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A Tutorial on Sparse Signal Reconstruction and its
Applications in Signal Processing

Ljubisa Stankovic*, Ervin Sejdic’T, Srdjan Stankovi¢*, Milo$ Dakovi¢*, and Irena Orovic*

Abstract

Sparse signals are characterized by a few nonzero coefficients in one of their transformation do-
mains. This was the main premise in designing signal compression algorithms. Compressive sensing
as a new approach employs the sparsity property as a precondition for signal recovery. Sparse signals
can be fully reconstructed from a reduced set of available measurements. The description and basic
definitions of sparse signals, along with the conditions for their reconstruction, are discussed in the
first part of this paper. The numerous algorithms developed for the sparse signals reconstruction are
divided into three classes. The first one is based on the principle of matching components. Analysis
of noise and nonsparsity influence on reconstruction performance is provided. The second class of
reconstruction algorithms is based on the constrained convex form of problem formulation where lin-
ear programming and regression methods can be used to find a solution. The third class of recovery
algorithms is based on the Bayesian approach. Applications of the considered approaches are demon-
strated through various illustrative and signal processing examples, using common transformation
and observation matrices. With pseudo-codes of the presented algorithms and compressive sensing
principles illustrated on simple signal processing examples, this tutorial provides an inductive way
through this complex field to researchers and practitioners starting from the basics of sparse signal
processing up to the most recent and up-to-date methods and signal processing applications.

Index terms— Sparse signals, Compressive sensing, Signal sampling, Signal representation, Signal
reconstruction, Discrete Fourier transform

1 Introduction

A discrete signal can be considered as sparse in a certain representation domain if the number of
nonzero values in that domain is much smaller than the total signal length. Common situation in
the case of real-world signals is that the number of significant coefficients is small as compared to the
number of other components. These coefficients could be neglected or set to zero. The sparse signals
are considered as compressible signals.

When the sparse signal representation is obtained as the result of a linear signal transformation, then
the signal samples may be considered as observations (or measurements) of the sparse representation
domain. In recent years, it has been shown that sparse signals can be reconstructed from a reduced
set of measurements, much smaller than the conventional number of samples required by the signal
bandwidth [3,4,8,13,17,18,26,27,32,34,36,37,41,42,44,48,70,72,74,76,81,90,112,113]. A reduced set of
measurements can result from a rational and unwasteful sensing strategy aiming to acquire the lowest
possible number of measurements (compressive sensing), but it can also result from a physical unavail-
ability to take a complete set of measurements/samples. Moreover, in various applications it happens
that arbitrarily samples are heavily corrupted by disturbances, and these are in turn omitted and con-
sidered as unavailable. Regardless of the reasons for dealing with a reduced set of measurements, all
of the mentioned circumstances can be considered within the unified compressive sensing theoretical
framework. It allows us to accurately recover sparse signals using only available samples, provided that
the measurement process is incoherent, i.e., the relative contribution from nonzero transform domain
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coefficients is different for each measurement. By exploiting the sparsity and coherence, the problem
of recovering the entire signal is observed as a problem of finding the sparsest representation in certain
transform bases that corresponds to the available set of measurements.

Many techniques have been adopted to produce the sparsest approximation from redundant dic-
tionaries. The simplest yet efficient class of algorithms belongs to the so-called greedy iterative meth-
ods [33], wherein the algorithm selects the transform basis function that participates the most in to-
tal signal energy in each iteration. The most common among these algorithms are Matching Pursuit
(MP) [58], Orthogonal Matching Pursuit (OMP) [110,111], and Compressive Sampling Matching Pursuit
(CoSaMP) [63,64]. The approaches in the second class are based on the convex optimization algorithms.
The basic formulations of problems in this class are formulated using the Basis Pursuits (BP) [29], which
relaxes the sparsity condition by the ¢1-norm and solves the problem through linear programming, us-
ing for example, the Basis Pursuit Denoising (BPDN) [55] or the Least Absolute Shrinkage and Selection
Operator (LASSO) [23,57,107]. The third class covers Bayesian methods that observe the unknowns as
stochastic variables with assigned probability distributions [6,10,45,109,114].

The reconstruction of sparse signals from a reduced set of measurements is the topic of this tutorial.
We will start by reviewing the basic concepts and constraints of compressive sensing theory needed to
understand signal reconstruction algorithms. Further, several reconstruction algorithms belonging to
the three mentioned classes are explained and summarized. The benefits and efficiency of using these
algorithms are demonstrated through the variety of signal processing applications presented in the last
part of this tutorial.

