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Abstract—This paper deals with the analysis of electrical circuits 

with classical one-port elements including two novel defined one-

port fractional order elements: fractional-order resistive-

capacitive RC-α and fractional-order inductive RL-α element. 

The definitions and analytical relations between current, voltage 

and power of introduced fractional elements are provided. An 

example of fractional element realization via ladder electrical 

circuit composed of classical resistors, capacitors and/or 

inductors is presented. Several examples are analyzed to 

illustrate the behavior of electrical circuit with fractional order 

elements for different values of fractional order α including 

differentiator/integrator circuits as well as complex circuits 

without accumulated energy. 

Keywords-electrical circuit; fractional element; resistive-

capacitive; resistive-inductive 

I.  INTRODUCTION 

Electrical systems are commonly used for generation, 
transmission, distribution and processing of electrical signals. 
They include communication systems, control systems, power 
systems, signal-processing systems of different complexity. 
Analysis and synthesis of these systems is in principle based on 
application of electrical circuit theory. Classical circuit theory 
is based on application of integer order element models. 
However, in the last decades, an application of fractional 
calculus in electrical and other engineering areas is in a large 
increase since fractional-order models are commonly more 
accurate than integer-order ones [1,2]. Theoretical aspects of 
fractional calculus can be found in [3-5]. Addition to the above, 
integration and differentiation operations of fractional order are 
able to model non-local and distributed effects. Fractional order 
systems are successfully applicable in natural and technical 
phenomena for modeling various processes exhibiting memory 
and/or stationary effects. Analysis of a circuit with RC and RL 
models of fractional-order is recently reported in [6-9] and 
examples of analogue realizations of fractional elements are 
elaborated in [10-12]. In addition in [13,14] memristive 
systems of fractional order are elaborated, while papers [15,16] 
deal with the modeling of transmission lines based on time-
fractional telegrapher’s equations. An application of fractional 
models is also found in power electronics for obtaining more 

accurate converter models [17,18], as well as in fractional order 
control engineering [19-22] etc. 

The aim of the paper is to give a deeper insight into an 
analysis of electrical circuits with fractional order elements. 
Two definitions of fractional order elements are provided:  

resistive-capacitive RC-α and resistive-inductive RL-α 
element, reported originally in [23]. Definitions of elements are 
in accordance to a phasor diagrams in terms of correlated time 
shift between terminal voltage and current. Analogue 

realization of fractional element is presented for α =0.5, and 

the same approach is applicable for all the other (0,1).α ∈
Several examples of electrical circuits with fractional elements 
are analyzed in Laplace domain and their time responses are 
determined via numerical inversion of the Laplace transform. 

II. FUNDAMENTALS OF FRACTIONAL CALCULUS 

Fractional differ-integrator is fractional calculus operator 
and it arises from generalization of classical differentiation and 
integration operators. One such operator has transfer function 

s
α where s is Laplace variable and α is arbitrary real number. 

For positive α, differ-integrator is a generalization of classical 

integer order derivative, while for negative α is a 
generalization of repeated, or n-fold, integral. 

In literature can be found many definitions of fractional 
transformations (fractional derivatives and integrals). The most 
common definitions are Grunwald-Letnikov and Riemann-
Liouville [3-5]: Let mention also Caputo derivative as a 
variation of Riemann-Liouville differential operator which is 
also frequently used. The left Riemann-Liouville fractional 
differ-integral defined as 

 
1
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where ( 1 )n n− < α <  and 1

0

( ) ,
t z

z e t dt z
∞ − −Γ = ∈∫ �  is Euler's 

gamma function. It should be noted that Riemann-Liouville 

fractional integral can be defined for arbitrary complex order α 
while here defined only for real order operations since the 
focus of the paper is modeling of fractional order elements. 

Important case is (0,1),α ∈  when definition (1) is reduced to 
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where a is terminal point on interval. Some important property 
of Riemann-Liouville derivative is that it reduces to classical, 

integer order derivative for integer values of order α, and its 
derivative of constant is non-zero. When fractional derivative is 
defined common choice for further analysis is Laplace 
transform. It is usually used to describe the fractional 
operations in the complex domain and solving fractional 
integro-differential equations. Besides, it is a starting point for 
frequency domain analysis. Laplace transform of Riemann-

Liouville derivative 
0

( )
t

D f t
α  is  
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=

= −∑  (4) 

The expression (4) contains the initial conditions which should 
be specified when solving fractional differential equations. 

III. FRACTIONAL ORDER ONE-PORT ELEMENTS 

One-port fractional order elements according to the 
character of impedance can be classified into two groups: 
resistive-capacitive and resistive-inductive fractional elements 

of order α. These elements are noted as RC-α and RL-α 
elements, and their symbols shown in Fig. 1 are previously 
introduced in [23]. 

