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Abstract— The performance of gradient (steepest descent) 

and the threshold-based algorithms are observed in terms 

of the sparse signal reconstruction. The advantages of both 

methods are combined within the new approach used to 

recover all samples from randomly under-sampled signal. 

The gradient-based algorithm may fail to recover the 

signal unless a relatively large number of iterations is 

performed, which can be time consuming. The procedure 

can be speed up by stopping the gradient algorithm at 

certain convenient iteration and continuing with the 

reconstruction using the threshold-based method. 

Threshold is calculated in a way to separate the signal 

components from the spectral noise that is still left in the 

signal after the gradient-based reconstruction. The exact 

values of the signal amplitudes are calculated by solving 

the optimization problem. The proposed method increases 

the reconstruction speed with satisfactory reconstruction 

accuracy. The theory is proved with experiments. 
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I.  INTRODUCTION 

There is a constant intent to reduce the amount of data in 

many real applications. Lowering the number of signal 

samples during the signal acquisition is topic of popular theory 

known as the Compressive Sensing (CS) [1]-[11]. The CS 

allows under-sampling and later signal reconstruction from far 

less samples compared to the traditional approach based on the 

Shannon-Nyquist sampling theorem. The possibility to apply 

the CS approach could be limited by the signal nature and the 

acquisition process, but still the application field of the CS is 

wide. 

In order to recover the signal from a small number of 

collected (or available) samples [10]-[26], different 

mathematical optimization procedures can be used. Some of 

them are fast, such as greedy approaches [13], [15], [17], but 

these are not always accurate. Some other approaches, such as 

convex optimization [3], [26], are more accurate but 

computationally demanding and thus time consuming. 

In this paper, we consider the two approaches, one 

belonging to the convex optimization group and the other 

belonging to the greedy methods, with an aim to combine 

them and to exploit the advantages of both. The first approach 

is called the gradient-based approach (GA) [14], [16], [20], 

[26], which allows reconstruction from a small set of samples 

through the iterative update of missing samples values. Since 

it assumes nested iterations, the algorithm execution could be 

time consuming especially when reconstruction accuracy is 

the priority. The second approach is the threshold-based 

algorithm used to separate the signal components from the 

noise appearing in the spectral domain as a result of the 

missing samples [3], [6], [19], [22]. This approach is faster 

compared to the GA but fails to detect positions of the signal 

components if there are significant variations between the 

values of components amplitudes, or if the number of missing 

samples is large.  

Therefore, in this paper we combined the advantages of 

both methods. The gradient in GA is observed for various 

signals and it is noticed that it becomes larger than noise after 

just a few iterations. In the original procedure, the algorithm 

step is decreased in that point and the algorithm is continued 

with the new step. However, in the proposed procedure the 

GA is stopped here and the threshold is applied in order to 

eliminate the noise remained in the signal. The threshold is 

defined by using the variance of the gradient in the stopping 

point. Namely, the threshold and gradient are combined in the 

proposed method, in order to speed up the reconstruction 

procedure, without degrading the reconstruction accuracy. The 

positions of the signal components in the spectral domain are 

revealed after the threshold is applied. The procedure involves 

an optimization problem solving in order to recover the values 

of the components’ amplitudes. 

II. THEORETICAL BACKGROUND 

A. Sparse signal reconstruction 

According to the CS theory, the signal can be 

reconstructed from a small set of randomly selected samples if 

there is a certain transformation domain where the signal has a 

sparse or compact representation. We started with the 

assumption that signal s(n) of length N is sparse in transform 

domain S(k)=T[s(n)] with sparsity K, (K<<N), where T in this 

paper denotes the Discrete Fourier Transform (DFT) operator. 

If we assume that only M (K<M) samples are available, the 

following relation holds [3]: 

 as AS ,  (1) 

where sa is the measurement vector and A is the CS matrix 

formed as A=ФT-1. Matrices Ф, T and T-1 are the 

measurement matrix, the DFT and the inverse DFT matrix 
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respectively. The sparsest solution of the undetermined system 

of equations (1) can be found by counting the number of 

nonzero elements using ℓ0 norm. This is an NP-hard 

combinatorial optimization problem and therefore, the ℓ1 norm 

is more often used: 
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for sparse signal reconstruction [1]-[3], [9], [11]-[13]. In the 

sequel, two commonly used algorithms are observed: gradient 

based algorithm [26] and single iteration reconstruction 

algorithm [3],[6].  