2 Reconstruction of Sparse Signals

Basic definitions needed to understand various reconstruction approaches will be introduced first. Con-
ditions that have to be met in order to reconstruct the full signal from a reduced set of measurements
will be presented in this section as well.

2.1 Measurements

Consider a set of N coefficients X(k), for k = 0,1,...,N — 1. Denote the vector with elements X(k) as
X. This vector is considered as sparse if the number of its nonzero coefficients, denoted by K, is much
smaller than the total number of samples N,

X(k) =0 fork ¢ K = {ky,kp, ... kg } and K < N. )

The number of nonzero coefficients is commonly denoted by ||X||, = K. Function [|X||, is typically
referred to as the {p-norm (norm-zero) or the {y-pseudo-norm of the vector X although it does not satisfy
the norm properties.

A measurement of vector X is defined as a linear combination of its elements X (k). The mth mea-
surement will be denoted by y(m). If M measurements y(0),y(1),...,y(M — 1) are available they can
be written in the form of a system of M linear equations

N—
y(m) = Elzxk(m)X(k), m=0,1,....M—1, M<N, ()
k=0

where a(m) are the weighting (measurement) coefficients. In a matrix form we can write

y(0) o (0) 1(0) e an-1(0) X(0)
y(1) _ (1) (1) an-1(1) X(1)
yM-1)]  [ao(M=1) &(M=-1) - axa(M-1)] [x(N-1)
y = AX.

The matrix A, whose elements are a(m), is called the measurement matrix.
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2.2 Common Measurement Matrices

Some common measurement matrices used in practical applications and theoretical considerations will
be presented here.

Randomness of measurement matrices is a favorable property in compressive sensing. Matrices
with random elements are often used. The most common measurement matrix with random elements
is a matrix with Gaussian-distributed numbers as its elements

ag(m) L N(0,1)
k ~ = 7).
vM

The mean value of these numbers is zero and the variance is one. They are normalized with 1/ \/M SO
that the energy of each column of the measurement matrix is one. Bernoulli random matrices, whose
elements take the value 1/v/M or —1/+/M, are also used in compressive sensing.

In signal processing, the measurement matrices are usually formed as partial matrices of the com-
mon (inverse) linear signal transforms. Consider a signal x and its linear transform X. An analysis
model (direct transformation) is

X = ®x, 3)

where ® is a full size (N x N) transformation matrix. The synthesis model is of the form
x =YX, 4

where Y is a full size (N x N) inverse transformation matrix. A signal sample x () can also be written
as

N-1
x(n) = kZ () X (k). )
=0

where (1) are the elements of the inverse transformation matrix. Assuming a linear transform, the
signal samples x (1) can be represented as linear combinations of the transform coefficients X (k). There-
fore, the signal samples can be considered as the measurements of X.

An arbitrary set of signal samples with elements x(n,,, 1) = y(m), where m=0,1,...,M — 1 is a set of
measurements where the measurement matrix elements ay () are equal to ¢ (1,,11). The measurement
matrix A can be obtained from the inverse transformation matrix ¥ by keeping only the rows that
correspond to the positions of the measurements y(m) within the signal vector x.

In signal processing, the most common transform is the discrete Fourier transform DFT.! The coeffi-
cients of its direct transform matrix ® are defined as ¢y (n) = exp(—j27tnk/N). The inverse DFT matrix
coefficients are .

— j2rtnk /N
Yiln) = PN,

The signal samples y(m) = x(1,,41), for m=0,1,...,M — 1, where
nm € M ={ny,ny,...,np} €{0,1,...,N —1},
and

1 N-1

YOm) = x(s1) =+ T X(k)eRnmk/N
k=0

IConsider a signal x(t) of a duration T and its samples x(nAt) satisfying the sampling theorem. The periodic extension of this
signal can be written in a Fourier series (FS) form

1 N-1 . .
x(t) = N kgf] X (k)el?™*T,
where the FS coefficients X (k) are equal to the DFT coefficients if we use the notation x(n) for x(nAt), and At = T/N as the
sampling interval. When the sampling theorem is satisfied then

T
X(k) = %/x(t)e*ﬂ"’“”dt = Y x(n)e PNk =0,1,2,.. ,N—1.
0 n=0

This is the DFT of a signal x(n).
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can be considered as the measurements of coefficients X (k). The measurement matrix is defined in this
case by

1 e2mm/N ... p2en(N-1)/N

1 |1 el2mny/N -, ej27'm2(N71)/N
A== 6
N . . . . ( )

1 el2mm/N .. ejZHnM(Nfl)/N

This is a partial inverse DFT matrix. In compressive sensing theory, it is common to normalize the
measurement matrix so that the energy of its columns (diagonal elements of A A matrix) is equal to
one. Then the factor 1/N in A should be replaced by 1/+/M.

