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Abstract—A vertex-varying spectral content on graphs chal-
lenges the assumption of vertex invariance and requires vertex-
frequency representations for an adequate analysis. In this letter,
we introduce a class of vertex-frequency energy distributions in-
spired by traditional time-frequency energy distributions. These
newly introduced distributions do not use localization windows.
Their efficiency in energy concentration is illustrated through
examples.

Index Terms—Graph signal processing, Graph spectral repre-
sentation, Vertex-frequency, Energy distribution.

I. INTRODUCTION

Graphs and graph signal processing have become active
research areas in recent years. They represent a novel way
to understand classical signal processing techniques, but are
also extremely useful in fully describing novel data types
such as brain and social networks [1]-[6]. Graphs typically
consist of vertices (nodes) and edges (connections between
vertices). When using graphs to represent heterogeneous data,
the available information can be conveyed in the strength of
the edges of the graph or, alternatively, in signals whose values
represent data associated with the vertices of the graph.

As in traditional signal processing, graph signal character-
istics can be vertex-varying (a loose analogue to time-varying
signals [7]-[10]). A recently proposed vertex-frequency anal-
ysis relies on Laplacian matrices to establish connections
between vertex changes and the spectral content using lo-
calization windows [11], [12]. A different line of work has
generalized the notion of time stationarity to signals defined on
graphs [13], [14], developing windowing and energy spectral
estimation schemes for graph-stationary signals [14].

In this letter, we introduce a class of window independent
vertex-frequency distributions based on the idea of the Ri-
haczek energy distribution [7], [10]. These newly proposed
distributions are highly localized in the joint vertex-frequency
domain and provide a novel way for a systematic introduction
of new vertex-frequency distributions.

II. SPECTRAL DECOMPOSITION ON GRAPHS
A. Graph Laplacian

Consider an arbitrary signal x on an undirected graph. The
Laplacian of the undirected graph is defined as

L=D-W, (1)

where the matrix W coefficients w;; are the weighting values
of the edges connecting vertices ¢ and j and D is a diagonal
matrix with elements d; = ZN:1wij- The elements of the
Laplacian of a signal Lx will be denoted by L, (n).
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The Laplacian is an operator that can be used to measure
the smoothness of a signal defined on the graph via local
dissimilarities as [5]
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where z(n),n =1,2,..., N, are the signal x samples.

The Laplacian can also be considered within the basic
electric circuit theory (Kirchhoff matrix) when w;; is the
conductance of the edge connecting vertices ¢ and j [15].
Then the vertex potential vector x, corresponding to the graph
signal, can be related to the vector of external currents i via
the Laplacian as Lx = ig.

B. Spectral Decomposition

The Laplacian can be written as
L = UAUT, 3)

where columns uy of the matrix U are the eigenvectors of
L, and A is a diagonal matrix with eigenvalues A; on the
diagonal. Using the eigenvalue decomposition of the Laplacian
we can define spectral representation of a signal x on the graph
as

X =UTx. )

Components of the spectral transform vector X are X (\;) =
u’x. This decomposition can be considered as the graph
Fourier transform of x denoted by GFT{x} = U”x.

If the graph is the cycle, with Laplacian of a signal £, (n) =
22(n) —x(n —1) —z(n+ 1), then the matrix U7 is the DFT
matrix and the classical definition of DFT is recovered [5].

For the basic electric circuits, from Lx = UAUTx =i
we get AUTx =UTig or AX = I, where I = UTlig.

C. Spectral Localization on a Graph

The vertex-frequency analysis deals with the spectral con-
tent localization around each vertex. This analysis is an
extension of the classical time-frequency analysis to graph
signals. Like in the traditional time-frequency analysis, the
spectral transform of a signal localized around the considered
vertex n is the basic form of the vertex-frequency analysis.
We can define a window function h, (i) based on the vertex
distances that will favor closer vertex samples and decrease
farther samples (the neighborhood of vertex 1 is shaded/red in
Fig. 1) [15]. The corresponding local vertex spectrum (LVS)
is then defined as

N
LSp(n, \e) = whxp =Y w(i)hn (i) up (). (5)
=1



A vertex-invariant window can be introduced by defining a
generalized shift operator within the graph spectrum frame-
work, as shown later in Section III.C [11]. An illustration
of a graph, a signal, its spectrum and vertex-frequency rep-
resentation is presented in Fig. 1. The LVS is calculated
according to (16) and (17) using a window function h,, (%)
with H(\) = exp(—2A).

