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Abstract — The micro-Doppler (m-D) effect, commonly
caused by fast moving reflectors, can significantly decrease
the readability of rigid body in ISAR/SAR radar images. We
revisit an L-statistics based micro-Doppler removal approach,
producing excellent results in separation of the stationary
rigid body from the m-D. In the case of non-compensated
target acceleration, rigid body components become non-
stationary, commonly with linear frequency modulation. The
Local Polynomial Fourier Transform (LPFT) can be exploited
for the estimation of the unknown chirp-rate needed for
the acceleration compensation. To this aim, we present a
simple iterative procedure based on the LPFT concentration
measure. It is an alternative to the direct search approach
for the estimation of the LPFT demodulation parameter, im-
proving the estimation accuracy and reducing the numerical
complexity of the approach. Numerical examples verify the
presented theory.

Keywords —L-statistics, Local Polynomial Fourier Trans-
form, L-statistics, ISAR/SAR, micro-Doppler, Short-time
Fourier transform

I. INTRODUCTION

Radar imaging is an important application field of the
time-frequency signal analysis [1]- [11]. Micro-Doppler
(m-D) effect usually appears in radar signals due to the
presence of fast rotating or vibrating parts of the target
[1]- [8]. Significant research efforts have been conducted
towards the separation of the rigid body and m-D com-
ponents in the received radar signals, in order to focus
radar images and improve the readability [1]- [8]. Micro-
Doppler signal parts are highly non-stationary, for rotating
and vibrating targets commonly modeled with sinusoidally
frequency modulated (FM) components, whereas the rigid
body is stationary in the case of compensated target
acceleration. Non-compensated movement of rigid body
reflectors is commonly modeled with linear FM compo-
nents in the received radar signal [1], [2].

Recently, a powerful and yet numerically efficient pro-
cedure for the separation of the rigid body from m-D has
been proposed [1]. In the case of compensated movement
it outperforms other reported techniques. It is based on
the Short-time Fourier transform (STFT) and L-statistics.
Further, it inspired new compressive sensing approaches
for the rigid body reconstruction [11]. Moreover, the
efficiency of the method was also confirmed in the case
of rigid body with uncompensated acceleration, where the
Local Polynomial Fourier Transform (LPFT) is proposed
as the initial TF representation. However, the application
of this representation requires the estimation of the chirp-
rate parameter serving for the movement compensation,
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which is a priori unknown [1], [2]. Therefore, a direct
search approach has been engaged to find the parameter
value producing the optimal concentration measure of the
separated rigid body [1], [12]. This value is impossible to
find based on the original signal, and the L-statistics rigid
body separation must be included in the search procedure.
This process can be numerically demanding, especially for
large search spaces and signals. In this paper we propose
an automated and accurate gradient-based procedure for
finding the optimal value of this parameter. It is also based
on the time-frequency concentration measure.

In Section II, the basic background theory is presented.
The STFT-based rigid body separation algorithm is pre-
sented in Section III. New search procedure for the acceler-
ation compensation parameter is introduced in Section IV,
and the subsequent section contains the numerical results.

II. BACKGROUND THEORY AND THE SIGNAL MODEL

Consider a continuous wave (CW) radar transmitting
signals in form of N coherent chirps. If d(t) denotes
the target distance, and c the speed of light, then the
signal reflected from target is delayed for td = 2d(t)/c
with respect to the transmitted signal. Signal demodula-
tion to the baseband, possible distance compensation and
other standard preprocessing operations are assumed in the
model [1].

The Doppler part of the received signal of a point target
in the continuous dwell time will be considered only,

s(t) = σe
j2d(t)ω0

c , (1)

in order to analyze cross-range non-stationarities in the
radar imaging, as it is commonly done in the radar lit-
erature [1], [2]. In (1), the target reflection coefficient is
denoted by σ, and ω0 is the radar operating frequency.
It is assumed that the pulse repetition time is Tr with
Nc samples within each chirp, and that the coherence
integration time (CIT) is Tc = NTr.

