(t)

]

(1)

can be obtained by measuring the signal x(t) by e.g. two

sensors. It is assumed that each signal component modifies

amplitude and phase of the measured signal.

The Wigner distribution of the bivariate signal x(t) has the

following form

WD(ω, t) =

∫

∞

−∞

xH(t− τ

2
)x(t+

τ

2
)e−jωτdτ

=
∑

i

∫

∞

−∞

a∗i (t−
τ

2
)ai(t+

τ

2
)ej(φi(t+

τ

2
)−φi(t−

τ

2
)e−jωτdτ

where xH(t) is the Hermitian transpose of vector x(t) and

i = 1, 2.

Bivariate signals can be characterized by the joint instanta-

neous frequency. Namely, starting from the center of mass in

the frequency direction of bivariate signal Wigner distribution

〈ω(t)〉 =
∫

∞

−∞
ωWD(ω, t)dω

∫

∞

−∞
WD(ω, t)dω

(2)

or

〈ω(t)〉 = 1

2j

[xH(t)x′(t)− x′H(t)x(t)]

xH(t)x(t)
(3)

we easily obtain

〈ω(t)〉 = φ′1(t)a
2
1(t) + φ′2(t)a

2
2(t)

a21(t) + a22(t)
. (4)

Consider a monocomponent bivariate signal, for which

the components from different channels change in amplitude

and phase as ai(t) exp(jφi(t)) = αix(t) exp(jϕi). If signal

x(t) has the form x(t) = A(t) exp(jψ(t) then dφi(t)/dt =
dψ(t)/dt and

〈ω(t)〉 = ψ′(t).

III. TWO-COMPONENT BIVARIATE SIGNALS

Consider a two-component bivariate signal, defined as

x(t) = x1(t) + x2(t)

=

[

α11(t)x1(t)e
jϕ11

α12(t)x1(t)e
jϕ12

]

+

[

α21(t)x2(t)e
jϕ21

α22(t)x2(t)e
jϕ22

]

(5)

for which the components of the form x1(t) = A1(t)e
jψ1(t)

and x2(t) = A2(t)e
jψ2(t) exhibit slow-varying amplitude

changes compared to phase-changes, i.e. |dαij(t)/dt| ≪

|dψi(t)/dt| so that the amplitudes may be considered as

constant within the analyzed time interval, αij(t) ∼ αij .
The WD of the bivariate two-component signal in (5) is

given by

WD(ω, t) =

∫

∞

−∞

xH(t− τ

2
)x(t+

τ

2
)e−jωτdτ

=WDa(t, ω) +WDc(t, ω) (6)

where WDa(t, ω) represents the auto-terms

WDa(ω, t) =

∫

∞

−∞

[α2
11 + α2

12]x
∗
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τ

2
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τ

2
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∗
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2
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whereas WDc(t, ω) represents the cross-terms

WDc(ω, t) =

∫

∞

−∞

[α11α21x
∗

1(t−
τ

2
)x2(t+

τ

2
)ej(ϕ21−ϕ11)

+α11α21x
∗

2(t−
τ

2
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τ

2
)ej(ϕ11−ϕ21)

+α12α22x
∗

1(t−
τ

2
)x2(t+

τ

2
)ej(ϕ22−ϕ21)

+α12α22x
∗

2(t−
τ

2
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τ

2
)ej(ϕ12−ϕ22)]e−jωτdτ

Observe that phase shifts do not cancel out in the cross-

terms WDc(t, ω). The auto-terms are summed to be in phase,

whereas the cross-term is formed as an off-phase summation,

which leads to a significant change in these terms. Namely,

for the univariate WD of a two-component signal, the un-

desirable cross-term is formed as the Fourier transform of

x∗1(t− τ
2 )x2(t+

τ
2 )+x

∗

2(t− τ
2 )x1(t+

τ
2 ) having an oscillatory

nature. However, for the bivariate WD, same phase shifted

terms are summed at the same location in the time-frequency

plane, but with different phases, thus averaging out.

IV. SIGNAL DECOMPOSITION

The inverse Wigner distribution has the following form

xH(t− τ

2
)x(t+

τ

2
) =

1

2π

∫

∞

−∞

WD(ω, t)ejωτdω. (7)

After introducing the substitutions t1 = t + τ/2 and t2 =
t− τ/2 we obtain

xH(t2)x(t1) =
1

2π

∫

∞

−∞

WD

(

t1 + t2
2

, ω

)

ejω(t1−t2)dω.