Like in the classical time-frequency analysis, the vertex-
frequency representation is highly dependent on the localiza-
tion window width. To avoid this effect, energy distributions
are defined in the classical time-frequency analysis. In a simi-
lar way, vertex-frequency energy distributions can be defined.

III. VERTEX-FREQUENCY DISTRIBUTIONS
In this section, we will introduce two forms of vertex-
frequency distributions. In the first part, we will follow the
electric circuit reasoning. In the second part of the section,
our analysis will consider the classical definition of energy
based on the squared norm-two of the signal.

A. Vertex-Frequency Power in an Electric Circuit

The power in all edges connected to vertex n is equal to the
sum of all p;(n) = wy,;j(z(n) — x(j))? over j, where x(n) is
the vertex potential and w,,; are the edge conductances. The
power within the whole network is equal to
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The factor of % is a result of the fact that all edges are taken
twice in the summation over all vertices in the circuit. It can
be shown that (6) can be written as P = x7i¢ or as

N N
P=x"(Lx) =Y a(n) Y wy(z(n) —z(j)).
n=1 j=1
Then the total power in the circuit can be defined as
N N N
P =333 gwaila(n) = 2()X () (ur(n) — ui(5)).

n=1k=1j=1
3)

It can be represented as a sum over the vertex and frequency
indices as
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n;l I;:l
P(n, k) = Z o Wng () —2(5)) X (Ak) (ur(1) — ur(7))-

1

J
The value of P(n, k) can be considered as a vertex-frequency
power distribution of the graph signal x(n). The marginal
properties of this distribution are:

N

> P(n k) = M X () = XB(Ax) (10)
n;l N )

> Pk) = Y swnya(n) — o(i) = ah(n), (1)
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Fig. 1: Graph with a signal x(n), its spectral decomposi-
tion X (Ag), local vertex-frequency representation, Laplacian
L, (n) of the signal x(n) on graph, and its inverse function

L;1(n) (with assumed zero-mean value).
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Fig. 2: A vertex-frequency distribution of power in the graph
signal from Fig. 1.

where 2%, (n) = z(n)L,(n).

We have determined that the spectral power is of the form
A&| X (A\r)|?. When k = 0 the spectral power is equal to zero
since A\g = 0. A constant potential does not produce any
power in the network since the voltage between each pair of
vertices is 0. This kind of power, proportional to the frequency
(squared), is present in the Teager energy operator [16].

The Laplacian of a signal on a graph, with elements
L. (n), is a kind of generalized second order derivation on a
graph, with graph Fourier transform coefficients A\ X (). Its
inverse £, !(n) with the graph Fourier transform coefficients
X (Ai)/Ak, Ak # 0, can be considered as a kind of generalized
(double) integration on a graph as shown in Fig. 1 (bottom).

Example: Consider the signal and the graph in Fig. 1. The
vertex-frequency distribution corresponding to the spectrogram
is shown in Fig. 1. This vertex-frequency representation is not
well concentrated. Its vertex-frequency concentration will be
improved using the local distribution P(n, k). This distribu-
tion, along with its marginal property values, is shown in Fig.
2. Marginal values are exact within the computer precision.

