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Faculty of Electrical Engineering

University of Montenegro
81000 Podgorica, Montenegro

Email: {milosb, ljubisa, milos}@ac.me

Danilo Mandić
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Abstract—Decomposition of multicomponent signals overlap-
ping in the time-frequency domain is a challenging research topic.
To solve this problem, many approaches have been proposed so
far, but only to be efficient for some particular signal classes.
Recently, we have proposed a decomposition approach for mul-
tivariate multicomponent signals, based on the time-frequency
signal analysis and concentration measures. The proposed solu-
tion is efficient for multivariate signals partially overlapped in
the time-frequency plane regardless of the non-stationarity type
of particular signal components. This decomposition approach is
shown to be also efficient in noisy environments. In this paper,
we investigate the limits of the decomposition efficiency subject
to the signal-to-noise ratio and initial phase differences between
the signals from different channels. The paper is focused on the
decomposition of bivariate two-component signals.
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nal decomposition; time-frequency signal analysis

I. INTRODUCTION

Time-frequency signal analysis deals with signals having
a time-varying spectral content [1]– [8]. The analysis and
processing of such signals, widely known as non-stationary,
is typically difficult using the classical Fourier analysis [7].
Multichannel signals, a form of multivariate data, arise through
recent sensor technology developments [2]. The processing of
these signals is an ongoing research topic [1], [2], [9]–[12].

In the classical time-frequency analysis, several approaches
for the decomposition of multicomponent signals have been
proposed [3]–[6]. Except for some special signal forms, ex-
traction of signal components overlapped in the time-frequency
plane is not possible [1], [2]. However, using the potential of
the multivariate signal form, we have recently developed an
algorithm for the decomposition of multicomponent signals,
leading to a complete extraction of components partially
overlapped in the time-frequency plane [1], [2]. The basic idea
is drawn from an S-method based decomposition approach,
originally proposed in [3]. The robustness of the decomposi-
tion method [1], [2] on the influence of the noise is highly
related with the initial phase difference between variates, that
is, signals from each channel. In this paper, we investigate

this dependence, by checking numerically which range of
initial phase difference between variate produces a successful
decomposition, for given signal-to-noise ratio (SNR).

The paper is organized as follows. After Introduction, the
basic theory is introduced in Section II. The decomposition
of bivariate two-component signals is presented in Section III.
The influence of additive Gaussian noise on the decomposition
is numerically analyzed in the same section. The paper ends
with concluding remarks.

II. BASIC THEORY

A bivariate signal can be defined as

x(t) =

[
a1(t)ejφ1(t)

a2(t)ejφ2(t)

]
, (1)

and it can be interpreted as a signal obtained mea-
suring a physical process x(t) by two sensors, with
a1(t) exp(jφ1(t)) = χ1x(t) exp(jϕ1) for the first sensor
channel and a2(t) exp(jφ2(t)) = χ2x(t) exp(jϕ2) for the
second one. Without loss of generality, it is assumed that each
sensor modifies amplitude and phase of the measured signal.

The Wigner distribution (WD) of bivariate signal x(t) is a
time-frequency representation with the following form

WD(ω, t) =

∫ ∞
−∞

xH(t− τ
2 )x(t+ τ

2 )e−jωτdτ

=
∑
i

∫ ∞
−∞

a∗i (t− τ
2 )ai(t+ τ

2 )ej(φi(t+
τ
2 )−φi(t−

τ
2 )e−jωτdτ

where xH(t) is the Hermitian transpose of vector x(t) and
i = 1, 2. In the case of a two-component bivariate signal

x(t) = x1(t) + x2(t)

=

[
χ11x1(t)ejϕ11

χ12x1(t)ejϕ12

]
+

[
χ21x2(t)ejϕ21

χ22x2(t)ejϕ22

]
, (2)

where xi(t) = Ai(t)e
jψi(t), i = 1, 2, the Wigner distribution

takes the form

WD(ω, t) = WDa(t, ω) +WDc(t, ω). (3)
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Here, WDa(t, ω) is used to denote the auto-terms

WDa(ω, t)=

∫ ∞
−∞

[χ2
11 + χ2

12]x∗1(t− τ
2 )x1(t+ τ

2 )e−jωτdτ

+

∫ ∞
−∞

[χ2
21 + χ2

22]x∗2(t− τ
2 )x2(t+ τ

2 )e−jωτdτ

whereas WDc(t, ω) is used to denote the undesirable cross-
terms. Using the definition (2), this term is further expanded

