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Budimir Lutovac

University of Montenegro
Podgorica, Montenegro

Email: {milos, ljubisa, budo}@ac.me

Ervin Sejdić
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Abstract—A method for a resistive circuit analysis based on
graph spectral decompositions is proposed. It is shown that
the Laplacian matrix can be used in order to calculate node
potentials. Based on the Laplacian eigenvalues and eigenvectors
it is possible to decompose a complex resistive circuit into smaller,
weakly connected sub-circuits.
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I. INTRODUCTION

Graph theory has been used in a wide variety of problems
including electrical networks, social networks, machine learn-
ing, communication networks, signal and image processing.

An electrical network is frequently modeled as a col-
lection of interconnected two-pole components. This model
corresponds to a weighted graph where edges correspond to
individual circuit components, and edge weights correspond
to the component parameters. There exist many techniques for
the circuit analysis based on graph incidence matrices, node
voltages, graph trees, and independent contours [1].

Spectral graph theory [2] is an emerging field of graph
theory, theoretically developed over the past 60 years with
many recently developed applications [3]–[6]. In [3], the
graph Laplacian is used to perform the Kron reduction of the
electrical network. The effective graph resistance and closed-
form solution for equivalent circuit resistance are developed
in [4], [5]. Signal processing on graphs is reviewed in [6].
Graph spectrum is obtained by eigen-decomposition of the
corresponding Laplacian matrix [2], [6], [7].

In this paper, we will consider a resistive electrical net-
work. It is shown that network voltages and currents can be
calculated by using the spectral decomposition of the graph
Laplacian matrix.
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The proposed method is demonstrated on two example
circuits. It will be shown that the spectral decomposition
can be used to identify an (almost) independent part of the
circuit (a sub-circuit with weak connections to the remaining
part of the network). In this case, the Laplacian eigenvectors
are concentrated on a subset of nodes that belongs to the
considered weakly connected sub-circuit.

II. PROPOSED APPROACH

Let us consider a passive resistive electric circuit with N
nodes and Nb branches. For connecting nodes n and m, denote
the branch resistance with Rnm. The circuit can be represented
as a weighted graph, where the edge weights are conductances
wnm = 1/Rnm.

The graph Laplacian can be obtained as L = D−W where
W is an edge weight matrix with elements wnm = 1/Rnm

when there is a branch between the node n and the node m
and wnm = 0 otherwise. D is a diagonal matrix with dnn =∑N

m=1 wnm. Laplacian matrix eigenvalues are denoted with
λk and their corresponding eigenvectors with uk.

If the corresponding graph is connected, there is only one
zero eigenvalue λ1 = 0 of the Laplacian matrix, and all
other eigenvalues are positive. Here we will assume that
eigenvalues are sorted in non-decreasing order λk ≤ λk+1

for k = 1, 2, . . . , N − 1. The eigenvector u1 corresponding to
the λ1 = 0 is constant.

u1 =
1√
N

[1, 1, . . . , 1]T

If we arrange eigenvalues into a diagonal matrix Λ and
eigenvectors into a square matrix U = [u1,u2, . . . ,uN ], then
we can write

L = UΛUT (1)

Note that the matrix U is unitary, UUT = E where E is
a unity matrix with ones on the main diagonal and zeros
elsewhere.
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Assume that node 1 is a reference node and that there exist
external current generators connected between reference node
1 and nodes 2, 3, . . . , N . Now we can form an external currents
vector i as

i = [i1, i2, . . . , iN ]T

where i1 = −i2− i3− . . .− iN , according to Kirchhoff’s first
law.

The potential of node n will be denoted with vn. The
potential vector v is

v = [v1, v2, . . . , vN ]T

According to Kirchhoff’s first law for each node n, the sum
of all currents should be equal to the external current in. The
current at a branch that connects nodes n and m is equal to

inm = (vn − vm)/Rnm = (vn − vm)wnm

We can write Kirchhoff’s first law for node n as

in =

N∑
m=1

inm =

N∑
m=1

(vn − vm)wnm

Note that wnm = 0 if there is no branch between node n and
node m. This relation can be rewritten as

in = vn

N∑
m=1

wnm −
N∑

m=1

vmwnm

or in a matrix form as

i = Dv −Wv = (D−W)v

i = Lv (2)

This relation can be considered as Ohm’s law applied to
a whole circuit, where conductances are included in the
Laplacian matrix L. In classical circuit analysis, the system
of equations given by (2) is known as the vertex potentials
equation.

Vectors i and v can be considered as signals defined on
a given graph. A spectral representation of these signals is
obtained as their projection on the Laplacian eigenvectors

I = UT i

V = UTv (3)

According to (1), (2) and (3) we can write

i = UΛUTv

UT i = ΛUTv

I = ΛV (4)

The relation (4) can be considered as Ohm’s law in the spec-
tral domain. The eigenvalue matrix Λ is diagonal, resulting in

Ik = λkVk (5)

for k = 1, 2, . . . , N .