Assuming a proper discretization of the time and angular

frequency axes, t1 = n1∆t, t2 = n2∆t and ω = k∆ω we

obtain

xH(n2)x(n1) =

= 1
K+1

K/2
∑

k=−K/2

WD
(

n1+n2

2 , k
)

ej
π

K+1
k(n1−n2). (8)

Let us introduce the notation

R(n1, n2) = xH(n2)x(n1). (9)



Under the assumption that the cross-terms can be neglected,

the inversion of WD for two-component bivariate signals

produces a matrix with the elements of the form

R(n1, n2) = [α2
11 + α2

12]x1(n1)x
∗

1(n2)

+ [α2
12 + α2

22]x2(n1)x
∗

2(n2). (10)

The eigenvalue decomposition of a square matrix R of

dimensions K ×K is given by

R = QΛQT =
K
∑

p=1

λpqp(n)q
H
p (n), (11)

where λp are eigenvalues and qp(n) are eigenvectors of R.

Note that the eigenvectors qp(n) are orthonormal.

For a two-component signal, in a noiseless case, the ele-

ments of this matrix are

R(n1, n2) = λ1q1(n1)q
∗

1(n2) + λ2q2(n1)q
∗

2(n2). (12)

Note that although the eigenvectors are mutually orthogonal,

the overlapped signal components are not orthogonal. There-

fore, both eigenvectors q1 and q2 contain a linear combination

of signal components, i.e.

q1 = γ11x1 + γ12x2, (13)

q2 = γ21x1 + γ22x2, (14)

with unknown coefficients γi,j . This means that each compo-

nent can be expressed as a linear combination of eigenvectors

q1 and q2:

x1 = ν11q1 + ν12q2, (15)

x2 = ν21q1 + ν22q2. (16)

Notice that individual signal components are better concen-

trated (more sparse) in the time-frequency plane than their

linear combinations contained within eigenvectors q1 and q2.

Therefore, it is natural to search for the unknown coefficients

νij , i, j = 1, 2 which produce the best possible individual

component concentrations (sparsities). This search procedure

can be described as follows.

First, the signal

y = ν11q1 + ν12q2, (17)

is formed, then we fix ν11 = 1 and vary the real and imaginary

part of ν12 until the best possible concentration of (17) is

found. To this end, the concentration (sparsity) measure

M[TFRy(n, k)] =
∑

n

∑

k

|TFRy(n, k)| (18)

is exploited, where the underlying TFRy(n, k) is calculated

for the normalized signal y/‖y‖2 and can be any time-

frequency distribution, including the spectrogram, S-method

with narrow frequency window, WD etc. As these representa-

tions are quadratic, the measure (18) corresponds to ℓ1-norm,

which has recently been intensively used as the signal sparsity

measure.
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Fig. 1. The bivariate real signal under consideration. (a) time domain
waveform; (b) PWD of the corresponding analytic signal; (c) PWD of the
original signal; (d) eigenvalues of the autocorrelation matrix R.

The first set of coefficients is obtained as the solution of

min
ν12

M{TFRy(n, k)} subject to ν11 = 1 (19)

where a direct search can be applied. The linear combination

in (17) with the so obtained coefficients ν11 and ν12 produces

the first signal component.

Upon replacing the eigenvector q1 with the detected com-

ponent, q̂1, if ν12 6= 0 then the orthogonal projection of the

detected component is removed from eigenvector q2, as

q̂2 = 1√
1−q

H

1
q2

(q2 − qH1 q2q1), (20)



to ensure that it is not detected again.

Subsequently, the same procedure is repeated for the cal-

culation of the second set of coefficients. In other words, the

second component is obtained as the linear combination of

eigenvectors with coefficients being the solution of:

min
ν21

M{TFRy(n, k)} subject to ν22 = 1, (21)

where the TFR is calculated for the new linear combination

y = ν21q̂1 + ν22q̂2 (22)

with the normalization y/‖y‖2, where the first eigenvector is

equal to the previously detected signal component, whereas

the component’s orthogonal projection is removed from the

second eigenvector. It is important to note that both (19) and

(21) are easily found using a direct search over the unknown

parameter values.

V. NUMERICAL EXAMPLE

Consider a real bivariate signal x(t) = [x1(t) x2(t)]
T ,

where the signal from channel i has the form

xi(t) = e−(t/128)2 cos (cos((300/64)πt/256) + ϕi) (23)

= 0.5e−(t/128)2 [ej(cos((300/64)πt/256)+ϕi)+

+ e−j(cos((300/64)πt/256)+ϕi)]

= x1i(t) + x2i(t), i = 1, 2,

for −128 ≤ t ≤ 128. The phases ϕ1 6= ϕ2 are drawn from

a uniform distribution, from the interval [0, 2π]. The signal

in time domain is shown in Fig. 1 (a). Since the considered

signal is real-valued, two symmetric components x1i(t) and

x2i(t), i = 1, 2 exist in the time-frequency plane.

The pseudo-WD (PWD) of the considered signal is shown

in Fig. 1 (c), for the first channel i = 1. Observe that the

two components x1i(t) and x2i(t) overlap in the TF plane. A

common approach in the TF analysis of real-valued signals is

to calculate their Hilbert transform prior to the calculation of

the TFR.