WDc(ω, t) =

∫ ∞
−∞

[
χ11χ21x

∗
1(t− τ

2 )x2(t+ τ
2 )ej(ϕ21−ϕ11)

+χ11χ21x
∗
2(t− τ

2 )x1(t+ τ
2 )ej(ϕ11−ϕ21)

+χ12χ22x
∗
1(t− τ

2 )x2(t+ τ
2 )ej(ϕ22−ϕ21)

+χ12χ22x
∗
2(t− τ

2 )x1(t+ τ
2 )ej(ϕ12−ϕ22)

]
e−jωτdτ.

The auto-terms WDa(t, ω) are summed up in phase, as
phase shifts cancel out. On contrary, in the case of cross-
terms WDc(t, ω), phase shifts do not cancel out and it is
expected that the bivariate signal form leads to the cross-terms
cancellation as these terms average out, when compared with
the univariate signal WD.

It is important to note that in (2) it is assumed that
components x1(t) = A1(t)ejψ1(t) and x2(t) = A2(t)ejψ2(t)

of the measured signal exhibit slow-varying amplitude changes
compared to phase-changes, i.e. |dχij(t)/dt| � |dψi(t)/dt|.
Therefore, the amplitudes may be considered as constant
within the observed time interval, χij(t) ∼ χij . The successful
cancellation of the cross-terms is dependent on the phase
differences ϕij−ϕmn, where i, j,m, n = 1, 2. In the noiseless
signals case, even very small phase differences ϕi,j−ϕm,n �
1 lead to a successful cancellation of undesirable cross-terms.

III. SIGNAL DECOMPOSITION

After the proper discretization, the inverse discrete Wigner
distribution can be written in the following form

xH(n2)x(n1) =

= 1
K+1

K/2∑
k=−K/2

WD
(
n1+n2

2 , k
)
ej

π
K+1k(n1−n2). (4)

where n1 and n2 are proper discrete-time indexes obtained
after discretization of t and τ/2 with a sampling period ∆t
and applying proper substitutions [1], [2]. Assuming that the
cross-terms can be neglected, based on the WD autocorrelation
function, we form matrix R with elements

R(n1, n2) = xH(n2)x(n1)

= [χ2
11 + χ2

12]x1(n1)x∗1(n2) + [χ2
12 + χ2

22]x2(n1)x∗2(n2).

A. Decomposition of a two-component bivariate signal

Standard eigenvalue decomposition of the square matrix R
of dimensions K ×K leads to

R = QΛQT =

K∑
p=1

λpqp(n)qHp (n), (5)

where λp are eigenvalues and qp(n) are eigenvectors of R.
Note that the eigenvectors qp(n) are orthonormal. For a two-
component signal, in a noiseless case, the elements of this
matrix are

R(n1, n2) = λ1q1(n1)q∗1(n2) + λ2q2(n1)q∗2(n2). (6)

Although the eigenvectors are mutually orthogonal, the
overlapped signal components are not orthogonal. Therefore,
both eigenvectors q1 and q2 contain a linear combination of
signal components. This means that each component can be
expressed as a linear combination of eigenvectors q1 and q2:

x1 = k11q1 + k12q2, (7)
x2 = k21q1 + k22q2. (8)

Notice that individual signal components are better con-
centrated in the time-frequency plane than their linear com-
binations contained within eigenvectors q1 and q2. Therefore,
the basic idea for the decomposition is to search for the
unknown coefficients kij , i, j = 1, 2 which produce the best
possible individual component concentrations. The procedure
for finding unknown coefficients kij is presented in Algorithm
1. A detailed description of the procedure can be found in [1].
The concentration measure used in step 7 is defined by

M[TFRy(n, k)] =
∑
n

∑
k

|TFRy(n, k)|, (9)

for a vector y, and it is the concept borrowed from both sparse
signal processing and compressed sensing frameworks, as well
as from the classical time-frequency analysis [8]. To solve
the optimization problem in step 7 we use the minimization
procedure based on the direct search. For bivariate signal,
P = 2 is used.

