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Abstract—The reconstruction of sparse acoustic waves trans-
mitted through a dispersive channel is examined. When a signal
propagates through such a channel, it changes its characteristics
and produces new components in the received part. In real-
world signals, some disturbances are introduced during the trans-
mission. Common forms of disturbances are strong sinusoidal
signals from various sources. Frequency components with such
disturbances can be filtered out. Since the signal components
can be considered as sparse in the the dual polynomial Fourier
transform (DPFT) domain, the removed spectral component
can be reconstructed using compressive sensing methods. To
this aim, a method for decomposition and reconstruction of
multicomponent signals in dispersive environment is introduced.
The method is based on decomposition of parameters using DPFT
and their reconstruction from a reduced set of signal spectral
components using compressive sensing framework.
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I. INTRODUCTION

Underwater acoustic channels are known for their disper-
sive characteristic. The problem of dispersivity has been a
challenge in their analysis. A dispersive channel changes
the characteristics of signals during their transmission. The
main problems of dispersive channels is producing nonlinear
transformations of the signal, shifts in phase of the signal and
adding new components due to multipath propagation [1]–[4].

Other problem of the dispersive channels is that the signals
become complex and non-stationary. This is the reason why
non-stationary signal processing theory is suitable in the anal-
ysis of those signals. The most common tool for the analysis
of non-stationary signals is the time-frequency signal analysis
[5]–[7]. Common problem in practice are strong harmonic
disturbances. After these disturbances are removed, the sig-
nal components should be reconstructed. Various localization
techniques for dispersive channels were developed, such as
using the phase continuity in [2] or using narrowband systems
with unitary warping relations in [4].

In the theory of sparse signal reconstruction, a signal is
sparse if it has only few non-zero components in comparison
to the total length of the signal. If the signal is sparse, it can

be reconstructed with less measurements [8]–[12]. The consid-
ered acoustic signal is sparse in the dual polynomial Fourier
transform (DPFT) domain, and the noisy measurements (im-
pulses) occur in frequency domain. The impulses in frequency
domain will introduce new sinusoids in time domain. These
disturbances are removed, and the signal components can be
reconstructed by compressive sensing methods, such as the
matching pursuit algorithm.

The paper is organized as follows. In Section II the noisy
received signal is modelled, and in Section III basic theory of
compressive sensing is introduced. In Section IV we define the
DPFT domain and its sparsity conditions as in sparse signal
reconstruction framework. An example of the decomposition
and reconstruction is be shown in Section V, and the conclu-
sions are presented in VI.

II. RECEIVED SIGNAL MODELLING

Assume a linearly frequency modulated (LFM) signal of the
form

u(n) = ejπαn
2

(1)

is transmitted. The signal propagates through an underwater
dispersive channel. The channel considered is an iso-velocity
channel [2], having the same velocity of sound over all volume
[1]–[4]. The transfer function of the channel is

H(f) =

+∞∑
m=1

At(m, f, r) exp
(
jkr(m, f)r

)
(2)

where m is the mode index, r is the distance between the
transmitter and received, At(m, f, r) is the attenuation rate and
kr(m, f) are the horizontal wavenumbers. The attenuation rate
dependence on the distance r is At(m, f, r) = A(m, f)/

√
r.

The transfer function depends on the number of the modes,
and the modes are dependent on wavenumbers [2]

kr(m, f) =
(2πf

c

)2
−
(
(m− 0.5)

π

D

)2
(3)

where D is the channel depth, and c = 1500m/s is sound
speed. The received signal is then

x(n) = u(n) ∗ h(n), (4)
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where h(n) is the impulse response of (2). Our goal is to
decompose the mode functions, which will make the problem
of detecting the transmitted signal straightforward. This de-
composition makes compressive sensing methods application
possible to use as well. The decomposition method will be
formulated within the compressive sensing approach.

