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Abstract—Vertex-frequency analysis of graph signals is a
challenging research and applications topic. Counterparts of
the short-time Fourier transform, the wavelet transform, and
the Rihaczek distribution have recently been introduced to the
graph signal analysis. In this paper, we have extended the energy
distributions to a general reduced interference distributions
(RID) class. It can improve the vertex-frequency representation
of a graph signal while preserving the marginal properties.
This class is related to the spectrogram of graph signals as
well. Efficiency of the proposed representations is illustrated on
examples.

Index Terms—Graph signal processing, Time-frequency anal-
ysis, Vertex-frequency analysis, Energy distributions.

I. INTRODUCTION

Graph signal processing has become an active research area
in recent years, resulting in many advanced solutions in various
applications. In many practical cases, the signal domain is not
a set of equidistant instants in time or a set of points in two or
three-dimensional space placed on a regular rectangular grid.
The data sensing domain is then related to other parameters of
the considered system/network. For example, in many social or
web related networks the sensing points and their connectivity
are related to specific objects and their links. In some physical
processes, other properties than the space or time coordinates
define the relation between points where the signal is sensed.
Even for the data sensed in the well defined time and space
domains, the introduction of relations between the sensing
points in a form of graph may produce new insights and more
advanced data processing methods [1]-[5].

Spectral characteristics of graph signals can be vertex-
varying. This corresponds to the time-varying signals and
time-frequency analysis in classical signal processing [6]-[10].
Linear vertex-frequency analysis is introduced using strong
correspondence with the short-time Fourier transform and the
wavelet transform [11]-[15]. A different line of work has
generalized the notion of time stationarity to signals defined on
graphs [16], [17], developing windowing and energy spectral
estimation schemes for graph-stationary signals [17]. In gen-
eral, the classical time-frequency representations have many
important properties whose extension to the graphs is not
guaranteed, like for example the uncertainty principle.

Recently we have introduced a window independent vertex-
frequency energy distribution [24] based on the idea of the
Rihaczek distribution [6], [9]. In this letter, the proposed
distribution is extended to a class of vertex-frequency energy
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distributions satisfying marginal properties that are of high
importance in the classical time-frequency analysis. These
distributions are well localized in the vertex-frequency domain.
They reduce interferences among components and provide a
novel way for a systematic introduction of vertex-frequency
energy distributions. The presented class provides a new
insight into nonstationary graph signals analysis. It can be
used in the analysis of graph signals, like for example the
EEG signals [5].

II. VERTEX-FREQUENCY REPRESENTATIONS

A short review of the existing vertex-frequency representa-
tions will be presented here, after basic definitions.

Consider a weighted graph with N vertices connected with
edges. The weight of an edge that connects a vertex n with a
vertex m is w,,,. If the vertices n and m are not connected
then w,,,, = 0. Edge weights are represented in a matrix form
as a weight matrix W, whose elements are w,,,,. The diagonal
elements of matrix W are zeros.

Signal x(n), defined at each graph vertex n, is called graph
signal. Signal samples x(n) can be arranged in an N x 1
column vector x = [x(1),z(2),...,2(N)]T.

For undirected graphs, the weighting matrix W is sym-
metric Wy, = Wpy,. For these graphs, the Laplacian is
defined as L = D — W, where D is a diagonal matrix with
dpn = Zﬁizlwnm on the main diagonal. The eigenvalue
decomposition of the Laplacian matrix reads as L = UAUT,
where U is a matrix of eigenvectors ug, k =1,2,..., N as its
columns and A is a diagonal matrix with eigenvalues A\; on
the main diagonal. Here we will assume that the eigenvalues
are of the multiplicity one.