B. Noisy signal decomposition

The efficiency of the presented procedure in noise envi-
ronment and for different channel phases will be tested next.
Consider real noisy bivariate signal x(t) = [x1(t), x2(t)]T of
the form

xi(t) = e−(t/128)
2

cos
(
300πt
64·128 + ϕi

)
+ εi(t)

= 0.5e−(t/128)
2

[
ej(

300πt
64·128+ϕi) + e−j(

300πt
64·128+ϕi)

]
+εi(t)

= x1i(t) + x2i(t) + εi(t), i = 1, 2, (10)
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Algorithm 1 Multivariate signal decomposition
Input:

• Multivariate signal x(n)

1: Calculate elements of matrix R as

R(n1, n2) = xH(n2)x(n1).

2: Find eigenvectors qi and eigenvalues λi of matrix R.
3: P ← number of non-zero eigenvalues
4: repeat
5: Nup ← 0
6: for i = 1, . . . , P do
7: Solve minimization problem

min
k1,...,kP

M

{
TFR

{
1

C

P∑
p=1

kpqp

}}
s. t. ki = 1

where the normalization of the combined signal to

1 is done using C =

√∥∥∥∑P
p=1 kpqp

∥∥∥
2

8: if any kp 6= 0, p 6= i then

9: qi ←
1

C

P∑
p=1

kpqp

10: for k = i+ 1, i+ 2, . . . , P do
11: qk ← 1√

1−|qHi qk|2
(qk − qHi qkqi)

12: end for
13: Nup ← Nup + 1
14: end if
15: end for
16: until Nup = 0

Output:
• Reconstructed signal components q1,q2, . . . ,qP

defined for −128 ≤ t ≤ 128. One realization of the signal is
shown in Fig. 1 (a), for the first channel and SNR=10dB. In
the considered experiment, the phases ϕ1 6= ϕ2 are random
numbers with a uniform distribution drawn from the interval
[0, 2π]. In the experiment, we test the influence of the phase
difference ∇ = ϕ1−ϕ2 on the successful decomposition. For
signal in Fig. 1 this difference is 80 degrees. The considered
signal is real-valued, with two symmetric components x1i(t)
and x2i(t) existing in the Fourier transform and the time-
frequency domains. These components partially overlap, and
thus they are inseparable using these representations. This is
illustrated in Fig. 2, where neither the PWD of the analytic
signal (a), nor the PWD of the given signal (b) produce
desirable results. Bedrosian’s product theorem condition for
amplitude and phase is not satisfied in this case. The channel
noises εi(t) are independent, real, Gaussian, zero-mean white
noises, with equal variances σ2. The decomposition of the
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Fig. 1. The analyzed bivariate real signal. (a) time domain waveform; (b)
Eigenvalues of the autocorrelation matrix R; (c) Instantaneous frequency
estimation of the signal.
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Fig. 2. Time-frequency representation of the considered bivariate signal. (a)
Pseudo-WD of the analytic signal; (b) Pseudo-WD of the original signal

signal is done using the procedure presented in Algorithm 1.
In this experiment we vary the phase difference ∇ = ϕ1−ϕ2

between bivariate components, from 0 to 90 degrees. The
bivariate signal was corrupted with additive white Gaussian
noises with zero mean value and variances such that five SNR
levels are obtained: 10dB, 20dB, 30dB, 40dB and 50dB. For
each considered∇ and SNR level, the probability of successful
decomposition is calculated averaging results based on 30
independent realizations of noisy signal. Results are presented
in Fig. 5, clearly indicating that the presented decomposition
method is quite robust on the noise influence. Larger differ-
ences ∇ lead to better extraction results. In all cases, the best
results are obtained for ∇ = π/2 (90 degrees). The time-
frequency representations (Pseudo-WD) of the eigenvectors
corresponding to the most significant eigenvalues (these eigen-
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vectors are linear combinations of signal components) of the
autocorrelation matrix R are shown in Fig. 3. The Pseudo-WD
of successfully extracted signal components is shown in Fig.
4.

Fig. 3. Pseudo-WD of first two eigenvectors of matrix R.

Fig. 4. Pseudo-WD of successfully extracted signal components.

IV. CONCLUSION

The additive noise influence on the decomposition of bi-
variate two-component signals is analyzed. It is numerically
shown that the decomposition success is dependent on the
phase difference between components from each channel. The
results indicate the robustness of the decomposition algorithm
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Fig. 5. The successful decomposition probability shown for different angles
between bivariate components and for different SNR levels.

on the noise influence. The results are dependent on angles
between signals in different channels. Our further research will
be oriented towards more detailed statistical analysis of the
method in noisy environments.
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