III. SIGNAL DECOMPOSITION AND RECONSTRUCTION

Assume a signal x(n), 0 ≤ n < N and its linear transform
X(k). In the vector form they are written as

x = [x(0), x(1), . . . , x(N − 1)]T (5)

X = [X(0), X(1), ..., X(N − 1)]T . (6)

They are related via N ×N transformation matrix AN as

X = ANx. (7)

We will assume that signal x(n) is sparse. It means that the
signal x has only K � N samples x(n1), x(n2), . . . , x(nK)
that are non-zero. When the signal is sparse in one of its
domains, it can be reconstructed with less measurements in one
of its transformation domains, i.e. with NA < N . The signal
measurements in this case are coefficients of its transform at
positions NA = {k1, k2, . . . , kNA}. The measurement vector
is defined by

y = [X(k1), X(k2), . . . , X(kNA)]
T . (8)

Vector form of the measurements equation is

y = Ax (9)

where A is a NA × N partial transform matrix obtained by
keeping only the rows of AN corresponding to the available
measurements. The compressive sensing states that the signal
can be reconstructed, if the reconstruction conditions are met,
by minimizing x using the available measurements y, i.e.

min ‖x‖0 subject to y = Ax. (10)

The solution of problem (10) can be found in various ways.
One of the common algorithms to solve the problem is the
orthogonal matching pursuit (OMP) [12]. In the first step of
the OMP, the position of the largest component is found

n1 = argmax{x0} (11)

using the inital estimate x0 = AHy, calculated using only the
available measurements. A new partial matrix of the matrix A
is formed, omitting all rows except the row which corresponds
to the estimated position n1. New matrix is then A1. The
estimate of the first component in the time domain is

x1 = (AH
1 A1)

−1AH
1 y. (12)

The signal is reconstructed at the position n1 and subtracted
from the original signal measurements. The estimate of the

non-zero position is calculated again with this signal and its
maximum position is found at n2. A new set K = {n1, n2} is
formed with the corresponding matrix A2. The new estimate
x2 is calculated and the signal is reconstructed. The procedure
is repeated until all K components are reconstructed. For the
case when the signal samples are spread, we may use few
instances around ni in each reconstruction step.

We will assume that the signal is K-sparse in the time
domain, and we will consider dual polynomial transform
coefficients as measurements.

IV. DUAL POLYNOMIAL FOURIER TRANSFORM SPARSITY

Localization using dual polynomial Fourier transform
(DPFT) was studied in [13]. It is of crucial importance
to obtain a sparse domain representation of the signal. In
this paper, we will consider that there are some unavailable
coefficients in the frequency domain (due to denoising pro-
cedure on harmonic disturbances). The combination of DPFT
with the OMP algorithm for a successful reconstruction and
decomposition of the signal samples will be presented.

A. Definition of DPFT

The main goal is to find the parameters where the DPFT of
a signal produces the highest concentration, meaning maximal
sparsity. Then we can extract and localize the positions of the
components [7], [13], [14].

The considered signal is a polynomial phase signal

X(k) = Ae−j
∑N
l=1 blk

l

. (13)

in the frequency domain. This is why the most suitable tool
for analysis is the DPFT, instead of the classical PFT. The
discrete DPFT is defined as

xβ2,β3...,βN (n) =
∑
k

X(k)ej
2π
N (nk+β2k

2+...+βNk
N ). (14)

The signal will be highly concentrated when the maximum of
the transform is matched. It is achieved when

(b̂1, b̂2, ..., b̂N ) = arg max
(n,β2,...,βN )

|xβ2,...,βN (n)|. (15)

Ideally, the best DPFT concentration is when (β2, ..., βN ) =
(b2, ..., bN ). Our goal is to estimate the parameters such that
b̂2 ≈ b2, . . . , b̂N ≈ bN .

In some real-world scenarios, the signal will be received
with a kind of disturbance. Here, we will assume that the
signal is corrupted with strong sinusoidal disturbances

xd(n) = x(n) +

NM∑
l=1

Bie
j(ωln+ψl). (16)

The strong periodic disturbances can be detected and removed
by a notch filter. Then a reduced set of frequencies k ∈ NA is
available in X(k). The reconstruction is presented next.
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B. Sparsity in DPFT

We will restrict the analysis to the third polynomial order.
Consider that X has disturbed samples which are found and
set as unavailable. The third order DPFT estimated using only
the available samples of X is

xβ2,β3
(n) =

∑
k∈NA

X(k)ej
2π
N (nk+β2k

2+β3k
3) (17)

for
X(k) = Ae−j

2π
N (b1k+b2k

2+b3k
3). (18)

Assume that parameters β2, β3 are found by a direct search
over the interval of their possible values. When the parameters
are correctly estimated (β2, β3) = (b2, b3), the DPFT is

xb2,b3(n) =
∑
k

Aej
2π
N n(k−b1) = Aδ(k − b1). (19)

It is sparse. In the case of multicomponent signals, i.e.