Eqn. (5) can be solved for Vk for each k, except for k = 1

Vk =
1

λk
Ik

For k = 1, we have λ1 = 0 resulting in I1 = 0 and arbitrary
V1. Note that I1 = uT

1 i = 0 according to Kirchhoff’s first law.

The value of V1 can be defined if we state that the reference
node potential v1 is zero. From (3), we can write

v = UV

and
v1 = u1(1)V1 + u2(1)V2 + · · ·+ uN (1)VN

From this equation we can find V1, having in mind that v1 = 0
as

V1 = −u2(1)V2 + u3(1)V3 + · · ·+ uN (1)VN
u1(1)

III. EXAMPLES

We will illustrate the proposed approach in two examples.
A simple circuit is analyzed in Example 1. A more complex
circuit, composed of two weakly connected subcircuits, is
analyzed in Example 2.

A. Example 1

Let us consider the circuit presented in Fig. 1. The corre-
sponding weighted graph is presented in Fig. 2.

The graph Laplacian is

L =
1

24000



12 −6 0 −6 0 0 0
−6 19 −4 −6 −3 0 0
0 −4 16 0 −12 0 0
−6 −6 0 24 −6 −6 0
0 −3 −12 −6 27 −6 0
0 0 0 −6 −6 36 −24
0 0 0 0 0 −24 24


The eigenvalues of the Laplacian are

λ1 = 0

λ2 = 0.251× 10−3

λ3 = 0.406× 10−3

λ4 = 0.956× 10−3

λ5 = 1.091× 10−3

λ6 = 1.542× 10−3

λ7 = 2.337× 10−3

and corresponding eigenvectors are presented in Fig. 3.

The vector of external currents is given by

ig = 10−3 ×
[
−7 0 0 0 0 0 7

]T



6th Mediterranean Conference on Embedded Computing MECO’2017, Bar, Montenegro

The vector of node potentials is given by

v =
[
0 12 18 16 20 32 39

]T
and in the spectral domain it is equal to

V =
[
−51.78 30.28 −7.35 3.41 1.29 0.74 1.79

]T
B. Example 2

Let us consider a more complex circuit shown in Fig. 4.

The weighted circuit graph is presented in Fig. 5. The
Laplacian eigenvalues are:

λ1 = 0

λ2 = 0.001× 10−3

λ3 = 0.251× 10−3

λ4 = 0.398× 10−3

λ5 = 0.406× 10−3

λ6 = 0.956× 10−3

λ7 = 0.984× 10−3

λ8 = 1.091× 10−3

λ9 = 1.341× 10−3

λ10 = 1.543× 10−3

λ11 = 1.778× 10−3

λ12 = 2.338× 10−3

We can see that eigenvalue λ2 is very close to zero. The
Laplacian eigenvectors are shown in Fig. 6.

Form Fig. 6, we can observe that eigenvectors 4, 7, 9 and
11 have zero values at nodes 1–7, while eigenvectors 3, 5, 6,
8, 10 and 12 have zero values at nodes 8–12.

Eigenvectors 1 and 2 span over all nodes. Corresponding
eigenvalues are almost equal, λ2 ≈ λ1 = 0, meaning that
these two eigenvectors belong to the same sub-space deter-
mined with a zero eigenvalue. Hence, we can use their linear
combination

unew
1 = a1u1 + a2u2

unew
2 = b1u1 + b2u2

with

a21 + a22 = 1

b21 + b22 = 1

a1b1 + a2b2 = 0

We can select parameters a1, a2, b1 and b2 such that we obtain
eigenvectors unew

1 and unew
2 spanned over nodes 1–7 and

8–12. Orthonormality of the matrix U is preserved. For the
considered case a1 = −b2 ≈

√
5
12 , and a2 = b1 ≈

√
7
12 .
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Fig. 1. A circuit from Example 1

Fig. 2. The weighted graph of the circuit shown in Fig. 1

Fig. 3. Laplacian eigenvectors from Example 1
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Fig. 4. A circuit from Example 2

Fig. 5. The weighted graph for the circuit shown in Fig. 4, edge weights are
in mS

In this way, based on the spectral decomposition, we can
conclude that the analyzed circuit may be split into two, almost
independent, parts.

IV. CONCLUSION

We studied a possible application of the graph spectral the-
ory in resistive electrical network analysis and decomposition.
It is shown that the graph Laplacian relates node potentials
and external node circuits for a resistive network. A similar
relation is derived in the graph spectral domain. These two
relations can be considered as “Ohm’s law” for a whole graph
in physical and spectral domains.

By analyzing graph spectra, we can check if the considered
graph (circuit) is strongly connected, or if there exist sub-
graphs (sub-circuits) that are weakly connected with the rest
of the graph.

Fig. 6. Laplacian eigenvectors from Example 2
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