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Abstract—An analysis of errors in the reconstruction of
approximately sparse and nonsparse noisy signals in the discrete
Fourier transform domain is considered in this paper. Signal
reconstruction is performed from a reduced set of data, using
compressive sensing methods and the sparsity assumption. Ran-
dom sampling positions in time are considered. Reconstruction
results are compared with those obtained with a subset of uni-
formly sampled signals. A random subset of uniformly sampled
data produces better reconstruction results. Theoretical results
are statistically confirmed.

Index Terms—Sparse signals, DFT, Compressive sensing, Ran-
dom sampling

I. INTRODUCTION

COMPRESSIVE sensing (CS) methods are used to recon-
struct sparse signals from reduced sets of measurements

[1]–[6]. In general, measurements are linear combinations of
the signal coefficients in the sparsity domain. A common
transformation and sparsity domain in signal processing is
the Discrete Fourier Transform (DFT) domain. Since the
signal samples are linear combinations of the DFT coefficients
they can be considered as CS measurements. In many real
applications, signals that are processed as sparse are only
approximately sparse. Even the simplest form of a sinusoidal
signal, whose frequency is not on the grid, in theory, is not
a sparse signal in the DFT domain. Presence of additive
noise is also unavoidable in all practical applications. In order
to increase randomness in the measurements and to reduce
coherence in the CS approach, random DFT measurement
matrices, resulting from random signal sampling, are often
preferred and used.

The main result of this paper is a formula relating the
expected error energy in the reconstructed coefficients with
the energy of the remaining coefficients in a nonsparse signal
and the measurement noise. This result is presented in the
form of a theorem. Proof of the theorem is composed of
three parts. First, the reconstruction of sparse signals is con-
sidered. Secondly, the analysis of reconstruction using noisy
measurements is added. Finally, the signal sparsity is relaxed
to approximately sparse and nonsparse signals.
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II. RANDOMLY SAMPLED NONSPARSE SIGNAL WITH
ADDITIVE NOISE

Consider a signal x(t) of a duration T and its samples
x(n∆t) satisfying the sampling theorem. The periodic exten-
sion of this signal can be written in a Fourier series (FS) form

x(t) =
1

N

N−1∑
k=0

X(k)ej2πk
t
T , (1)

where the FS coefficients X(k) are equal to the DFT coeffi-
cients if we use the notation x(n) for x(n∆t), and ∆t = T/N
as the sampling interval. When the sampling theorem is
satisfied then

X(k) =
N

T

∫ T

0

x(t)e−j2πk
t
T dt =

N−1∑
n=0

x(n)e−j2πk
n
N . (2)

A signal is sparse with sparsity K (K-sparse signal) in the
DFT domain if the number of nonzero coefficients X(k), at
k ∈ K = {k1, k2, . . . , kK}, is much smaller than the total
number of coefficients, that is, K � N . In general, signals
of interest are more likely to be only approximately sparse, or
even nonsparse in the transformation domain, than exactly K-
sparse [2], [7]. A signal will be referred to as approximately
K-sparse in the DFT domain if the amplitudes of X(k) for
k /∈ K are much smaller than the amplitudes of X(k) for
k ∈ K. If the most significant amplitudes of X(k) for k ∈ K
are of the same order as some of the amplitudes of X(k) for
k /∈ K, the signal is not sparse with sparsity K.

The error in approximately sparse and nonsparse signals,
reconstructed from noisy measurements using CS methods
with a K-sparsity assumption, will be discussed next.

Consider a signal and its DFT X(k) of length N, in vector
notation X = [X(0), X(1), . . . , X(N − 1)]T . Assume that
the signal samples x(tn) are sensed at random positions,
0 ≤ tn < T . The special case of uniform sampling, when
sampling instants tn are integer multiples of ∆t, is considered
in [9]. Assume that an input additive white noise ε(tn), with
variance σ2

ε , exists in samples x(tn). Assume that the number
of available signal samples is NA. The signal samples are
at the positions defined by tn ∈ TA = {t1, t2, . . . , tNA

}. The
DFT coefficients X(k) are reconstructed from the available set
of samples under the assumption that the signal is K-sparse,
i.e., that the vector X has only K nonzero elements.