B. Gradient based algorithm 

The gradient-based algorithm belongs to the group of 
convex optimization algorithms, where missing samples are 
considered as the variables with the zero initial value. It is 
iterative algorithm where in each iteration the value of missing 
sample is changed for +Δ and -Δ, approaching its exact value 
[14], [16], [20], [22].  

Before applying the algorithm, the initial signal is defined:  
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Objective of gradient-based algorithm is to determine the value 
of the gradient which is used to update the values of the 
missing samples. In iter-th iteration, the gradient vector 
Grad(i) is estimated by using the finite differences of the 
sparsity measure. It is calculated for each missing sample at 

instants  1 2, ,..., Mn ni n  which indicates the missing samples 

positions: 
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where 
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where Sg
(iter)(k)=T[s(iter)(n)] and Di(k)=T[δ(n-i)]. At the positions 

of the available signal samples the gradient vector is zero. 
 

III. A SPARSE SIGNAL RECONSTRUCTION PROCEDURE 

BASED ON GRADIENT AND THRESHOLD 

In the sequel, the proposed procedure for sparse signal 

reconstruction based on the gradient algorithm and threshold 

calculation is described. After several iterations of gradient 

algorithm, the gradient estimate starts to oscillate around the 

stationary point. The mean squared error becomes almost 

constant and it is not possible to achieve an improvement in 

the signal concentration for a chosen value of step Delta (Δ). 

In other words, the best possible sparsity with chosen Δ is 

obtained. In original procedure, the execution of the algorithm 

can be iteratively continued with reduced value of Δ [26]. 

Having in mind that the iterations are time-consuming, we 

proposed a modification of the original procedure in order to 

speed it up. The algorithm is stopped in this point and the 

appropriate threshold for removing the remaining spectral 

noise is calculated. The threshold that separated noise from 

signal components in the spectral domain can be calculated as 

follows [6]: 

 2 1/

1 log(1 P( ) )NT T   ,  (8) 

where P is the probability that noise is lower than T1 

threshold(it is set to P(T)=0.99 [3], [6], [18]), σ denotes 

variance of noise caused by missing samples:  
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The parameter Ai denotes the amplitude of the i-th signal 

component. However, when the amplitudes of signal are very 

small, the threshold T1 cannot separate signal components 

from noise. In order to overcome this problem, GA is applied 

first, until algorithm starts to oscillate what happens after few 

iterations. Variance of noise left in signal, originating from 

incorrect signal values, becomes below the gradient value. 

Therefore, new threshold that would detect signal component 

above the noise should be defined. The expression for the new 

threshold T2 should include the variance of the gradient, which 

is also the maximum value of the noise variance in the signal 

spectrum, multiplied by scaling factor Sf=[M(N-M)/(N-1)]: 
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The variance of gradient on missing samples is calculated 

using the gradient value, and number of missing samples: 
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Then the positions of the signal components are detected by 

applying T2 on the vector Sg: 

 
2argmax{ }g Tp S  .   (12) 

The measurement vector is defined as a g s AS , where A 

denotes the CS matrix formed by using columns of DFT 

matrix that correspond to the frequencies p of signal 

components and rows corresponding to M available 

measurements. The vector Sg is the DFT vector obtained in the 

iteration before Δ is changed. The least square optimization 

problem is solved in order to recover the components’ 

amplitudes. The amplitudes of the signal components whose 

positions are in vector p, and recovered DFT vector S, are 

obtained as a solution of the following problem [3], [6], [18]: 

 * 1 *( ) ( )aS A A A s
  .  (13) 

IV. EXPERIMENTAL RESULTS 

Example 1: The sinusoidal signal with length of 256 samples 



 

and five components with different amplitudes is considered. 
The signal is sparse in the DFT domain and has the following 
form: 
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 (14) 

where A1=3.5, A2=3, A3=1, A4=4, A5=2 are amplitudes of the 

signal components. The DFT of the signal is shown in Fig 1.  

Signal has 62% of the missing samples. The initial DFT of the 

signal is shown in Fig. 2a. In order to detect components 

positions, the first step is applying the GA reconstrucion on 

the initial DFT, until GA reaches its stationary point (in this 

example after 13 iterations). 

 
Figure 1. The DFT of the signal defined by (14) 
 

 
a)                                             b) 

 
c)                                              d) 

Figure 2. a) The initial Fourier Transform with 62% missing samples; b) The 

reconstructed Fourier Transform using 13 iterations of GA; c) Zoomed part of 

Fig.1b);  d) The reconstructed DFT by using the proposed threshold 

The signal recovered after GA is shown in Fig. 2b. It is 

important to emphasize that, after this step, the signal 

amplitudes are not reconstructed exactly, and a certain percent 

of noise is left in the signal (noise can be seen from the 

zoomed DFT region in Fig. 2c).  