α
fractional elementRC α−

 

α
fractional elementRL α−

 

Figure 1.  One-port resistive-capacitive and resistive-inductive fractional 

element of order α 

Let us find mathematical relationships between voltage 

and current at terminals of RC-α and RL-α fractional order 
elements. For the purpose of circuit analysis, it is necessary to 
reference current in the fractional elements to the terminal 
voltage. Fig. 2 adopts direction of current i in the direction of 
the voltage drop across the fractional element. 

αi

( )
RC
k α

u
  

αi

u

α
( )

LC
k α

 

a)     b) 

Figure 2.  One-port fractional elements with reference directions of current i 

and voltage u: a) resistive-capacitive RC-α; b)resistive-inductive RL-α 

Resistive-capacitive element RC-α in Fig. 2.a is described 
with equation (1) 

 
0

( ) ( ) ( ) ,
RC t

i t k D u t
α⎡ ⎤= α ⎣ ⎦  (5) 

where ( ) ( ) / .
RC
k RC R

αα =  From here it is obvious that for 

α=0 fractional element is pure resistive, while for α=1 is pure 
capacitive. By applying Laplace transform in (1), impedance of 

RC-α element in complex domain is obtained as 

 1
( )

( )
RC

RC

Z s
k s

−α α=
α

 (6) 

If a terminal voltage on RC-α element is ( ) 2 cos( )u t U t= ω
then corresponding current is 

( ) 2 cos( / 2)
RC

i t k U t
α

−α= ω ω + απ  (Fig. 2.a). From here it is 

concluded that voltage always lags the current for each  

(0,1)α ∈  and justifies the name resistive-capacitive fractional 

element.  

In similar manner, resistive-inductive element RL-α in Fig. 
2.b is described with equation (3)  

 
0

( ) ( ) ( ) ,
RL t

u t k D i t
α⎡ ⎤= α ⎣ ⎦  (7) 

where ( ) ( / )
RL
k R L R

αα =  and corresponding impedance in 

complex domain is  

 ( ) ( ) .
RL RL

Z s k s
α

−α = α  (8) 

As it can be seen from (8), for α=0 fractional element is pure 

resistive, while for α=1 is pure inductive. If a terminal voltage 

on RL-α element is ( ) 2 cos( )u t U t= ω  then corresponding 

current is 
2

( ) cos( / 2)
RL

U
i t t

k
α

−α

= ω − απ
ω

 (Fig. 2.b).  From here 

it is concluded that current always lags the voltage for each  

(0,1)α ∈  and justifies the name resistive-inductive fractional 

element. 

A. Power of fractional order elements RC-α and RL-α 

Instantaneous electrical power on one-port element with 
respect to the reference directions of voltage and current (Fig. 
2.) is defined as 

 ( ) ( ) ( ).p t u t i t=  (9) 

On the basis of relation (9), instantaneous power on resistive-
capacitive fractional element (Fig. 2.a) is 

 
0

( ) ( ) ( ) ( ) .
RC RC t
p t k u t D u tα

−α ⎡ ⎤= α ⎣ ⎦  (10) 

Corresponding complex power S  of RC-α element is 

determined with relation 

 
2
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S U I I Z P Q
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= = ω = +
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 (11) 

where P and Q are active and reactive power, respectively,  

 2 2( ) cos , ( ) sin ,
2 2

RC RC
P U k Q U kα ααπ απ⎛ ⎞ ⎛ ⎞= α ω = − α ω⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
(12) 
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From (12) it can be calculated apparent power 

2 2 2 ( ) .
RC

S P Q U k α= + = α ω  It can be concluded from (12) 

that power factor of resistive-capacitive fractional element is 

cos( / 2),k = απ  and complex power is a function of ( )
RC
k α  

and order α  of fractional element. 

Analogously to prior, instantaneous power on resistive-
inductive fractional element (Fig. 2.b) is 

 
0

( ) ( ) ( ) ( ) .
RL RL t
p t k i t D i tα

−α ⎡ ⎤= α ⎣ ⎦  (13) 

and corresponding complex power with respect to reference 
voltage and current directions is 

 
2
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*
( j )= j

( j )
RL
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I
S U I I Z P Q

Z
−α

−α

= = ω = +
ω

 (14) 

where active and reactive power are given with,  

 
2 2

cos , sin ,
2 2( ) ( )

RL RL

U U
P Q

k kα α

απ απ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟α ω α ω⎝ ⎠ ⎝ ⎠
 (15) 

From (15) apparent power is 
2

2 2 .
( )

RL

U
S P Q

k α= + =
α ω

 

Power factor of resistive-inductive fractional element is 

cos( / 2),k = απ  while complex power is is a function of 

( )
RL
k α  and order α  of fractional element. 