X(k) =

M∑
m=1

Ame
−j(b1mk+b2mk2+b3mk3), (20)

the parameters of components are estimated in iterative way.
Without loss of generality, assume that A1 > A2 > · · · > AM .
When the first component is matched with

(β21, β31) = (b21, b31)

we may consider that all other components are spread and
negligible. The measurements matrix is obtained from this
signal definition assuming that only the values k ∈ NA are
available

xb21,b31(n) =
∑
k∈NA

X(k)ej(b21k
2+b31k

3)ej
2π
N n(k−b11). (21)

This relation for various n can be written as
xb21,b31(n1)
xb22,b32(n2)

...
xb2K ,b3K (nK)

 = AH
K


X(k1)
X(k2)

...
X(kNA)

 (22)

where the measurement matix is defined by

AK =

 e−j
2π
N (n1k1+φ1) · · · e−j

2π
N (nKk1+φ1)

...
. . .

...
e−j

2π
N (n1kNA+φ1) · · · e−j

2π
N (nKkNA+φNA )


with φi = k2i b21 + k3i b31 for i = 1, . . . ,K. Starting from the
available values X(k), we reconstruct the non-zero values in
time [xb21,b31(n1), xb22,b32(n2), . . . , xb2K ,b3K (nK)] using the
iterative OMP procedure, starting with

x1 = (AH
1 A1)

−1AH
1 y. (23)

After the DPFT sample at n1 are reconstructed then the
remaining unavailable values X(k) are calculated for the first

component. This component is removed from the original
measurements. The procedure is repeated for the second com-
ponent. After the parameters of the second component are
found as (β22, β32) = (b22, b32), both the first and second
component are reconstructed using both components

(β21, β31) = (b21, b31), and (β22, β32) = (b22, b32).

After the first two values are reconstructed, the procedure is
continued for all ni. For the case when the DPFT values are
not on the grid, we may use few instances around ni in the
reconstruction. The stopping criterion can be the energy of
the remaining signal after the reconstructed components are
removed.

V. EXAMPLE

We consider a monocomponent signal of the form (1) trans-
mitted through a dispersive channel. The channel is D = 20 m
deep, with a distance of r = 2000 m between the transmitter
and the receiver. The sampling frequency is fs = 1000 Hz
with frequencies of the modes being randomly positioned
between 250 Hz < f < 500 Hz. The transfer function is
of the form (2) with M = 5 modes and the attenuation rate
Am = (6 −m)W (f) where W (f) is the DFT of a Hanning
window. The received signal without noise is shown in Fig. 1
(top subplots).

It is assumed that the received signal has disturbances in
frequency domain in the form of high-impulses in 10% of
the spectrum. This will affect the time domain by introducing
new sinusoids. The noisy received signal is illustrated in Fig.
1 (middle subplots).

Firstly, we remove the components which are affected by
the noise using notch filters. The noisy spectral samples are
considered as unavailable. The frequency and time domains of
the received signal after filtering are shown in Fig. 1 (bottom
subplots). After that, the parameters are found using a third
order DPFT. The reconstructed signal in time domain is shown
in Fig. 2 (left). The individual components found by the
procedure are shown in Fig. 2 (right). The dual S-method
representation as an improved version of short-time Fourier
transform [13], [15] is used for displaying time-frequency
content of the individual components and reconstructed signal.
The S-method of the five decomposed and reconstructed modes
is shown in first five subplots of Fig. 3. Sum of the normalized
five modes is shown Fig. 3 (bottom right subplot).

VI. CONCLUSIONS

Reconstruction of acoustic signals sparse in the dual poly-
nomial Fourier transform is considered. The signal is con-
sidered to be transmitted in a dispersive underwater channel
environment. The noisy received signal is reconstructed and
decomposed using DPFT and compressive sensing methods.
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Fig. 1. DFT of received signal (left) and the received signal in time domain
(right): without noise (top); with noise (middle) and filtered (bottom)
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Fig. 2. Reconstructed signal: sum of the modes (left); individual reconstructed
modes (right)
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