 Applying the T1 threshold on the reconstructed DFT, in 

order to remove the noise left in the signal, failed in the 

detection of all signal components due to their variable 

amplitudes. The T1 threshold is shown with green line in Fig. 

2b. Therefore, the calculation of the threshold T2 is done in 

this step (T2 is shown in Fig. 2b with red line). It can be seen 

that T2 sucessfully detects all signal components, and at the 

same time, keeps the spectral noise below the level of the 

smallest signal component. After noise removal, the 

amplitudes of the signal components are recovered by an 

optimization problem solving. The reconstructed signal is 

shown in Fig. 2d. 

Example 2: Let us now test the proposed procedure on the 

another signal consisted of more components. The signal has 8 

components, 256 samples length and has the following form: 
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  (15) 

The amplitudes of the components are A1=1.20, A2=1.10, 

A3=1.30, A4=1.50, A5=1.40, A6=0.90, A7=0.39, A8=0.47, 

respectively, and the number of measurements used for 

reconstruction is M=96.  

 
Figure 3. The DFT of the signal defined by (15) 

 
a)                                                b) 

 
                 c)                                                  d) 

Figure 4. a) The initial DFT with 62% missing samples, b) The reconstructed 

DFT using 16 iterations of GA, c) Zoomed part of Fig.1b) with the smallest 

signal amplitude d) The reconstructed DFT based on the proposed threshold  

The signal DFT is shown in Fig. 3, while the initial DFT 

calculated by using 38% of the signal samples is shown in Fig. 

4a. The first step is the detection of the components positions, 

by applying the GA until it reaches the stationary point (after 

16 iterations in this example). We tested the possibility to 

detect components positions by applying the threshold T1, but 

it failed as it can be seen from Fig. 4b (T1 is marked with green 

line). Therefore, T2 is calculated and succeeded in the 

detection of the positions of all components. The threshold T2 

is shown in Fig. 4b with red line, while the reconstructed DFT 

of the signal is shown in Fig. 4d.  

 The processing speed of the proposed algorithm and the 

speed of GA (in a full number of iterations) are measured and 

compared. The results are given in Table 1. The time required 

for execution of the proposed algorithm is much smaller 

compared to the time required for GA execution.  

 As it was already mentioned, the GA with a decreased 

number of iterations can detect the components positions but 

fails in the reconstruction of the components amplitudes. The 



 

values of components amplitudes after the GA and the 

proposed method reconstruction, are shown in Table 2 (the 

amplitudes are scaled by N/2). It can be seen that the 

amplitudes reconstructed with the proposed method, 

correspond to the exact amplitudes, while GA reconstruction 

introduces certain error. 

TABLE I. EXECUTION TIMES FOR PROPOSED ALGORITHM AND GA 

IN FULL NUMBER OF ITERATIONS  

Example 1 Example 2 

Time elapsed [s] Time elapsed [s] 

The proposed 

method (13 

iterations of GA 

and threshold T2) 

Full number of 

GA iterations (60 

iterations) 

The proposed 

method (16 

iterations of GA 

and threshold T2) 

Full number of 

GA iterations 

(100 iterations) 

0.049 0.233 0.045 0.252 

 

TABLE II. SIGNAL AMPLITUDES AFTER SEVERAL GA ITERATIONS 
(UNTIL IT REACHES STATIONARY POINT) AND AFTER THE 

PROPOSED RECONSTRUCTION 

Signal amplitudes from example 1      Signal amplitudes from example 2 

After 13 

iter. GA 

After 

recon. 

with the 

proposed 

method 

Exact  After 16 

iter. of GA 

After recon. 

with the 

proposed 

method 

Exact   

3.3 3.5 3.5 1.00 1.20 1.20 

2.8 3 3 0.98 1.10 1.10 

1.8 2 2 1.13 1.30 1.30 

0.8 1 1 1.34 1.50 1.50 

3.9 4 4 1.24 1.40 1.40 

x x x 0.32 0.47 0.47 

x x x 0.79 0.90 0.90 

x x x 0.35 0.39 0.39 

V. CONCLUSION 

The paper proposes a method for signal reconstruction in 

the CS scenario. The method combines the gradient algorithm, 

the threshold calculation for detection components positions 

and the optimization problem solving for recovering signals’ 

amplitudes. Compared with the gradient algorithm, the 

proposed method increases reconstruction speed, which is 

proved experimentally. The accuracy of the proposed method 

is verified by measuring the amplitude values of the 

reconstructed components.  
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