However, as shown in Fig. 1 (b), since the components are

very close (and close to zero frequency), the analytic signal

does not provide a meaningful TF representation. Since these

components are also nonlinear, none of the known techniques

can be applied for their separation in order to, for example,

estimate the instantaneous frequency of the considered signal.

Moreover, due to the non-orthogonality of the overlapped

components, the S-method based decomposition [1] cannot be

applied in a straight-forward manner either.

Since the analyzed signal is bivariate, its WD has signif-

icantly reduced cross-terms. The WD autocorrelation matrix

contains exactly two non-zero eigenvalues, as shown in Fig.

1 (d). The two corresponding eigenvectors contain linear

combinations of two signal components, and their PWDs are

shown in Fig. 2 (a) and (b). Using the proposed decomposition

method, both components have been successfully extracted, as

shown in Fig. 3 (a) and (b).

The instantaneous frequency (IF) estimation is a common

problem in the TF signal analysis. The exact IF of the

considered signal is shown in Fig. 4 (black line). For real

signals, it is usual to calculate the analytic form based on

the Hilbert transform in order to perform the TF-based IF

estimation. However, in the case of the considered signal, the

estimation based on the analytic signal WD (Fig. 1 (b)) is not

accurate, as can be seen in Fig. 4 (red line). Namely, the IF

estimation based on the standard TFR-maxima approach does

not appropriately track the IF variations, as they are lost in

the corresponding TFR due to significant overlapping of the

components and the fact that amplitude and phase variations

are of the same order.

On the other side, it can be observed that the nonnegative

IF estimation based on the pseudo-WDs of two extracted

components, shown by green and blue dots in Fig. 4, is

accurate, up to the theoretically expected bias caused by the IF

non-linearity, which can be further reduced using some well-

known IF estimation techniques [6].
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Fig. 2. Pseudo-WD of first two eigenvectors of matrix R.

VI. CONCLUSION

We have considered the decomposition of two-component

bivariate signals. The autocorrelation matrix of bivariate

Wigner distribution is a subject of eigenvalue decomposition,

leading to an eigenvector linear combination that produces

separated signal components. The coefficients of this linear

combination are found by minimizing the time-frequency

concentration (sparsity) measure of the eigenvector linear

combination. It can be concluded that two overlapped signal

components can be decomposed in the bivariate case. The

generalization of the concept to multivariate signals with an

arbitrary number of components is a subject of our separate

research paper.
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Fig. 3. Pseudo-WD of components extracted using the proposed approach.
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[16] M. Daković, LJ. Stanković, “Estimation of sinusoidally modulated signal
parameters based on the inverse Radon transform,” ISPA 2013, pp. 302-
307, Trieste, Italy, 4-6 Sept. 2013

[17] D. P. Mandic, N. u. Rehman, Z. Wu, N. E. Huang, “Empirical Mode
Decomposition-Based Time-Frequency Analysis of Multivariate Signals:
The Power of Adaptive Data Analysis,”, IEEE Sig. Process. Magazine,
vol. 30, no. 6, pp. 74–86, Nov. 2013

[18] S. M. U. Abdullah, N. u. Rehman, M. M. Khan, D. P. Mandic,
“A Multivariate Empirical Mode Decomposition Based Approach to
Pansharpening,” IEEE Trans. on Geoscience and Remote Sensing, vol.
53, no. 7, pp. 3974–3984, July 2015

[19] A. Hemakom, A. Ahrabian, D. Looney, N. U. Rehman, D. P. Mandic,
“Nonuniformly sampled trivariate empirical mode decomposition,” IEEE

International Conference on Acoustics, Speech and Sig. Process. (ICASSP

2015), pp. 3691–3695, South Brisbane, QLD, 2015

[20] G. Wang, C. Teng, K. Li, Z. Zhang, X. Yan, “The Removal of EOG
Artifacts From EEG Signals Using Independent Component Analysis and
Multivariate Empirical Mode Decomposition,” IEEE Journal of Biomed.

and Health Informatics, vol. 20, no. 5, pp. 1301-1308, 2016

[21] S. Tavildar, A. Ashrafi, “Application of multivariate empirical mode
decomposition and canonical correlation analysis for EEG motion artifact
removal,” 2016 Conference on Advances in Signal Processing (CASP), pp.
150–154, Pune, 2016

[22] J. Gilles, “Empirical Wavelet Transform,” IEEE Trans. on Sig. Process.,
vol. 61, no. 16, pp. 3999–4010, Aug. 2013

[23] N. E. Huang, et al. “The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis, ”, Proc.

R. Soc. Lond. A, vol. 454, no. 1971, pp. 4017-4044, 1998

[24] P. Jain, R. B. Pachori, “An iterative approach for decomposition of multi-
component non-stationary signals based on eigenvalue decomposition of
the Hankel matrix,”, Journal of the Franklin Institute, vol. 352, issue 10,
pp. 4017-4044, 2015
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