It is assumed that the Doppler part of the received
signal corresponding to the rigid body can be modeled with
complex sinusoids [1], [2]. In case of non-compensated
target acceleration, the rigid body would induce linear FM
components [1], [2]. Targets are usually consisted of fast
moving vibrating and rotating parts, producing additional
non-stationary components in the received signal - the
micro-Doppler. Arbitrary m-D motion is modeled with
an arbitrary FM signal. However, commonly appearing
rotating or vibrating reflector produces the m-D modeled
with sinusoidally FM signal. In the case of system of point
scatterers, the received signal is modeled as a sum of
individual scatterer responses. In the case of rigid body



consisted of K points and D m-D components the radar
signal has the following form [1], [2]

s(n) =

K∑
i=1

σBi
ejyBi

n +

D∑
i=1

σRi
ejARi

sin(ωRi
n+Θi), (2)

where n = 0, ..., N−1, and with σBi
and σRi

being reflec-
tion coefficients of the rigid body and rotating reflectors,
yBi corresponds to the position of the rigid body reflector,
ARi

is proportional to the distance from the rotating
reflector to the center of rotation. Angle frequencies ωRi

are proportional to the rotating rate of the ith m-D reflector.

III. THE RIGID BODY SEPARATION: STATIONARY CASE

The method presented in [1] is independent from the
assumed m-D model, and excellent results are obtained
for arbitrary highly non-linear motion of m-D points. In
further analysis, it is assumed that the received signal
s(t) is sampled according to the sampling theorem, and
the discrete samples s(n) are available for the analysis.
Although the rigid body components are stationary, as m-
D part has highly variable frequency content, the Fourier
transform (FT) is not an adequate tool for the analysis
of these signals, as it will be illustrated in numerical
examples. Therefore, the time-frequency based approaches
are exploited. Localization of the frequency behavior is
achieved in the simplest way applying a window function
to the standard FT. In this way, we obtain one form of the
discrete short-time Fourier transform (STFT):

STFT (n, k) =

N−1∑
m=0

s(m)w(m− n)e−j2πmk/N , (3)

with w(m) being the window function. In this applica-
tion, rectangular, Hamming, Hanning and other standard
window forms satisfying

∑M−1
n=0 w(m − n) = const can

be used. The window width is M , and w(n) 6= 0 for
−M/2 ≤ w(m) ≤ M/2 − 1 and it is zero padded up to
the signal length N . Therefore, original FT concentration
can be obtained from (3) calculating

S(k) ≈
N−M/2∑
n=M/2

STFT (n, k)

=

N−1∑
m=0

s(m)

[N−M/2∑
n=M/2

w(m− n)

]
e−j2πmk/N . (4)

As the resulting window
∑N−M/2
m=M/2 w(n−m) is constant

during the CIT interval, it is very close to a rectangular case
(except for ending M/2 points at both sides). Therefore,
(4) can be considered as the Fourier transform, with
concentration close to the Fourier transform calculated with
a full range rectangular window. The m-D can be removed
from the STFT (n, k) sorting its values over time, and
removing a certain percent of highest values. Summing the
remaining points over the frequency, a FT approximation of
the rigid body is obtained. More precisely, the L-statistics
based m-D removal can be done as follows:

Step 0: Calculate the STFT of the analyzed signal
according to (3).

Step 1: Starting from a given set of STFT points

Sk(n) = {STFT (n, k), n = M/2, ..., N −M/2} (5)

sort the values of this set over the time index n to obtain
a new, ordered set of elements, Λk(ni) ∈ Sk(n), ni ∈
{M/2, . . . , N − M/2} satisfying, for a given frequency
index k:

|Λk(n1)| ≤ |Λk(n2)| ≤ · · · ≤ |Λk(nN−M )|. (6)

It is important to note that holds

Sλ(k) =

N−M/2∑
n=M/2

STFT (n, k) =

N−M∑
i=1

Λk(ni). (7)

Step 2: Omit highest NP values from Λk(ni), with
NP = int[(N −M)(1− P )/100] and P being the percent
of omitted values.

Step 3: Based on the obtained subset Lk of
{n1, n2, . . . , nN−M}, calculate the L-estimate

SL(k) =
∑
n∈Lk

STFT (n, k). (8)

In this result, STFT values belonging to the rigid body
peak will be summed in phase, producing a highly con-
centrated peak in the FT domain. The low concentrated
m-D components remaining after the removal of N −NQ
STFT points for each k will be summed up by different
random phases. A more detailed discussion of this result
is presented in [1] and [2].

IV. NON-COMPENSATED RIGID BODY ACCELERATION

As noted in [1], in both ISAR and SAR received
radar signals, accelerating target motion produces linear
FM signals corresponding to the rigid body reflectors.
Therefore, stationary components in (2) are replaced with
linear FM components, having an unknown chirp-rate a.
In this paper we consider the simplified case of parallel
linear FM components. This means that the resulting rigid
body becomes non-stationary, and the procedure presented
in previous section would eliminate significant parts of the
rigid body. An LPFT based dechirping technique can be
exploited in this case. Namely, the LPFT of the following
form

LPFTα(n, k) =

M/2−1∑
m=−M/2

s(n+m)w(m)e−j2π[ m
M k+α( m

M )2],

can be used to determine the optimal chirp rate αopt = a.
It is impossible to estimate the unknown dechirping pa-
rameter α using the original signal. Therefore, a similar
procedure for separation of rigid body as presented in
Section III is used in the following α estimation algorithm.

