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Abstract — The paper introduces a novel the second order 

band-pass and notch filter with dynamic damping factor βd 

of fractional order. Indeed, the factor βd has a form of 

fractional differentiator of order α, i.e. βd=β/s
α
, where β and 

α are adjustable parameters. Shaping of the frequency 

response enables achieving better phase response compared 

to the integer-order counterparts which is of great concern in 

many applications. The aim of the paper is to exploit an extra 

degree of freedoms of presented filters to achieve the desired 

filter specifications and obtain desired response in the 

frequency and the time domain. 

Keywords — Butterworth filter, Fractional-order filter, 

Fractional calculus, Frequency response 

I. INTRODUCTION 

big number of technical and natural phenomena 

exhibit a fractional-order (FO) dynamics which by 

itself lead to a widespread application of fractional 

calculus (FC) in numerous interdisciplinary fields of 

science and engineering. FC offers a large exploiting 

potential since it provides a more accurate models than 

classical integer-order ones [1-2]. Moreover, the use of 

fractional differ-integrators (derivatives and integrators) 

enables characterization of the fractional-order systems 

with its entire history and modeling non-local and 

distributed effects. History and fundamental theoretical 

aspects of FC may be found in [1-5]. 

The area of application of FC is increasing greatly and 

rapidly. FC is extensively used in: bioengineering and 

biomedical applications [6,7], analysis and synthesis of 

FO electrical elements [8-11], memristive FO systems 

[12,13], power electronics for FO modeling power 

converters [14-16], digital image and signal processing 

[17,18], electromagnetic theory [19,20], time-fractional 

telegrapher equations for modeling transmission lines 

[21,22], control systems for designing FO controllers [23-

27], mechanics [28,29], diffusion and wave propagation 

[30-33], nanotechnology, agriculture, economy, etc.  

There is a permanent progress in application of 
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fractional calculus in signal (filter) analysis and processing 

last twenty years. Main application advantage of FO filter 

is an extra degrees of freedom allowing more precise 

control of the attenuation slope, which is an efficient 

feature in biomedical engineering [34,35]. Band and pass-

reject (notch) filters have special importance in various 

engineering applications. Band-pass filters are widely used 

in wireless transceivers, optical microscopy, seismology 

etc., while band-stop filters are extensively used in 

Riemann laser spectroscopy, RF applications etc.  

This paper presents a novel the second order band-pass 

and corresponding notch filter with fractional order 

dynamic damping factor βd. It has a form of fractional 

differentiator of order α, i.e. βd=β/sα, where fractional 

order α  and adjustable real parameter β are determined to 

meet specified requirements. For α=0 and 2β =  filter is 

reduced to a classical the second order filter of 

Butterworth type. Actually, these parameters are adjusted 

to obtain desired frequency and time domain response. 

Shaping the exact frequency response including specified 

bandwidth is of great concern for many filter applications 

such as: PLLs (Phase Locked Loops), e.g. in [36] it is of 

great importance to remove negative phase angle in 

feedback loop in relay-based critical point estimation, as 

well as in processing of biomedical signals (ECG, EEG 

etc.) [37]. 

This paper is organized as follows. First, a short 

introduction to the fractional calculus is given in Section 

2. Section 3 is briefly on classical filter analysis. In this 

section novel the second order band-pass and notch filter 

with fractional damping factor are elaborated. Section 4 

gives concluding remarks of the paper. 

II. FUNDAMENTALS OF FRACTIONAL CALCULUS 

Fractional order differ-integrator is an operator of 
fractional calculus which arises from generalization of 
classical differentiation and integration operators. The 

transfer function of FO differ-integrator is sα where s is 

Laplace variable and α is arbitrary real number. For 

positive α, differ-integrator is a generalization of classical 
integer order derivative, while for negative α is a 
generalization of repeated, or n-fold, integral.  

Among many others, three most used definitions for the 
FO derivative and integral operators are Riemann-
Liouville, Caputo and Grunwald-Letnikov definitions [3-
5]. The left Riemann-Liouville (RL) fractional integral 

operator of order α is defined as 
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where 1 .n nα− < < In applications the case (0,1)α ∈  is 

of the most importance when equation (2) is reduced to 

0
( )

t
D f tα  for a=0.  

After adopted definition, as an intermediate step for 

frequency domain signal analysis is calculation of Laplace 

transform of RL derivative 
0

( ).
t

D f tα  Assuming zero 

initial conditions Laplace transform of (2) is reduced to  

 { }0
( ) ( ).
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III. ANALYSIS OF NOVEL  BAND-PASS AND NOTCH FILTER 

WITH FRACTIONAL ORDER DAMPING FACOR 

Nowadays, FO filters are growing area of scientific 
research, so recently different studies of FO filters are 
conducted. Papers [38,39] introduce FO Butterworth filter 
dealing with its analysis, active and passive synthesis 
while design and implementation of FO Butterworth filter 
for processing  biomedical EEG signals is considered in 
[37]. FO Butterworth low-pass digital filter is designed in 
[40] for sharpening a digital image which quality is 
adjusted through changing the FO of the filter. However, 
faster roll-off may be achieved, e.g. with Chebyshev filter 
at the expense of ripples in pass and stop bands [41], so in 
[42] is developed a complex FO low-pass filter. 