For an undirected graph the spectrum of a graph signal
(the graph discrete Fourier transform GDFT) is defined as
X = GDFT{x} = UTx, where the vector X contains
spectral coefficients X (k) associated to the kth eigenvalue and
the corresponding eigenvector

N
X(k) =ufx =" z(n)uy(n). )
n=1

The inverse transformation is obtained as x = UX, with

N
z(n) =Y X(k)ug(n). )
k=1

Approaches that extend GDFT to directed graphs and graphs
with repeated eigenvalues are proposed recently [18]-[20]. The
eigendecomposition of the adjacency matrix A is commonly
used for the directed graphs.



A. Localized Vertex-Frequency Transforms

The localized vertex spectrum (LVS) on a graph is an
extension of the localized time (short time) Fourier transform
(STFT) [11]. It can be calculated as the spectrum of a signal
z(n) multiplied by a localization window function h,,(m)

N

Z x(m)hy, (m) ug(m). 3)

m=1

S(n, k) =

The window function h,, (m) localizes the signal x(m) around
a vertex n. It can be defined using the vertex neighborhood
[21] as hy,(m) = g(dmn ), where g(d) corresponds to the basic
window function in classical signal processing and d,,, is
equal to the length of the shortest walk (distance) from the
vertex m to the vertex n. The window h,(m) can also be
defined using its spectral domain function H (k)

N
= Z H(p)up(m)uy

where the spectral domain form is, for example, H(k) =
Cexp(—Ag7), where C is the amplitude and 7 > 0 is a
parameter that determines the window width [11].

A graph and a signal on this graph that will be used for
illustrations are presented in Fig. 1(top). The graph signal is
defined as a sum of: constant component ug(n), two delta
pulses at vertices n = 21 and n = 58, and parts of three eigen-
vectors ugg(n), use(n), and usg(n) over the vertex ranges
1<n<13,14<n<27 28 <n< N =64, respectively,
with different weighing factors. This signal is analyzed using
the vertex-frequency representation. For the parameter 7 opti-
mization, we have used the norm-one concentration measure,
as in [10]. The optimal vertex-frequency representation, in a
form of spectrogram |S(n, k)|?, is presented in Fig. 1. We can
see spread parts of components ug(n). The pulses are lost. The
vertex and the spectral marginal properties are not satisfied.
The values satisfying marginal properties are shown in Fig.2.

For the optimization process with respect to 7, the vertex
spectrogram should be normalized. One way to normalize the
spectrogram is to divide the obtained norm-one with the norm-
two of the spectrogram. The same result will be obtained if
the localization windows are defined in such a way that the
vertex spectrogram is energy unbiased,

ZZ|Snk Z|x (5)

n=1 k=1

(n), “4)

This condition is satisfied if

N
> hn(m))* =1 (6)
n=1

for all m, since

ZZ|5n k)|

n=1k=1

ZZW

n=1m=1

P hn(m)]%. (D)

Optimization of parameter 7 can be done by using more
advanced techniques [22], [23] based on the graph uncertainty
principle. It is important to note that for any 7 the vertex and
frequency marginals cannot simultaneously be satisfied.
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Fig. 1: Graph and a signal (top). Vertex-frequency representa-
tion using the spectrogram of graph signal (bottom). Marginal
values are presented for the spectrogam, below and right.

B. Vertex-Frequency Energy Distributions

Graph signal energy (5), can be written as

SIS SEE) T

or
N N N N
=) 2 aln =2 Enk)
n=1k=1 n=1k=1
where the energy vertex-frequency distribution is

E(n, k) = x(n) X" (k)uy(n). ®

This distribution corresponds to the Rihaczek distribution in
time-frequency analysis. The vertex and frequency marginal
properties of this distribution are

N N
Z E(n,k) = ZE(n,k) = |z(n)[?
n=1 k=1

This energy distribution, along with the marginal properties,
is illustrated in Fig. 2. The marginals are equal to |z(n)|?

and

X(k)[?
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Fig. 2: Vertex-frequency energy distribution with its marginal
values equal to |z(n)|* and | X (k)|?, respectively.

and |X (k)| up to computer precision. We can see that the
amplitude of component uq(n) is not constant and the pulses
are not represented with vertical lines. This is due to strong
interferences among components. To solve this problem in
classical signal analysis the reduced interference distributions
are introduced.