In order to increase randomness in the Fourier transform matrix, the measurements may be taken
at any random instant. Then the measurement vector elements are y(m — 1) = x(t,,), where t,,, m =
1,2,...,M, are random instants within the considered time interval T. The measurement matrix follows
then from the Fourier series definition

N—1 .
x(t) =Y X(k)e>m™/T,
k=0

It has been assumed that the Fourier series coefficients are within 0 < k < N — 1. The measurement
matrix is

1 G2TH/T . G2rh(N-1)/T
1 e2m/T ...  pi2nh(N-1)/T

A=, : . . @)
i ejZ?Tt.M/T . ejzﬂ.'tM(.I\]—l)/T

with a possible normalization factor 1/v/M. This measurement matrix is a partial random inverse
Fourier transform matrix.

Other signal transforms and other random distributions can be used to form an appropriate mea-
surement matrix. For example, if a signal is sparse in the discrete cosine transform (DCT) domain [2]
(or in the discrete sine transform (DST) domain [60]), then this transform will be used to perform mea-
surements and form the corresponding measurement matrix.

The signal of interest x(n) can also be measured in an indirect way. Consider, for example, a signal
which is sparse in the domain of the wavelet transform or the short-time Fourier transform. Sparsity do-
main coefficients X are then related to the signal samples within the window used for their calculation.
If we consider M signal samples from one window only, they do not contain any information about
the transform coefficients calculated using signal samples outside this window. The reconstruction of
all transform coefficients X is not possible with such a set of samples. However, if we form a linear
combination of all signal samples x(n) with random nonzero coefficients by (1) then a measurement
y(m) defined as

y(m) = bo(m)x(0) + by (m)x(1) + ..+ by_1 (m)x(N — 1), ®)

will contain information about all signal samples and all sparsity domain coefficients X. In a matrix
form the relation between the signal x and the indirect measurement vector y is given by

y = Bx,

where by (n) are elements of the matrix B. Since the signal is related to its sparsity domain by x = ¥X,
the measurements are related to the sparsity domain transform of the signal as

y = B¥X = AX,

where
A =BY.

These cases can be analyzed in a similar way as in the case of direct measurements.
Very often in practical applications the signal sparsity cannot be revealed in a single orthonormal
transform basis. Instead, we need to use larger and diversified dictionaries of atoms. In that case,
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the proper choice of the dictionary that sparsifies the signal is essential in order to model the signal
as a linear combination of a few dictionary atoms [1, 66,77,120]. One common solution is to use the
overcomplete dictionaries made from several prespecified sets of linear transforms as it is the case
with the oversampled DFT, Gabor frames, wavelet and curvelet frames, as well as the concept of con-
catenated transform matrices. The second approach that recently evolved, assumes the design of the
dictionary through the process of adaptive atoms learning based on the set of training signals to which
it is supposed to serve [1,77]. Generally there are many techniques that can be used for adaptive dictio-
nary learning mainly based on the machine learning algorithms, starting from the maximum likelihood
analysis, optimal directions, principal component analysis (PCA), parametric training methods, and
particularly the K-SVD algorithm [1] are examples of flexible iterative algorithm that can work with
any pursuit method.

2.3 Direct Search Solution

We will start the reconstruction analysis with the simplest case of a sparse signal representation X with
only one nonzero coefficient. This signal has sparsity K = 1. Hence, we are looking for a single nonzero
coefficient X (i) with unknown value and position within X. A direct sensing approach would imply
sensing/measuring the set of N independent values of X(k), for k =0,1,...,N — 1. However, if N
is large and there is only K = 1 nonzero coefficient in X we can definitely solve the problem with a
significantly reduced number of measurements.