General bounds for the reconstruction error for nonsparse
signals, reconstructed with the sparsity assumption, are given
in [2]. An analysis of the FFT algorithms with sparse signals
and a reduced number of samples, along with the error bounds
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in the reconstruction of sparse signals, has been done in [7],
[8]. The exact relation for the expected squared error in the
reconstruction of approximately sparse or nonsparse signals
from a reduced set of samples, reconstructed under the K-
sparsity assumption, is given by the theorem. It will be defined
after the notation is introduced next.
Notation:
• X = [X(0), X(1), . . . , X(N − 1)]T is the signal trans-

form vector (in the DFT domain of sparsity);
• TA = {t1, t2, . . . , tNA

} is a set of measurement instants;
• A is a measurement matrix with elements

ank =
1

N
exp(j2πktn/T ), (3)

for k = 0, 1, . . . , N − 1, and n = 1, 2, . . . , NA;
• y = [x(t1), x(t2), . . . , x(tNA

)]T = AX is the measure-
ment vector;

• K = {k1, k2, . . . , kK} is the set of estimated positions of
nonzero coefficients in a K-sparse X;

• XK = [X(k1), X(k2), . . . , X(kK)]T are the original
signal coefficients at the positions k ∈ K;

• XK0 is equal to XK at the positions used for recon-
struction, XK0(kp) = XK(p) = X(kp) for kp ∈ K and
XK0(k) = 0 for k /∈ K;

• AK is obtained from matrix A keeping the columns for
k ∈ K, corresponding to the estimated nonzero coefficient
positions; and

• XR is the vector of K reconstructed nonzero coefficients
XR(k) at k ∈ K.

Theorem: The mean squared error energy in the recon-
structed coefficients, with respect to K corresponding coeffi-
cients in the original signal, is

‖XK −XR‖22 =
K

NA
‖X−XK0‖22 +K

N2

NA
σ2
ε , (4)

where ||X||22 denotes the expected value of squared norm-two,
||X||22 = E{

∑
k |X(k)|2}.

Proof: The proof will be performed in three steps. First we
will consider the case when the signal is exactly K-sparse in
the DFT domain, without input noise (noise-free signal). Next,
the measurement noise will be added into consideration. In the
final step we will relax the sparsity assumption for the original
signal.

1) Based on (1) we can write the measurement relation as

y = AX,

where the elements ank of an NA × N measurement matrix
A are defined as in (3).

The initial estimate of coefficients X(k) is calculated using
the available samples only,

X̂ = NAHy. (5)

Using (5) and (1) we get:

X̂(k) =

NA∑
n=1

x(tn)e−j2πk
tn
T =

N−1∑
i=0

X(i)µik, (6)

where

µik =
1

N

NA∑
n=1

ej2π(i−k)
tn
T = N

NA∑
n=1

ania
∗
nk.

For i = k we have µkk = NA/N . For i 6= k the coefficient
µik behaves as a random variable with zero-mean and variance
var{µik} = NA/N

2.
The mean and variance of X̂(k) for random sampling are:

E{X̂(k)} =
NA
N

X(k), (7)

var{X̂(k)} =
NA
N2

N−1∑
i=0

|X(i)|2 (1− δ(k − i)). (8)

We will assume that the positions k1, k2, . . . , kK of nonzero
values in a K-sparse X are estimated from X̂. This estimation
can be done in various ways, depending on the reconstruction
algorithm, for example in an iterative way using the matching
pursuits (MP) algorithms (as we did in the presented example),
or in one step using an appropriate threshold [10]–[12]. We
also assume that the measurement matrix satisfies the CS
theory conditions for the exact recovery for a given sparsity
K and the available measurements.1

The initial estimate at the detected nonzero positions is

X̂(kp) =
∑
i∈K

X(i)µikp for p = 1, 2, . . . ,K. (9)

This system of linear equations can be written in matrix form:

X̂K = BXK =
NA
N

XK + CK ,

where B is a K × K matrix with elements bij = µkikj ,
X̂K is the vector with K elements obtained from the initial
estimate as X̂K(i) = X̂(ki), and XK is the vector with
K corresponding coefficients from the original signal. The
influence of other K − 1 components to the considered
component is denoted by CK .