B. Analogue realization of fractional integrator/differentiator 

The basic idea to achieve analogue realization of fractional 

integrator/differentiator is to appropriately connect basic 

elements: resistors, capacitors and inductors. An example of 

analogue realization of fractional integrator of order α=1/2 is 

presented in Fig. 3.a. Input impedance Z(s)=E(s)/I(s) of the 

circuit in Fig. 3.a for n → ∞  is 

( ) lim ( ) ( ) ( )
eq a b

n
Z s Z s Z s Z s

→∞
= =  which is practically fulfilled 

for number of elementary cells 10.n ≥  
( )i t
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�����
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�����
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0
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  a)     b) 

Figure 3.  An example of analogue realization of fractional integrator with 

ladder structure [23] 

For example, if 
1

1
( )Z s

sC
=  and 

2
( )Z s R=  it is obtained 

fractional integrator of order α=0.5 with RC-based ladder 

structure ie. 
0.5

1
( ) .

R
Z s

C s
=  By numerical simulations it can 

be concluded that suitable structure of impedance 
0
( )Z s  is 

basic cell of ladder structure in Fig. 3.a, where 

1
( ) ( ) /

a
Z s Z s= λ  and 

2
( ) ( ),

b
Z s Z s= λ  0.λ >  In [23] it is 

concluded that parameter (0,1],λ ∈  affects exclusively the 

lower cut-off frequency while 1λ >  may be used to regulate 

upper cut-off frequency. 

In similar way it is possible to obtain any realization of 

fractional integrator ,s
−α α ∈�  and (0,1)α ∈  with suitable 

choice of cells number xm n  in structure in Fig. 3. Parameters 

m and n are selected to have large operating frequency range 
in sense of expected amplitude and phase characteristics. 
Equivalent procedure can be used to achieve R-C ladder based 

realization of fractional differentiator ,s
α α ∈�  and 

(0,1).α ∈  Fractional integrators and differentiators may be 

both realized with R-L structure since there is duality of R-L 
and R-C structures in terms of fractional transformations. 

IV. ANALYSIS OF CIRCUITS WITH FRACTIONAL ELEMENTS 

A. Example 1.  Electrical circuit with resistive-capacitive 

element 

A simple electric circuit with RC-α element is shown in 
Fig. 4. Let us find instantaneous value of voltage u(t) at 

terminals of RC-α fractional element with excitation 
e(t)=2h(t) [V], where h(t) is a Heaviside function. Values of 

circuit elements are known: R=R1=100 Ω and C=12 μF. 
Without loss of generality it is assumed that electrical circuit 
is without accumulated energy for t<0. 

( )u t

1
R

α
( )RC

R

α

( )e t

 

Figure 4.  Electrical circuit with resistive-capacitive RC-α element 
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    a)        b) 

Figure 5.  a) Instantaneous value of voltage on resistive-capacitive element circuit in Fig. 4.; b) Amplitude and phase frequency characteristics of the electrical 

system in Fig. 4. for different values of parameter 0.1 , 0,10k kα = =

Instantaneous output voltage (Fig. 5.a) can be found by 
numerical inversion of Laplace transform of U(s)=E(s)G(s) 

 { }1 1

1

2 1
( ) ( )

( )
1

u t L U s L
s RCs
R

R

− −
α

⎧ ⎫
⎪ ⎪⎪ ⎪= = ⎨ ⎬
⎪ ⎪+
⎪ ⎪⎩ ⎭

 (16) 

where G(s) is transfer function of the circuit in Fig. 2a. 

Amplitude characteristic of the electrical systems in Fig. 2. 

which transfer function is 
1

( )
(1.2 ) 1

G s
s

α=
+

 is 

2
2 2( ) 20log (1.2 ) cos ( ) 1 (1.2 ) sin ( )A n n

α α⎡ ⎤ω = − ω φ + + ω φ⎣ ⎦  

where ( ) / 2 2 ,n nφ = απ + α π  while phase characteristic is  

(1.2 ) sin ( )
( ) arctan .

(1.2 ) cos ( ) 1

n

n

α

α

⎛ ⎞ω φϕ ω = − ⎜ ⎟ω φ +⎝ ⎠
  

 Corresponding amplitude/phase plots are shown in Fig. 

5b. Let we note that ambiguity 
0

n∈�  of amplitude and phase 

characteristic is solved with selection of a minimum-phase 
system in Fig. 5.b. 

