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Abstract—In this paper, we consider the separation of an
acoustic signal which was transmitted through a dispersive
channel. Acoustic waves transmitted through a dispersive envi-
ronment are usually too complex for exact analysis. Even a simple
signal can change its characteristics during the transmission. The
received signal is often multi-component due to the multi-path
propagation. In this paper, it is assumed that the received signal
is a multi-component signal with components being very close to
each other. The decomposition of the received signal using a high-
resolution technique in combination with the local polynomial
Fourier transform is presented. The method is numerically tested
on an example.
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I. INTRODUCTION

The propagation of acoustic signals through a dispersive
channel is a topic which challenges researches in recent years.
The propagation mostly depends on the environment through
which the wave is propagating. It can experience losses such as
attenuation, scattering or geometrical spreading [1]. Problems
can also be in the initial setup of the system which transmits
and receives signals. Main problem in the analysis of such a
system is that it produces nonlinear transformations of a signal
[1–7]. That is, the signal changes its frequency and phase
characteristics. Also, the signal is propagating with different
speeds which results in nonlinear time delays at the receiver.
Another problem is that a dispersive channel, because of the
scattering, is usually characterized by a multi-path propagation
producing multi-component signals.

Consider a signal transmitted from a transmitter to a re-
ceiver. If they are perfectly aligned, the signal which was
transmitted will be received in the same form with some time
shift and attenuation. The problem which we are considering
is when the transmitter and the receiver are misaligned. In
this case, the received signal is different from the transmitted
signal. The received signal is commonly a complex, multicom-
ponent, non-stationary signal [8–10].

The tool which is the most suitable for analysis of non-
stationary signals is the time-frequency signal representation.
In this paper, we will use short-time Fourier transform as a
common time-frequency technique for analysis of the non-
stationary signals. Specifically, we will consider its polynomial
extensions, the polynomial Fourier transform (PFT) and its
windowed version, local polynomial Fourier transform (LPFT)
[11], [12]. Also, we assume that the transmitted signal is a

linear frequency modulated (LFM) signal which was received
as a two-component signal with very close components. This
is why high-resolution technique proposed in [13] will be used
to improve the performance of the time-frequency representa-
tions.

The paper is organized as follows. In Section II we will
explain how the signal is transmitted and received from one
sensor to another. The high-resolution technique used in this
paper is presented in Section III and the local polynomial
Fourier transform is presented in Section IV. Numerical re-
sults, as well as the conclusions, are given in Sections V and
VI, respectively.

II. MODELLING OF THE RECEIVED SIGNAL

We will consider the transmitted signal as a LFM signal of
the form

sr(t) = A(t) cos
(
2π(Ωt+ ct2)

)
. (1)

where A(t) is the slow varying amplitude. The parameters Ω
and c are the initial frequency and the chirp rate, respectively.
The signal is presented in Fig. 1.

Corresponding analytic signal sa(t) = sr(t) + jHT [sr(t)]
is

sa(t) = A(t) exp
(
j2π(Ωt+ ct2)

)
(2)

where HT [·] is the Hilbert transform. The discrete signal
obtained from sa(t) with sampling interval ∆t is

s(n) = A(n∆t) exp
(
j2π(nΩ∆t+ n2c(∆t)2)

)
. (3)

If the receiver is properly aligned, the signal will be received
in a similar form as the transmitted one. It will just be delayed
by some small time shift. The problem occurs if the receiver
is not perfectly aligned [8]. In Fig. 2 the two scenarios of
aligned and misaligned sensors are presented. Note that the
misalignment is caused by the physical sensor positions. In
Fig. 2 a) the signal is transmitted and perfectly aligned with
the receiver. In Fig. 2 b), the black dashed line presents how
the signal was supposed to be received and the solid line
represents how the signal was actually received (misaligned
with the receiver).