Step 0: Initialize ∇ = max[|(x(n)|] and α(0) = 0.
Then, repeat Steps 1-3 until a stopping criterion is met:

Step 1: Calculate:

LPFTα+(n, k)

=

M/2−1∑
m=−M/2

s(n+m)w(m)e−j2π[ m
M k+(α+∇)( m

M )2],

LPFTα−(n, k)

=

M/2−1∑
m=−M/2

s(n+m)w(m)e−j2π[ m
M k+(α−∇)( m

M )2],



Step 2: Apply the L-statistics as described in Section
III on both LPFTα+(n, k) and LPFTα−(n, k). Starting
from given sets of LPFT points

L±k (n) = {LPFTα±(n, k), n = M/2, ..., N −M/2}

sort the values of these sets over n to obtain new, ordered
sets of elements, Λ+

k (ni) ∈ L+
k (n), and Λ−k (nj) ∈ L−k (n),

ni, nj ∈ {M/2, . . . , N − M/2} satisfying, for given
k: |Λ+

k (n1)| ≤ |Λ+
k (n2)| ≤ · · · ≤ |Λ+

k (nN−M )| and
|Λ−k (n1)| ≤ |Λ−k (n2)| ≤ · · · ≤ |Λ−k (nN−M )|.

Highest NQ values from Λ+
k (ni) and NQ values from

Λ−k (nj) are omitted, where NQ = int[(N − M)(1 −
Q)/100] and Q is the percent of omitted values.

Based on the obtained subsets L+
k and L−k of

{n1, n1, . . . , nN−M}, calculate

S+
L (k) =

∑
n∈Lk

LPFTα+(n, k), (9)

S−L (k) =
∑
n∈Lk

LPFTα−(n, k). (10)

Step 2: Approximate the concentration measure [12]
gradient as the difference of the form:

∇ =

M−1∑
k=0

|S+
L (k)| −

M−1∑
k=0

|S−L (k)|. (11)

The idea to approximate the gradient in this way was
presented in several recent papers, for example, in [13].

Step 3: Update the parameter in the gradient direction:

α(l+1) = α(l) − µ∇. (12)

The resulting parameter α is further used to demodulate
the signal and apply the m-D removal and rigid body recon-
struction algorithm presented in Section III. In numerical
examples, step µ = M

NQ
is used. The iteration index is

denoted by l. Detailed analysis of the optimal step value
is part of our further research.

V. NUMERICAL RESULTS

In numerical examples, signal of the form

s(n) =

K∑
i=1

σBi
ej2π[a( n

N )2+bi
n
N ]

+

D∑
i=1

σRie
jARi

sin(ωRi
n+Θi)+j2πci

n
N +j2πdi(

n
N )2 + ε(n)

will be observed. It can be considered that such signal
corresponds to a range bin in a radar image. First summa-
tion simulates rigid body reflectors with non-compensated
acceleration a. The second term simulates m-D, whereas
ε(n) is additive, zero-mean, white complex noise with i.i.d.
real and imaginary parts, having the Gaussian distribution
and the resulting variance σ2

ε . Signal length is N = 1024
and Hanning window of length M = 128 is used.

Example 1: In this example, K = 5 rigid body com-
ponents exist, with σBi = [0.5, 0.25, 0.25, 1, 1], bi =
[160, 40, 60, 290, 310] for i = 1, ..., 5, respectively. The
unknown chirp rate is a = 360. Only one m-D component
is present, meaning that D = 1. Other parameters are:
σR1

= 4, Θ1 = 0, AR1
= 120, ωR1

= 2, c1 = 20 and
d1 = 0. Signal is noiseless in this example. It is processed
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Fig. 1. Rigid body and m-D separation in the case of uncompensated
rigid body acceleration. (a) The STFT of the original signal. (b) Sorted
STFT values. (c) FT of the original signal. (d) FT obtained summing
lowest 40% of the STFT over time. (e) STFT of the signal dechirped
with optimal α. (f) Sorted dechirped signal STFT values. (g) FT of the
dechirped signal. (h) FT obtained summing lowest 40% of absolute values
of the dechirped signal STFT over time. (i) Concentration measure used
for chirp-rate α optimization shown as function of α. (j) FT obtained
summing lowest 40% of the dechirped signal STFT over time, using (8).

