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Abstract — Signal sparsity is exploited in various signal 

processing approaches. Signal compression, classification, 

coding, as well as the recently introduced compressed sensing 

are some examples where the possibility to represent a signal 

sparsely determines the efficiency of the applied processing 

technique. However, the possibility of a sparse signal 

representation in a transform basis is highly dependent on the 

signal nature. Therefore, finding a suitable basis where the 

signal exhibits a compact support is a challenging task. In this 

paper, the Hermite Transform (HT) is considered as a 

sparsity domain for the FHSS wireless communication 

signals. The transform coefficients sparsification is done by 

optimizing the scaling factor and time-shift of basis functions. 

The optimization is done by minimizing the concentration 

measure of HT coefficients. The theory is verified by 

numerical examples with synthetic FHSS signals.  

Keywords — FHSS signals, signal sparsity, sparsification, 

Hermite transform domain. 

I. INTRODUCTION 

PARSE signal representation in a certain domain is 

commonly desirable in both signal processing and 

analysis [1]-[7]. Signal can be considered sparse in a 

certain transform domain if it can be represented with a 

small number of non-zero coefficients [1], [6]. 

Additionally, signals having small number of significant 

coefficients while the influence of other coefficients is 

negligible although they are not zeros, can be considered 

as an approximately sparse. This means that the signal 

energy is concentrated within a small number of 

coefficients in the sparsity domain [5], [6]. This important 

property has been already exploited in various 

compression algorithms, for example, MPEG and JPEG, in 

order to remove redundancy and compress the signal [5].  

During the last decade, a new signal processing area, 

known as Compressive Sensing (CS) [2]-[7], has been 

developed exploiting the signal sparsity in some 

transformation domain. Namely, such sparse signals can be 

reconstructed from a reduced number of signal samples 

(measurements) taken in the domain where the signal is 

dense. This number can be significantly smaller than the 

number of samples obtained following the sampling 

theorem, requiring the sampling frequency at least two 

times higher than the maximal signal frequency.  

The algorithms for recovering the missing information 

in sparse signals are constantly developing. The missing 

samples may arise as a consequence of their physical 

unavailability, intentional sampling strategy, or they are 

omitted due to a high noise influence. In certain 

 
 

 

biomedical applications, the number of measurements is 

intentionally reduced in order to avoid the patients’ 

exposure to radiation etc. 

Signals can be sparse in various transformation domains. 

Sparse representation can be achieved by choosing an 

appropriate transform basis, i.e. by decomposing the signal 

onto the set of suitable expansion functions. Depending on 

the signal nature, sparsity domains include the discrete 

Fourier transform (DFT), discrete cosine transform (DCT), 

Hermite transform (HT) etc. [1], [2], [5].   

The main topic of this paper is the problem of choosing 

the optimal parameters for the sparse representation of 

frequency hopping spread spectrum (FHSS) signals in the 

HT domain [8]-[20]. The HT is used in analysis of various 

signals – biomedical signals (EEG), ultra wideband 

(UWB) and communication signals, signals in computer 

tomography, etc. It has many desirable properties [12], 

[15]. Having in mind that majority of these signals can be 

modelled with a smaller number of Hermite functions 

compared to the signal length, the HT finds usage in 

compression algorithms [12], [13]. Signals have a potential 

to be sparsely represented in the HT domain if they exhibit 

a certain level of resemblance with Hermite basis functions 

[13].  

The FHSS modulated signals, consisted of short 

duration sinusoidal components [8], [10], [11], [21], are 

well known for the spectrum leakage around the 

frequencies of the signal components in the DFT domain. 

The HT is considered due to the fact that the Hermite 

functions show similar time-domain shape as the FHSS 

signal components. Optimal fitting between the signal 

components and expansion functions can be achieved 

using optimization of the time-scaling factor and time-shift 

parameter of the Hermite basis functions [12]. The main 

goal of this optimization procedure is to concentrate the 

signal into the smallest possible number of HT 

coefficients. In [18], the Hermite transform domain was 

identified as a potential domain of sparsity for FHSS 

signals. The goal was to find a suitable sparsity domain, 

which is important for later application of the CS 

approach, or any other sparsity-based approaches. In this 

paper, initial results presented in [18] are expanded. The 

algorithm for the gradient-based concentration measure 

minimization applied in automatic scaling factor 

optimization [12] is revisited. In this paper, the 

comprehensive description of the algorithm is presented, 

with substantial details regarding the implementation and 

parameter initialization. A particular attention is given to 

the interpretation of the scaling factor influence on the 

non-uniform time-axis, indicating that the presented 
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approach automatically places the non-uniform sampling 

points in the vicinity of corresponding points of the 

uniform grid obtained in accordance with the sampling 

theorem. This indicates that signal resampling from the 

uniform to the non-uniform grid required by the HT retains 

the original signal waveform in the best possible way. 