The physical misalignment can be due to the initial setup
or the vibrations in the environment. This will cause that the
signal changes through the channel since the propagation will
have a dispersive nature. The received signal will then have a
dispersive characteristic and it will have changes in both time
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Figure 1. Transmitted signal in time-domain (top); Spectrum of the transmitted
signal (bottom)

Figure 2. Physical sensor position. Examples of a) perfectly aligned receiver
sensor; b) misaligned sensor. Solid line represents the received signal.

and frequency. Let us assume that the signal which is received
had two propagation paths. The signal will then be:

xr(n) = sr(n) ∗ h1(n) + sr(n) ∗ h2(n) (4)

where ′∗′ presents the convolution of the signal sr(n) with
two transfer functions h1(n) and h2(n).

Special case is when two transfer functions generate time
shifted versions of the input signal with shifts t1 and t2.

xr(t) = sr(t− t1) + sr(t− t2)

= A(t− t1) cos
(
2π(Ω(t− t1) + c(t− t1)2)

)
+A(t− t2) cos

(
2π(Ω(t− t2) + c(t− t2)2)

)
.

Received signal consists of two components and for t1 ≈ t2
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Figure 3. Received signal in a dispersive channel case (top); Spectrum of the
received signal (bottom)

can be considered as modulated input signal

xr(t) ≈ 2A(t) cos
(
2πc(t1 − t2)t+ φ1

)
cos
(
2π(Ωt+ ct2)

)
.

The received signal is shown in Fig. 3.
We can see that two received components are very close to

each other in time and frequency. Our goal is to separate them
so that the reconstruction of the original (transmitted) signal
can be successfully done. Note that, in Fig. 3 and in the whole
paper, we will neglect the signal attenuation because our main
goal is to reconstruct the form of the signal. The shift in time
and the attenuation which are caused during the transmission
are then straightforward to find.

III. HIGH-RESOLUTION DECOMPOSITION

High-resolution techniques were developed for separation
of close signal components. For example, they are commonly
used in the estimation of DOA in array signal processing
[11], [12]. There exist many high-resolution techniques used
in various engineering problems such as Capon’s, MUSIC,
or ESPRIT. In this paper, we will consider Capon’s high-
resolution technique. Let us start with the basic short-time
Fourier transform (STFT), which will be the key point for the
signal nonstationarity analysis. The standard normalized STFT
of a signal is defined as

STFT (ω, n) =
1

N

N−1∑
m=0

x(n+m)e−jωm (5)

which can be rewritten as

STFT (ω, n) = ŝω(n) =
1

N
aH(ω)x(n) (6)

where

a(ω) = [1, ejω, ejω2, . . . , ejω(N−1)]T (7)

x(n) = [x(n), x(n+ 1), . . . , x(n+N − 1)]T . (8)



Here [·]T represents the transpose and [·]H represents the
Hermitian transpose.

The averaged Capon’s STFT is defined as [13]

SCAPON (n, ω) =
1

aH(ω)R̂−1x (n)a(ω)
(9)

where
R̂x(n) =

1

N

∑
n

x(n)xH(n), (10)

is the autocorrelation matrix over N samples (ergodicity over
N samples around n is assumed), which comes from the power
of the signal in the STFT representation domain.

IV. LOCAL POLYNOMIAL FOURIER TRANSFORM

Since dispersive channels are non-stationary channels, they
are usually considered in the time-frequency representation
domain. Many techniques for localization of time-frequency
non-stationary signals in dispersive acoustic channels were
developed. In this paper, we will consider both polynomial
Fourier transform (PFT) and the local polynomial Fourier
transform (LPFT).

The basic idea in the (L)PFT techniques is to find the param-
eters where the signal is maximally concentrated. Maximally
concentrated distribution produces maximal transformation
amplitude value as well (if the energy is preserved).