B. Vertex-Frequency Energy Distributions

In classical signal processing, the energy of a signal is
defined as

N N N
E:Zz2(n):z ZX (Ak)ug(n (12)
n=1 n=1 k=1
which can be alternatively written as
N N N N
E = ZZl X (Ag)ug(n) ZZEnk, (13)
n=1k=1 n=1k=1
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Fig. 3: A vertex-frequency distribution of energy in the graph
signal from Fig. 1.

where the vertex-frequency energy distribution is

N

E(n, k) = z(n) X (Ag)ur(n) = z(n)x(m)ug(m)ug(n).

m=1
(14)
This vertex-frequency distribution corresponds to the Ri-
haczek distribution in the time-frequency analysis. Its marginal
properties are defined as

N N

> E(n,k)=|X(\e)l* and > E(n,k)=a*(n). (15)
n=1 k=1

The summation over the vertex index n produces the squared
spectra | X (A\x)|?, while the summation over the spectral index
k produces the signal power x2(n). The distribution E(n, k),
along with marginal properties for the signal presented in
Fig. 1, is illustrated in Fig. 3. Comparing this distribution
with the localized spectral decomposition in Fig. 1, we can
conclude that the localization of signal energy in the joint
vertex-frequency domain is improved. In the definition of
distribution E(n, k) the localization window is not used.

C. Relation with the Vertex-Frequency Spectrogram
The standard localized spectrum in the vertex-frequency
analysis is defined in [11] as
N

= a(i)hn(i)ur(i),

=1

LSq(n, k) (16)

where the localized version of the window for the vertex n
and frequency index k is defined as

>

j=1

n)u;(i)|ur(i).  (17)



For example, we can use H(\;) = Cexp(—A;7). The squared
value of this transform, corresponding to the spectrogram, is

N N
LS:(n,A\g) = Z x(8) o (D) (m) by (M) ug (V) ug (M)
z;l mN:I
=33 r(iym, k)hn (i) hn (m), (18)
i=1 m=1

where (i, m, k) = x(i)x(m)ug(i)ug(m). The energy vertex-
frequency distribution (14) is then

N

E(n, k) = Z r(n,m, k).

m=1

19)

The spectrogram defined by (18) is a smoothed version of
E(n,k). In order to avoid smoothing in (18) along index i
the localization window should behave as h,, (i) ~ §(i — n).
To avoid weighting over index m the localization window
should behave as h,(m) ~ 1. These two requirements are
contradictory, meaning that the energy concentration in the
spectrogram cannot achieve energy concentration of E(n, k).

D. Smoothed Vertex-Frequency Energy Distributions

The marginal properties may remain unchanged if the
energy distribution F(n,k) is convolved with a smoothing
function II,, (¢, k). Smoothing over the vertex index 4 should
be done taking into account the neighborhood of vertex n. A
smoothed vertex-frequency distribution is defined as

N N N
D(nk) =Y 3N a(i)a(m)u;(m)u; (), (i, j — k),

i=1 j=1m=1

(20)

where II,(i, k) is a two-dimensional smoothing kernel in

the distribution domain. The time marginal property remains

the same as in E(n, k) if this kernel satisfies the condition
Zi\il I, (i, k) = 1 for all n and k.

The window localized spectral representation LS., (n, A)

can be related to D(n, k) using I1,, (i, k) = h,,(i)d(k) yielding

Obviously, if IT,, (i, k) = §(i—n)d(k) then D(n, k) = E(n, k).

The vertex-frequency distribution with the Choi-Williams
type of smoothing kernel is presented in Fig. 4. This kind
of distribution preserves the time marginal property. Vertex
domain smoothing is performed taking into account the vertex
neighborhood ordering [15]. Smoothed vertex-frequency dis-
tributions would be less sensitive to disturbances and possible
cross-terms. Smoothing can be performed, for example, only
along the spectral index or only within the vertex neigh-
borhood. In this case, only one marginal property can be
preserved.

IV. CONCLUSION

Energy forms of vertex-frequency representations have been
introduced. These distributions do not require localization
windows which are a significant drawback of the linear vertex-
frequency representations. This kind of analysis can lead
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Fig. 4: A smoothed vertex-frequency distribution in the graph
signal from Fig. 1.

to many other generalizations based on the classical time-
frequency analysis. Our current research is directed toward
the application of the proposed approach to EEG signals from
[6] and [12]. The initial results indicate that we can obtain
concentration improvements as in the simulated examples.
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