1The exact reconstruction conditions are commonly defined by the restricted
isometry property (RIP), using the spark, or the coherence of the measurement
matrix [15]–[17]. Since the presented theory holds when the exact recovery
conditions are met for the assumed sparsity K, in numerical tests we followed
[17] (Sec. 5) where “as a set of practical guidelines for situations where one
can expect perfect recovery from partial Fourier information using convex
optimization” the authors suggested, “For K ≤ NA/8, the recovery rate is
practically 100%.”

Consider a K-sparse signal. If we want to estimate the position of the
strongest DFT component, then the worst case (the highest influence of other
components) occurs when the remaining K−1 components are equally strong
(assume unity amplitudes). The worst case for the detection of this component
is when all other components maximally reduce the value of the considered
component in the initial estimate. The influence of the kth component on
the ith position is equal to µik . Its maximal possible normalized value is
the coherence index µ. In the worst case the amplitude of the considered
normalized component in the initial estimate is 1 − (K − 1)µ. At the
position where there is no component, in the worst case, the maximal possible
contributions µ of all K components sum up in phase to produce the maximal
possible disturbance Kµ. The detection of the strongest component is always
successful if 1 − (K − 1)µ > Kµ, producing the well known coherence
condition for reconstruction K < 0.5 (1 + 1/µ) . If the strongest component
is reconstructed and removed then this relation will guarantee that remaining
K − 1 components will be reconstructed, since the sparsity is reduced.
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The reconstructed DFT coefficients XR, at the
nonzero coefficient positions, are obtained by minimizing
‖y −AKXR‖22. They are

XR = (AH
KAK)−1AH

Ky, (10)

where AK is a matrix obtained from measurement matrix A
by keeping the columns for k ∈ K. Since AH

Ky = 1
N X̂K ,

according to (5), we can rewrite (10) as

XR =
1

N
(AH

KAK)−1X̂K . (11)

Since X̂K = BXK the reconstruction is exact if
1

N
(AH

KAK)−1 = B−1.

Indeed, the elements of matrix AH
KAK are equal to βkikj =∑NA

n=1 a
∗
kin
ankj = µkikj/N meaning that AH

KAK = B/N .
Therefore, XR = XK holds.

The reconstruction algorithm produces correct coefficient
values X(k) at the selected positions k ∈ K. It means that
the influence of other K − 1 components to each component
in the initial coefficient estimate X̂(k), denoted by C(k), is
cancelled out, resulting in XR(k) = N

NA
(X̂(k) − C(k)) =

N
NA

(NA

N X(k)).
In summary, the reconstruction algorithm for a coefficient

at a position k ∈ K, works as an amplifier for N/NA to the
original signal component in X̂(k), eliminating the influence
of other components at the same time.

2) Assume next that the observations are noisy

y + ε = AX.

Variance of the assumed additive input noise ε is σ2
ε . Noisy

measurements will result in a noisy estimate X̂(k). Variance
in X̂(k), caused by the measurements input noise, is σ2

X̂(k)
=

NAσ
2
ε . Since the initial estimate is multiplied by N/NA in

the reconstruction, the noise variance in the reconstructed
component is

var{XR(k)} = NAσ
2
ε

( N
NA

)2
=
N2

NA
σ2
ε .

This simple result can easily be checked either statistically [10]
or by comparing it with the final covariance in the Bayesian
based approach [13].

Since the noise is the same in each reconstructed coeffi-
cient, the total mean squared error (MSE) in K reconstructed
coefficients is

‖XR −XK‖22 = K
N2

NA
σε

2. (12)

3) Next, we will use the assumption that the signal is
approximately sparse or nonsparse and that it is reconstructed
with the K-sparsity assumption. Then the remaining N −K
components will not be reconstructed. They will behave as
additional noise in the initial estimate and in the reconstructed
components. Properties of this noise are defined by (7) and (8).
Each nonreconstructed component X(ki), ki /∈ K, contributes
to the noise in the initial estimate with variance NA

N2 |X(ki)|2.
In the reconstruction process, this variance is scaled by a factor
of (N/NA)2. The final variance value is 1

NA
|X(ki)|2.