Consider a polynomial-phase signal

x(n) = Aej(ωn+a2n
2+a3n

3+...+aNn
N ). (11)

The polynomial Fourier transform of this signal is

Xα2,α3,...,αN
(ω) =

∑
n

x(n)e−j(ωn+α2n
2+...+αNn

N ). (12)

The PFT can be extended using a window to get the LPFT of
the signal. It is defined as:

LPFTα2,α3,...,αN
(ω) =

∑
n

x(n+m)w(m)

×e−j(ωn+α2n
2+...+αNn

N ). (13)

where w(m) presents the window used for the analysis. The
maximum of LPFT, i.e. the maximum of the Eq. (13) is
achieved when

(â2, â3, ..., âN ) = arg max
(ω,α2,...,αN )

|LPFTα2,...,αN
(ω)| (14)

where α2, α3, ..., αN are the parameters.
Any high-resolution technique can also be applied to the

LPFT [11]. In our case, we will use Capon’s technique
explained in the previous section. Let us consider the signal

x(n) = Ae(j(α0n
2+ω0n+φ0)). (15)

The Capon’s technique will be extended to LPFT in the
sense that the autocorrelation matrix is calculated with signal
multiplied by an exponential factor exp(−jαp2), i.e.

xα(p) = x(p)e(−jαp
2). (16)

The parameter α is obtained as the value that optimizes the
concentration of

LPFTα(ω, n) =
1

N
aH(ω)xα(n) (17)

i.e., as
α = arg max

α
|LPFTα(ω, n)|. (18)

For optimization we may use various concentration
measures |LPFTα(ω, n)|, like for example α =
arg minα ||LPFTα(ω, n)||1. Note that the standard LPFT is
used in the optimization, rather than its highly concentrated
version, since highly concentrated transformations are biased
in amplitude and would not be appropriate for concentration
comparison for different α.

The local autocorrelation function is then calculated with
optimal parameter α, using a sliding window function. It is
defined as

R̂x(n,K, α) =
1

K + 1

n+K/2∑
p=n−K/2

xα(p)xα
H(p) (19)

where K is the parameter defining the width of a symmetric
sliding window. The optimal local Capon’s representation is

LPFTCAPON (n, ω) =
1

aH(ω)R̂−1x (n,K, α)a(ω)
. (20)

An example will be given in the next section.

V. NUMERICAL RESULTS

We will consider a LFM signal to be transmitted, of the
form (3). The frequency range f is between fmin = 98 Hz
and fmax = 138 Hz. The sampling frequency is fs = 1024
Hz. The signal was decomposed using the standard STFT,
Capon’s STFT, standard LPFT and the Capon’s LPFT. We
will use rectangular window of length L = 128 for the LPFT
calculation. The decomposition of the signal using different
methods is shown in Fig. 4. In Fig. 5, one time-instant of
Fig. 4 is shown. We can see that the two components are
distinguishable in the Capon’s LPFT representation method.

From Fig. 4 we can conclude that two components of the
analyzed signal are separated by Capon’s LPFT only, while
other methods force modulated single component representa-
tion of the analyzed signal.

VI. CONCLUSIONS

In this paper, a high-resolution technique for separation of
components is examined. The high-resolution technique was
extended to the local polynomial Fourier transform to give
a better result for the separation. It is assumed that a one-
component LFM signal was transmitted through a dispersive
environment and that the received signal was falsely received
because of the misaligned sensors. The received signal consists
of two components which are very close to each other. It is
shown that the other techniques such as the standard STFT,
and the Capon’s STFT failed to separate the two components.
The method of Capon’s high-resolution techniques combined
with LPFT showed good results.
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Figure 4. Decomposition using: standard STFT (first), standard LPFT (sec-
ond), Capon’s STFT (third), and Capon’s LPFT (fourth)
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Figure 5. Zoomed spectrum of one time-instant in the standard STFT (top)
and spectrum of one time-instant in the Capon’s LPFT (bottom)
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Based Separation of Non-Stationary and Stationary Signals Overlapping
in Time-Frequency,” IEEE Transactions on Signal Processing, Vol. 61,
no. 18, pp. 4562–4572, September 2013.
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