The most common types of analog filter types are the 
Butterworth, Chebyshev (I and II), Bessel and Elliptic. Let 
set aside a Butterworth filter which characterizes with a 
maximally flat response with no ripple compared to the 
others. Magnitude frequency response rolls-off smoothly 
and monotonic, with a low-pass or highpass roll off 
20dB/dec for every pole. Thus, a third order Butterworth 
band-pass filter would have an attenuation rate of -
60dB/dec and 60 dB/dec. Classical integer-order analog 
Butterworth filter of order n has frequency magnitude 
response [43] 
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where ωc is the 3 dB cut-off frequency. For example, if we 

select n=2 and n=3, corresponding transfer function of 

such filter with response (4) are, respectively  
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The most common filter structures are those based on 

the analog second-order filter. Hence, in this paper the 

second order band-pass filter is defined with normalized 

transfer function 
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where βd=β/sα is dynamic damping parameter of fractional 

order, α is a fractional-order parameter, and β is real 

adjustable parameter, in general case independent of α, 

used to meet specified requirements and ωc=1 s-1 is a 

normalized cut-off frequency. By substituting s with s/ωc 
in (8), filter can be designed for any other cut-off 

frequency ωc. On the basis of (8), the corresponding notch 
filter transfer function is defined as Fn(s)=1-Fbp(s), i.e. 
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It is obvious that for 0α = and 2β =  Eq. (7) and (8) 

are reduced to classical integer-order band-pass and notch 
filter of Butterworth type, respectively, with the same 
characteristic equation of low-pass Butterworth filter in 
Eq. (5). 

In order to improve phase response and not deteriorate a 
magnitude response, parameter β is determined following 
the idea in [44] to keep the same dominant dynamics 
which is determined with characteristic equation in Eq. (7) 
and (8). First, the overshoot Ap=4.32% in the unit-step 
response of classical the second-order low-pass 

Butterworth filter 2

lp ( ) 1/ ( 2 1)F s s s= + +  is calculated. 

Then, the unit-step response of FO low-pass counterpart 
of filters (7) and (8) 
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is determined via numerical inversion of Laplace 
transform which enables to calculate β to keep the same Ap 

for different values of fractional order α.  

 
Fig. 1. Unit-step response of low-pass filter defined in 

Eq. (10) for {0; 0.1; 0.2; 0.3; 0.4; 0.5}.α ∈  and specific β  

to obtain the same overshoot Ap=4.32% 

Obtained unit-step response of filter (9) for 

{0; 0.1; 0.2; 0.3; 0.4; 0.5}.α ∈  are shown in Fig. 1, and 



 

calculated values of β are given in Table I. 

 

TABLE 1:  VALUES OF ADJUSTABLE PARAMETER β TO MEET 

SPECIFIED REQUIREMENTS IN OVESRHOOT 

α β 

0 2 1.4142≈  

0.1 0.8015 2 1.1335≈  

0.2 0.7058 2 0.9982≈  

0.3 0.6519 2 0.9219≈  

0.4 0.6208 2 0.8779≈  

0.5 0.6044 2 0.8547≈  

 
The applied idea actually leads to saving the same 

bandwidth of the systems since dynamics of low-pass, 
band-pass and notch filters in Eq. (7)-(9) is determined by 

roots of the same characteristic equation 2
1s s

α+ β + , 

which are shown in complex s-plane in Fig. 2 for 

{0; 0.1; 0.2; 0.3; 0.4; 0.5}.α ∈  

 
Fig. 2. Roots in s-plane of characteristic equation of 

Fbp(s) and Fn(s)for {0; 0.1; 0.2; 0.3; 0.4; 0.5}.α ∈  to obtain 

the same overshoot Ap=4.32% of Flp(s) in Fig. 1 

Values of magnitude and phase for both introduced 

filters, band-pass and notch, at important frequencies are 

given in Table II. 

TABLE II: MAGNITUDE AND PHASE VALUES AT IMPORTANT 

FREQUENCIES OF THE PROPOSED FO BAND-PASS AND NOTCH FILTER  
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Magnitude and phase frequency responses of FO band-

pass filter in Eq. (7) with damping factor 
d
= / s

αβ β  in 

Table I are shown in Fig. 3. 

 
Fig. 3. Magnitude and phase frequency characteristics 

of fractional-band pass filter Fbp(s) for 

{0; 0.1; 0.2; 0.3; 0.4}.α ∈  and specific β  to obtain the 

same overshoot Ap=4.32% of Flp(s) in Fig. 1. 

Bandwidth of band-pass filter in Eq. (9) shown in Fig. 3 
for 0α =  is defined with lower cut-off frequency 

cl

1
0.52 sω −≈  and upper frequency 

c2

1
1.93 .sω −≈  

Magnitude and phase frequency responses of FO notch 

filter in Eq. 8) with damping factor 
d
= / s

αβ β  in Table I 

are shown in Fig. 4. 

 
Fig. 4. Magnitude and phase frequency characteristics 

of fractional-band notch filter Fn(s) for 

{0; 0.1; 0.2; 0.3; 0.4}.α ∈  and specific β  to obtain the 

same overshoot Ap=4.32% of Flp(s) in Fig. 1. 

As it can be seen from Figs. 3 and 4, additional 

flexibility is supported with use of presented band-pass 

and notch filter with FO damping factor. By choosing an 

FO parameter it is enabled to adjust band-pass/band-reject 

and to decrease a large negative phase for notch filter 

which is important in some applications as in system 

identification [36]. Indeed, there are increasing number of 

designs of FO filters with possibility to adjust and shape 

desired frequency response, e.g. in [45] is reported an 

electronic way of control of FO order and pole frequency 

of low-pass filter through adjustment of current gain of 

current amplifiers. 
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IV. CONCLUSION 

The second order band-pass and notch filters with 

dynamic damping factor of fractional-order are introduced 

and analyzed in this paper. The existence of fractional-

order parameter enables more precise and flexible shaping 

of the frequency responses of both filters which is of great 

importance in big number of applications. 
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