The paper is organized as follows: Section II is the 

theoretical background on the HT. The procedure for the 

HT optimization is described in Section III, while the 

experimental results are given in the Section IV. The paper 

ends with concluding remarks.  

II. THEORETICAL BACKGROUND 

The M-th order Hermite polynomials are defined as 
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  They are closely related with the Hermite functions. 

Discrete Hermite function of order p is defined as [9], 

[13]-[20], [22]: 
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and also with following recursion [5]: 
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Scaling factor σ is used to match functions to the signal, 

by stretching or compressing them. In terms of continuous-

time Hermite expansion, a continuous-time signal f(t) can 

be represented as [5], [13], [18]: 
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where ψp(t) is used to denote Hermite functions, whereas 

cp denotes the Hermite expansion coefficients. The discrete 

Hermite transform requires sampling of basis functions and 

the signal at points proportional to the roots of the M-th 

order Hermite polynomial (1). In that case,  expansion (4) 

becomes finite, with exactly M-terms. For signals already 

sampled uniformly according to the sampling theorem, a 

finite sinc interpolation can be done in order to obtain 

signal values at the points of interest. The interpolation 

error for signals with a finite time-support is negligible in 

that case [12]. 

Hermite coefficients are calculated using the Gauss-

Hermite quadrature [5], [12]: 
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where the sampling at points tm proportional to the roots of 

the M-th order Hermite polynomial is assumed. In matrix 

form, the discrete HT is defined as follows: 

 

   

   

   

0 1 0
2 2

1 1 1

0 1
1 1 1

2 21 2
1 1 1

1

1 1 1
2 2

1 1 1

,

( ) ( )
...

( ) ( )
( )( ) ( )

... ( )1
( ) ( )

... ...
... ... ... ( )

( ) ( )
...

( ) ( )

M

M M M

M

M M M

P M

M M M

M M M

t t

t t
c f tt t
c f t

t t
M

c f t
t t

t t

c = Ηf

 

 



 

 

 
 
 

    
    
     
    
       

 
 
  

 

 

 

 

 

 

, (6) 

where c and f are Hermite coefficients and signal vectors, 

H is the transform matrix. The inverse transform reads: 
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with 1
H  being the inverse HT matrix. Note that the 

columns of this matrix are consisted of corresponding 

discrete Hermite basis functions. In order to emphasize the 

visual similarity with considered signals, first four Hermite 

basis functions are shown in Fig. 1, with σ = 1. 

III. HERMITE TRANSFORM IN FHSS SIGNAL ANALYSIS 

A. Spread Spectrum in wireless communications 

Commonly applied modulation techniques in 

communications are the spread spectrum (SS) modulations. 

Those techniques rely on spreading the frequency spectrum 

of a data-signal by using a unique code. As a result, the 

signal with much higher bandwidth is obtained. This is 

done to ensure secure data transmission, and to provide 

robustness to noise, jamming, different types of 

interferences, etc.  

 

Fig. 1. First four Hermite basis functions 



 

The SS technique has been used by the German military 

during the World War II [22], to provide secure 

information exchange.  

Two types of SS modulations are commonly used in 

communications [8], [10], [11], [21]: 

- direct sequence spread spectrum (DSSS), where fast 

pseudorandom sequence causes phase transitions in the 

carrier data. This modulation type is used in IEEE 

802.11b standard for wireless LAN; 

- frequency hopping spread spectrum (FHSS), where 

carrier is caused to shift the frequency in a 

pseudorandom way [21]. This modulation type is used in 

Bluetooth standard. 

FHSS modulation technique uses pseudorandom 

sequence to determine frequencies on which parts of the 

signal appear. Unless the pseudorandom sequence is 

known, it is hard to assume the frequency at which a 

carrier wave will appear next.  