III. REDUCED INTERFERENCE VERTEX-FREQUENCY
ENERGY DISTRIBUTIONS

The general class of energy time-frequency distributions is
extended to graph signals in this section. After a review of the
classical Cohen class of distribution, conditions for the vertex-
frequency marginal properties are derived. Few examples of
the vertex-frequency energy distributions are given.

A. Review of the classical Cohen class of distributions

Although it is known that any distribution can be used
as the basis for the Cohen class of distribution, the Wigner
distribution is commonly used [6], [8], [9]. Having in mind that
the Wigner distribution is not suitable for the graph framework
extension, here we will use the Rihaczek distribution as the
basis. Since this kind of the Cohen class of distributions is not
presented in common literature on time-frequency analysis, a
short review of the Cohen class of distributions is presented.
The Rihaczek distribution is R(t,w) = x(t) X *(w) exp(—jwt)
[6], [8], [9]. Its ambiguity domain form (a two-dimensional
Fourier transform of R(t,w) over ¢t and w) is A(f,7) =

o [, X (u)X*(u— 6) exp(j(u — 0)7)du.

The Cohen class of distributions, with the Rihaczek
distribution as the basic distribution, is defined by
Clt,w) = o= [, [. A0, 7)c(8, 7) exp(—jwT) exp(jOt)drdo,
where ¢(f,7) is the kernel function. Using the defined

ambiguity domain form of the Rihaczek distribution A(6,7)

we get
) e

/ c(u — v, 7)e I eI drdudy. )

ejute Jut X

The frequency-frequency domain form of the Cohen class of
distributions, with the Rihaczek distribution as the basis, is

C(t,w) //X v)e? e IV p(u — v, w — dudv

Dby
where ¢(u—v,w —u) = [ c(u—wv,7)e eI Tdr,
The marginal properties are met if the kernel ¢(6, 7) satisfies
the conditions ¢(#,0) =1 and ¢(0,7) =1

B. Reduced interference distributions on graphs

We will first consider the frequency-frequency domain of
the general energy distributions satisfying the marginal proper-
ties. The frequency domain definition of the presented energy
distribution (8) is
E(n,k) =xz(n)X

N
= Z X (p)X™(k)up(n)ug(n).

Therefore, the general graph distribution form is

N N
=Y > X(p)X*(q)

p=1qg=1
For ¢(p,k,q) = (¢ — k) the graph Rihaczek dis-
tribution (8) follows. The unbiased energy condition
Sy SN G(n,k) = E, is satistied if

N
> (. k,p) = 1.
k=1

The distribution G(n, k) may satisfy the vertex and fre-
quency marginal properties:
o The vertex marginal property is satisfied if:

N
> bp.kg) =1
k=1

up(n)ug(n)o(p, k; q).  (10)

since

Z G(n, k)
k=1

The same condition is required for the vertex moment
N N N
property 37, > p—y 0" G(n, k) = 37,y n™|a(n)].

o The frequency marginal property is satisfied if:
¢(p, k,p) = 6(p — k).

Then the sum over vertex index produces

N
> Gnk) = Z\X

since 22;1 up(n)uy(n) = 6(p — q), ie., the eigenvec-
tors are orthonormal. If the frequency marginal property
holds, then the frequency moment property holds as well,

Yot St KG(n, k) = 0L R X (R

=D X)X (@up(n)uz(n) = [a(n)].

p=1g=1

)P o(p, k,p) = | X (k)|?
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Fig. 3: Frequency-frequency domain kernels: The exponential
kernel (left) and the Sinc kernel (right), at k = N/2 = 32.