The total energy of noise in all reconstructed components
of XR is K times greater than the variance in one recon-
structed component. Since there are N −K nonreconstructed
components, the total error energy is

‖XK −XR‖22 = K
1

NA

N∑
i=K+1

|X(ki)|2. (13)

The energy of nonreconstructed coefficients is:

‖X−XK0‖22 =

N∑
i=K+1

|X(ki)|2. (14)

From (13) and (14) the total error energy follows:

‖XK −XR‖22 =
K

NA
‖X−XK0‖22 . (15)

The error caused by a sparse approximation of an approx-
imately sparse or nonsparse signal and the error caused by
additive noise in the measurements are independent. It means
that the total expected error energy in the reconstructed signal
coefficients is the sum of these two error energies:

‖XK −XR‖22 =
K

NA
‖X−XK0‖22 +K

N2

NA
σ2
ε . (16)

This concludes the theorem proof.

For the special case of uniformly sampled signal the formula
for the error can easily be derived from the two-dimensional
case presented in [14]:

‖XK −XR‖22 = K
N −NA
NNA

‖X−XK0‖22 +K
N2

NA
σ2
ε .

(17)

This result can be also derived following the steps in the
previous proof, with the fact that the expression for variance
(8) in the case of uniformly sampled signals has the terms of
form |X(i)|2NA(N −NA)/N .

III. EXAMPLE

Consider a nonsparse signal

x(tn) =
1

N

N∑
i=1

X(ki)e
j2πkitn/T + ε(tn),

with N = 256 and NA = 192 available randomly positioned
samples. Frequency values ki are random 0 ≤ ki < N .
Noise ε(tn) is Gaussian additive zero-mean white noise with
a standard deviation of σε = 0.1/N . Amplitudes of the signal
are defined in the DFT domain as X(ki) = 1 + ν(i), for i =
1, 2, . . . , S (where ν(i) is a uniform random variable from 0 to
0.2) and X(ki) = exp(−3i/(2S)) for i = S+1, S+2, . . . , N .
The signal is reconstructed using a matching pursuit (MP)
algorithm, assuming various sparsity levels denoted by K.
Depending on the assumed sparsity K in the reconstruction
we can consider this signal as:

– an approximately K-sparse signal for K ≥ S = 10, or
– a non K-sparse signal for K < 10.
Assumed sparsity values K above and bellow the ap-

proximate sparsity threshold K = S are considered in the
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Fig. 1. Total error energy in the reconstructed coefficients of a nonsparse
signal with N = 256, obtained statistically (100 realizations) and theoreti-
cally, with various assumed sparsities K (upper subplot) and various numbers
of available samples (lower subplot) when: the signal is randomly sampled
(marks ’*’); the signal is uniformly sampled (marks “o”). Lines represent
theoretical values, marks represent statistical ones.

numerical implementations. The assumed sparsity K in the
reconstruction was varied from 1 to 20. The average error
energies in 100 realizations, with random frequency values and
random available samples positions, are calculated according
to (4) as

Estatistics = 10 log
(
‖XK−XR‖22)

)
Etheory = 10 log

(
K

NA
‖X−XK0‖22 +K

N2

NA
σ2
ε

)
.

In the case of uniform sampling the factor K/NA in the first
term in Etheory is replaced by K(N−NA)/(NNA) as in (17).
The results are given in Fig. 1. Data for random sampling are
denoted by “*”, while the results with a subset of uniformly
sampled data are denoted by a dots. The marks represent
the averaged statistical values, while the lines represent the
theoretical values.

Results for both cases with assumed sparsity at the ap-
proximate sparsity threshold K = 10 and varying number of
available samples NA are presented in Fig.1 (lower subplot).

IV. CONCLUSION

Reconstruction of randomly sampled approximately sparse
and nonsparse signals is considered. Sparsity constraint is used
in the reconstruction. A formula for the expected error energy
in the reconstructed coefficients is derived. From the presented
results we may conclude that a random subset of uniformly

sampled data produces better results, although the CS theory
favors random sampling and random partial DFT matrices.
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