Since the FHSS modulated signals cannot be 

represented with a small number of DFT/DCT coefficients, 

an alternative sparsity domain should be considered. The 

similarity in the shapes of the FHSS signal components 

and Hermite basis function has been exploited. Therefore, 

the Hermite functions are chosen as a starting basis. The 

adaptation of Hermite functions to the shapes of the signal 

components is performed, with a goal of achieving a better 

sparsity. The adaptation is done in two major steps: Firstly, 

the widths of Hermite functions are changed in order to fit 

the widths of signal components. Secondly, signal 

components are shifted in time to better match the 

positions of basis functions with the respect to the time 

axis origin. By choosing the suitable fitting parameters, the 

HT of analysed signals can be optimally sparsified, even in 

the cases when the non-parameterized transform is not 

inherently sparse.  

 

B. Optimal signal representation in the HT domain 

The discrete signals of length M, being represented by 

the HT, should be sampled at non-uniform points 

proportional to the roots of the M-th order Hermite 

polynomial, according to (5). Signal samples are usually 

available on a uniform grid, defined by the sampling 

theorem. Therefore, signal samples at the points required 

by the HT should be obtained using an interpolation. It has 

been shown that a finite sinc interpolation is suitable for 

this purpose [12]: 
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where m = 1,…, M, n = -K,…, K and t  is the sampling 

period. Instead of stretching and compressing the basis 

functions, alternatively, we fixed 1   in (2) and 

introduce the signal time-axis scaling factor .  As the aim 

is to find the value of the parameter producing the best 

possible concentration (i.e. sparsity), concentration 

measure, namely the ℓ1-norm, is used as the optimization 

criterion: 
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where the operator  HT   is used to denote the Hermite 

transform of the signal rescaled calculated according to (6) 

where 1   is assumed in the definition of basis functions 

(2). Note also that 
1

c  is used to denote the ℓ1 –norm of 

the Hermite coefficients c  of the rescaled signal, 

calculated as: 
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used as a measure of the HT sparsity. 

 The optimization problem (9) is a 1-D search over the 

possible values of the scaling factor  . It was shown that 

the considered ℓ1-norm exhibits convexity under conditions 

considered in detail in [12], where an adaptive iterative 

algorithm is also proposed to solve (9) without a direct 

search approach. The adaptive algorithm for finding the 

parameter 
opt  follows. 

Step 0. The initialization of the parameters is 

performed. The scaling factor is initialized at: 
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This starting point ensures that the possible divergence of 

the algorithm for a too small scaling factor is avoided. This 

lower bound is introduced in [24] and [25]. A step 

parameter   is also introduced and initialized as follows: 

 2 / ,Mt   (12) 

as well as the predefined precision acting as a stopping 

criterion in the adaptation process: 
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 Then, until   is satisfied, the following steps are 

repeated: 
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with , {1, 2, ... , }i j M . 

Step 2. Calculate the measures of sparsity for signal 

resampled with     and     employing the matrices 




Λ  and 




Λ  from step 1: 
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Fig. 2. Hermite transform optimization for a windowed sinusoid: first 

row - original signal in time domain, second row - DFT of the considered 

signal, third row - HT of the considered signal, fourth row - HT with 

optimized scaling factor, last row – signal reconstructed using the 

optimized HT. 
 

Step 3. Approximate the scaling factor gradient using 

the difference of the measures from step 2: 

 ( ) .k

M
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Step 4. Update the scaling factor in a steepest descent 

manner: 

 ( 1) ( ) ( ) .k k k       (17) 

 Here k is the iteration index, and μ = 0.05 is used for 

FHSS signals. When the stopping criterion is met, the 

optimal scaling factor β is returned. A high precision of the 

gradient approximation in (16) is assured by an iterative 

reduction of the step  . It occurs when further updates 

using scaling factors     and     do not reduce the 

concentration measures (15).  

Namely, in that case, the gradient (16) leads to the 

oscillations around the optimal point, which cannot be 

reached as the step   is too large. In this case, during the 

two consecutive iterations ( 1)k   and (k) the gradient 

changes its sign (16). This can be detected using the sign 

of the gradients product from two consecutive iterations: 

 
Fig. 3. The considered three-component FHSS signal: first row - time 

domain, second row – DFT, third row – HT domain.  

 

 
Fig. 4. The first component in the FHSS signal shown in Fig.1: 

original (first row, full line) and optimally shifted component (first row, 

solid red line), DFT, HT and optimized HT (second – fourth rows), 

component reconstructed from the optimized HT domain (fifth row). 
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 When the gradient sign changes during the two 

consecutive iterations, then 0  . When this condition is 

satisfied, the step should be reduced:  

 / 2.   (19) 

The gradient signcheck and step reduction when 0   

should be done in each iteration k. 