C. Reduced interference distribution kernels

A few examples of the reduced interference kernels that
satisfy marginal properties, will be presented next.
Choi-Williams kernel: The classic form of this kernel
is c(0,7) = exp(—6027%/(20?)). The frequency-frequency
form of this kernel is ¢(0,w) = FT, {c(0,7)} =
exp(—w?0?/(26%))|0/0)\/2x. Tts shifted version would be
5 (w—u)? )

exp(—a 2(v —u)?

A straightforward extension to the graph signal processing
would be to use the relation A ~ w?, with appropriate expo-
nential kernel normalization. We have implemented this form
and concluded that it produces results similar to the simplified
form that satisfies the marginal properties and decays in the
frequency-frequency domain. The form of this kernel is

il

ovV2r

du—v,w—u) =

v —ul

o(p, k,q) = 507

where s(q,p) = Zgzl exp( - al‘;\‘;:i’;“) for ¢ # p and

o(p, k,p) = 6(k — p). It satisfies both marginal properties.

The vertex-frequency distribution with the exponential ker-
nel (Fig.3 (left)) is presented in Fig. 4. This kind of distribution
presents correctly constant component ug(n), two delta pulses
at vertices n = 21 and n = 58, and parts of other three
eigenvectors, preserving the marginal properties.

Sinc kernel: The simplest reduced interference kernel in the
frequency-frequency domain, that would satisfy the marginal
properties, is the sinc kernel. Its form is

oo, k) = {ﬁ for [k —pl < [p =g
0 otherwise,

This kernel, with appropriate normalization, is shown in Fig.
3(right), for £ = 32. A vertex-frequency representation with
this kernel would be similar to the one shown in Fig. 4.

Separable kernels: If the kernel is separable, such that
o(p, k,q) = g(k — p)g(k — q), then we can write G(n, k) =
|Z;)V:1 X(p)g(k — p)uy(n)|?. This is a frequency domain
definition of the graph spectrogram. Relation between the
vertex domain spectrogram (3) and the frequency-frequency
domain distribution is complex.

The separable kernels cannot satisfy the marginal properties

since §(k — p) = ¢(p, k,p) = g?(k — p) means g(k — p) =
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Fig. 4: Vertex-frequency reduced interference distribution us-
ing the kernel from Fig. 3(left) with its marginal values equal
to |x(n)|? and | X (k)|?, respectively.

d(k — p). These kernels do not satisfy Zévzl o(p,k,q) =1
for all p and q.

Vertex-vertex shift domain distribution: The general vertex-
frequency distribution can be written for the vertex-vertex shift
domain as a dual form to (10)

N N
G(n.k) = ) Y a(m)z* ur(m)ui(De(m,n,1), (1)
m=1 [=1
where ¢(m,n,1) is the kernel in this domain (the same math-
ematical form as the frequency-frequency domain kernel). The
frequency marginal is satisfied if 25:1 p(m,n,l) =1 holds.
The vertex marginal is met if o(m,n,m) = §(m — n). The
relation of this distribution with the vertex domain spectrogram
(3) is simple using

p(m,n,1) = hn(m)hs, (1)

N N
=D > Hp)H" (q)up(m)uy(n)uy(lyuy(n).
p=1q=1
This kernel is defined by the frequency domain window form
H(p). It cannot satisfy both marginal properties. The unbiased
energy condition 22;1 w(m,n,m) =1 reduces to (6).
Classical time-frequency analysis: The approach presented
in this paper can be used for the directed graphs and adjacency
matrices as well. The classical Fourier and time-frequency
analysis follow from a directed ring graph. The adjacency

matrix decomposition produces complex-valued eigenvectors
of form uy(n) = exp(j27nk/N)/vV/N.

IV. CONCLUSION

In this letter, reduced interference vertex-frequency distri-
butions were introduced. The main advantage of these distri-
butions is that they can produce a signal representation with
high energy concentration while reducing interferences and
preserving the vertex and frequency marginal property.
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