 

B. Example 2.  Electrical circuit with resistive-capacitive 

element 

Let us find instantaneous values of the voltage on 
terminals of resistor R1 assuming component’s values are the 
same as in Example 1, Heaviside excitation e(t)=2h(t) and 
circuit without accumulated energy for t<0. 

( )RC

R

α

( )e t 1
R

α

( )u t

 

Figure 6.  Electrical circuit with resistive-capacitive RC-α element 

Analogously to prior example, output voltage (Fig. 7.a) is 

 1

1

1

( )

2
( ) ,

( )
1

RCs

R
u t L R

s RCs
R

R

α

−
α

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪+
⎪ ⎪⎩ ⎭

 (17) 

Transfer function of the electrical system in Fig. 6 is 

(1.2 )
( ) ,

(1.2 ) 1

s
G s

s

α

α=
+

 and corresponding amplitude/phase plots 

are shown in Fig. 7.b. 
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log ( )ω

 

a)        b) 
Figure 7.  a) Instantaneous value of voltage on resistor R1 in circuit in Fig. 6.; b) Amplitude and phase frequency characteristics of the electrical system in Fig. 6. 

for different values of parameter 0.1 , 0,10k kα = =

C. Example 3. Complex electric circuit with fractional 

elements RC-α and RL-α 

More complex circuit with resistors and two fractional 
elements RC-α and RL-α is shown in Fig. 8. Let excitation in 
is in the form e(t)=E for t≥0+ and e(t)=0 t<0-, where E=15 V 
and known values of circuit elements are R=10 Ω, R1=R2=100 
Ω with R1C1=30 ms, L1/R=1/30 ms. Assuming there is no 
accumulated energy at t<0, for an excitation the circuit can be 
solved with some of classical methods: Kirchhoff's voltage 
and current laws, node-voltage analysis, loop-current method 
or e.g. by applying Thévenin's, Norton's theorems etc. [24]. 
Here, analysis of circuit is performed in Laplace domain 
applying equations (6) and (8) for fractional elements.  
 

 
 
 
 
 
 
 
 
 

 
Figure 8.  Electrical circuit with both classical and fractional order elements  

When Laplace transform of e.g. IRL-α(t)=L{iRL-α(t)} is 
calculated, iRL-α(t) is defined with numerical inversion as it 
was shown in (16) and illustrated with Fig. 9. Analogously, all 
the other currents/voltages are unambiguously determined.  

 1

2

3(30 ) 10
( )

(50( ) 3(30 ) 300( / 30) 50)
RL

s
i t L

s s s s

α
−

−α α α α

⎧ ⎫+= ⎨ ⎬+ + +⎩ ⎭
 (18) 

increasingα

[ ]t ms

( )
RL
i t−α

1α =

 

Figure 9.  Instantaneous value of the current through resistive-inductive 
fractional order element in Fig. 8. for different values of of parameter 

0.1 , 0,10k kα = =  

[ ]t ms

 

Figure 10.  Instantaneous value of  voltages ( )
RL

u t
α−

 and ( )
RC

u t
α−

 in Fig. 8. 

for two values of parameter 1α =  (thick lines) and 0.5α =  (dashed lines) 

Similarly, if excitation in Fig. 8. is sinusoidal, ie. 
e(t)=Esin(50t), the analysis can be performed with the same 
approach in Laplace domain. Instantaneous value of the 
current iRL-α(t) in sinusoidal regime is shown in Fig. 11 for 

0.2 , 0,5.k kα = =  
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[ ]t ms

( )
RL
i t−α

 
Figure 11.  Instantaneous value of the current iRL-α(t) through RL-α fractional 

element in Fig. 8. for different values of of parameter 
 

0.2 , 0,5k kα = =  

Let notice from Figs 5 and 7 that fractional-order systems, 
in general can have the arbitrary slope of amplitude 
characteristic while for integer order-ones slope is an integer 
multiple of 20 dB/decade. Presented analysis of the electrical 
circuits including fractional order elements in Laplace domain 
is reduced to classical circuit solving techniques. Figs. 9-11 
indicate on different behavior of electrical system for various 
fractional order α. It is obvious in these Figs. that for α=0 
both fractional elements are reduced to pure resistive, while 
for α=1 they are reduced to classical capacitor and inductor. 
Digital realization of fractional order systems is supported 
with adequate discretization method as was elaborated in [25]. 

V. CONCLUSIONS 

This paper provides an insight in an application of 
fractional calculus in a circuit theory from the aspect of their 
analysis in Laplace domain. Two definitions with possible 
analogue realizations of two fundamental fractional elements 
are introduced and several examples are done to illustrate 
behavior of electrical system for different order of fractional 
elements and justify a reason for more precise modeling of 
electrical components. 
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