In similar way, after the extraction of FHSS localized 



 

components ( )if n t , instead of ( )if n t  shifted signals 

(( ) )if n t   can be used in (8), with  max max
,    . 

This is a small integer shift left or right from the origin. 

For every possible   optimization (9) is done, and a 

measure vector Μ  is formed. After that, the shift 

producing the minimal concentration measure is selected, 

according to: 

 arg min


  M .  (20) 

IV. NUMERICAL RESULTS 

A. Illustration of the scaling factor optimization 

 In this example, we illustrate the influence of the 

scaling factor on the HT coefficients concentration, for the 

case of a uniformly sampled signal. In the optimization, the 

signal is resampled at points proportional to the roots of 

the Hermite polynomial.  

Consider the windowed form of the sinusoidal signals 

(Gaussian window is applied): 
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with 0 3.5, / 2 / 2 1M n M      . The signal sparsity 

in the HT domain is significantly improved when 

compared with the non-optimized HT (Fig. 2, third and 

fourth rows). The considered optimized Hermite transform 

(Fig. 2, fourth row) is the most optimal transform for 

windowed sinusoids, unlike the Fourier transform which is 

spread over half of the frequency band Fig. 2, second row. 
 

B. FHSS signal sparsification 

Multi-component (hops) FHSS is considered as the 

signal model. This synthetic model can be described by: 
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with K = 3, {1.4 / 4,0.91 / 4,1.25 / 4}i    , 10i  , 

1iA    and { /16, /15, /16}i M M M     for i = 1, 2, 3, 

respectively. The signal length is M = 100 samples. The 

hops have the same duration, and they differ in frequency. 

The component shift from the origin is denoted by i .  

The time domain as well as the DFT and the HT of the 

signal are shown in Fig. 3. It can be noticed that the 

number of nonzero HT coefficients (or coefficients with 

significant values) is smaller than in the DFT case.  

However, individual components are better 

concentrated, and therefore, the signal can be firstly 

decomposed [10], and then the separated components are 

further considered.  

The shape resemblance of the separated components 

with the Hermite basis functions is an indication of a 

potential sparsity representation and possible application 

of the approach [12]. This is confirmed by the results 

shown in Figs 4 and 5, illustrating the fact that the HT 

exhibits a better concentration when compared to DFT. It 

is further improved incorporating the presented 

optimizations of the scaling factor and time shift.  

 

 
Fig. 5. The second and the third component of the FHSS signal 

defined in (22): original (1st and 6th rows, full line) and optimally shifted 

components (1st and 6th rows, solid red line), DFT (2nd and 7th row), HT 

(3rd and 8th row) and optimized HT (4th and 9th row), component 

reconstructed from the optimized HT domain (5th and 10th  rows). 



 

 
Fig. 6. Uniform discrete time grid and the time grid formed based on 

zeros of 100-th order Hermite polynomial for a signal with length M = 

100. Two scaling factors are used: unity and the optimal one. 

The influence of the scaling factor choice on the 

positioning of Hermite polynomial roots and the non-

uniform time grid formation is illustrated in Fig. 6, for 

signal (22) shown in Fig. 5. Red dots represent non-

uniform sampling grids obtained based on roots of the M-

th order Hermite polynomial (M = 100), whereas black 

dots represent uniform sampling grids obtained based on 

the sampling theorem. In Fig. 6, first subplot, the grids are 

compared when β = 1. Non-uniform (red) and uniform 

(black) grids significantly differ, consequently leading to a 

non-optimal signal representation. In Fig. 6, second 

subplot, scaling factor β = 4.34, being the output of the 

presented algorithm, is used to form the non-uniform grid 

(red), whose points now highly match the uniform grid 

(black). We can conclude that the improvement of the 

sparsity is related to the placement of the non-uniform grid 

points in the vicinity of uniform sampling grid points. 

V. CONCLUSION 

Hermite transform domain is considered as a domain of 

sparsity for FHSS communication signals. Optimization of 

scaling factor and time shift are incorporated for the FHSS 

sparsification in this particular domain. Multi-component 

signals are decomposed into single components, and each 

component separately is further processed. The 

optimization of the transform domain is done by 

minimizing the ℓ1 –norm based concentration measure. The 

results indicate further applicability in compressed sensing 

scenarios and sparse signal reconstruction algorithms. 
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