using presented approaches, and results are presented in
Fig. 1. The initial signal STFT is shown in Fig. 1a, and
the corresponding FT is presented in Fig. 1c. The STFT-
based rigid body and m-D separation does not produce
satisfactory results, as significant rigid body parts are
removed. Namely, sorted STFT values are shown in Fig.
1b, whereas the rigid body after the m-D removal is shown
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Fig. 2. Rigid body and m-D separation in the case of uncompensated
rigid body acceleration - noisy signal case. (a) The STFT of the original
signal. (b) Sorted STFT values. (c) FT of the original signal. (d) FT
obtained summing lowest 40% of the STFT over time. (e) STFT of the
signal dechirped with optimal α. (f) Sorted dechirped signal STFT values.
(g) FT of the dechirped signal. (h) FT obtained summing lowest 40% of
absolute values of the dechirped signal STFT over time. (i) Parameter
α during the optimization algorithm iterations. (j) FT obtained summing
lowest 40% of the dechirped signal STFT over time according to (8).

in Fig. 1d. Optimal chirp rate α = 360 was found using the
proposed approach. STFT of the signal dechirped with this
value is shown in Fig. 1e, whereas the corresponding FT
is shown in Fig. 1g. Sorted STFT values of the dechirped
signal are presented in Fig. 1f, and the FT reconstructed
summing P = 40% the lowest absolute values is shown
in Fig. 1h. FT reconstructed summing sorted STFT values

according to (8) is shown in Fig. 1j. Concentration measure
used in chirp rate estimation algorithm, Step 2, defined
as Mα =

∑M−1
k=0 |SL(k)| obtained varying α in range

[100, 600] with step 1 is shown in Fig. 1d.
Example 2: Considered signal has K = 5 rigid

body components, with σBi
= [1, 0.5, 0.5, 1, 1], bi =

[190, 40, 100, 310, 110] for i = 1, ..., 5, respectively. The
unknown chirp rate is a = 300. There are two m-D
components, D = 2. Other parameters are: σR1 = 4,
σR2 = 4, Θ1 = N/2, Θ2 = π/2, AR1 = 160, AR2 = 90,
ωR1

= 4, ωR2
= 7, c1 = −190, c2 = −190, d1 = 300 and

d2 = 300. In this case, noise variance is σε = 0.5 Results
are presented in Fig. 2. Error in α estimation during the
first 20 iterations is presented in Fig. 2i. Algorithm for
rigid body separation is not too sensitive on accuracy of
the dechirping parameter α, and quite accurate estimation
is obtained after only few iterations. Results indicate that
in noisy case rigid body separation from m-D is successful.

VI. CONCLUSION

In this paper we consider the separation of rigid body
from m-D in case when target acceleration is not com-
pensated. The unknown compensation parameter is found
using a simple iterative procedure, based on the LPFT. Af-
ter the signal is dechirped using the optimal compensation
parameter found by the proposed algorithm, the rigid body
is separated using the standard L-statistics procedure based
on the STFT.
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algorithm for rigid body reconstruction after micro-doppler removal
in the radar imaging analysis” Sig. Process., Vol. 93, Jan 2013.

[3] V. C. Chen, F. Li, S. S. Ho and H. Wechsler, “Analysis of
micro-Doppler signatures,” in IEE Proceedings – Radar, Sonar and
Navigation, vol. 150, no. 4, pp. 271-6-, 1 Aug. 2003.

[4] V. C. Chen, F. Li, S. S. Ho and H. Wechsler, “Micro-Doppler effect
in radar: phenomenon, model, and simulation study,” in IEEE Trans.
on Aerospace and El. Sys., vol. 42, no. 1, pp. 2-21, Jan. 2006.

[5] X. Bai, F. Zhou, M. Xing and Z. Bao, “High Resolution ISAR
Imaging of Targets with Rotating Parts textquotedblright in IEEE
Transactions on Aerospace and Electronic Systems, vol. 47, no. 4,
pp. 2530-2543, Oct 2011.

[6] J. Li and H. Ling, “Application of adaptive chirplet representation
for ISAR feature extraction from targets with rotating parts,” in IEE
Proc. - Radar, Sonar and Navigation, vol. 150, no. 4, pp. 284–91,
1 Aug. 2003.

[7] Y. Wang, Y.-C. Jiang, “ISAR imaging of ship target with com-
plex motion based on new approach of parameters estimation for
polynomial phase signal,” EURASIP Journal on Advances in Signal
Processing 2011(2011) ArticleID 425203, 9 pp.
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