1) Consider one available measurement of X denoted by y(0):

N-1

y(0) = ) X(k)ax(0), ©)

k=0

where 2, (0),k=0,1,...,N — 1 are the weighting coefficients. This equation represents an N-dimensional
hyperplane in the space of transform domain variables X(0), X(1), ... , X(N — 1), where only one of the
variables X (i) is nonzero. Any cross-section of this hyperplane with any of the coordinate axes could be
a solution to the reconstruction problem for K = 1. Assuming that all weighting coefficients are nonzero
a,(0) # 0, a solution will exist for any k. Thus, one measurement can produce N possible solutions with
sparsity K =1:
X(k) =y(0)/ax(0), k=01,...,.N -1

It means that with one measurement we cannot solve the problem. We need one more measurement, at
least.

2) Assume that two measurements y(0) and y(1) are available. Now we have two hyperplanes and
two sets of possible solutions:

X(k) =y(0)/ax(0),  k=0,1,...,.N—1,
X(k)=y(1)/ax(1), k=0,1,...,.N—1.

The unique solution is achieved if these two sets of solutions have only one common value at k = i

X(i) = y(0)/i(0) = y(1)/a;(1).

Statement: A common value for two measurements X (i) = y(0)/a;(0) and X(i) = y(1)/«;(1) is unique
if
, e _ got |%(0) - ax(0)
a;(0)ag (1) — a;(1)ax(0) = det [oq(l) ar(1) #0 (10)
for any i # k.

This statement will be proven by contradiction. Assume that two solutions with sparsity K =1
can be obtained. The nonzero coefficient of the first solution is X(i) and the nonzero coefficient of the
second solution is X (k) at k # i. Both of them are obtained based on two measurements y(0) and y(1).
Then these two solutions satisfy the measurement equation with only one nonzero coefficient

o) S]]
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and

[555’3] B [ZE(B ii%?i] [x?m]' (11)
By subtracting these two equations we obtain:

[ zzg?; z:g; } [ —)gi(él)c) ] =0 (12)

For a;(0)a(1) — a;(1)ax(0) # 0 follows X(i) = X(k) = 0. Therefore, two different nonzero solutions
X (i) and X(k) in this case cannot exist. This concludes the proof.

It means that rank (A ) =2 for any A; being a 2 x 2 submatrix of the matrix of coefficients (measure-
ment matrix) A. Here we will introduce the spark of a matrix A in notation spark{A}. While the rank
of a matrix is equal to the largest number of independent columns/rows the spark of a matrix is the
smallest number of dependent columns/rows. If any column of matrix A is with all zero values then
spark{A} = 1. If there is no an all-zero column and there are two linearly dependent columns (in this
case a singular 2 x 2 submatrix A,) then spark{A} = 2. In our example, the reconstruction is unique if
spark{A} > 2, meaning that there are no two dependent columns in the measurement matrix A.

Generalization: Consider now a sparse vector X(k) with sparsity K. Using a subset of K measure-

(1)

ments, denoted as y ', we can get a set of solutions for possible nonzero coefficients. For each as-
sumed positions of K nonzero components in X (k) we form the vector Xg with K nonzero elements
ke K = {kq,ky,... kg }. The system yg) = A Xk is solved for each possible set of positions {ky,ky, ..., kx }.
Note that there are (%) combinations for different positions. We get then (¥) possible solutions Xx. The

same process should be done with another subset of K measurements yg). Again, we solve the system

y}?) = AxXg with (Ilg ) combinations of different nonzero positions {k1,kz, ..., kx }. If these two sets of (II\<] )

solutions have only one common member Xk, then this is the solution of our problem. The uniqueness
of the solution will be discussed next.

Let us assume that two different solutions for X of sparsity K exist and that M = 2K measurements
are available within y. Then, the solution is unique if the determinants of all Ayx submatrices of A
are different from zero (all possible Ak submatrices are nonsingular). If we denote these two nonzero

parts of the solutions by Xg) and Xg), then both of them satisfy the measurement equation

(1) 0
1 )] [ Xk | = 1 2 Kl =
AL A?)] [01;] —y and [AQ) AP Xg(z)} =y. (13)
where Ag) and Ag) are M x K submatrices of A corresponding to the elements in Xg) and X§<2).

2)

There are no nonzero solutions for Xg) and X§< if the determinant of 2K x 2K matrix A,x = [ A(1> A(2>}

K K
is nonzero. If all possible submatrices Ak (including all lower order submatrices) of measurement ma-

trix A are nonsingular, then two solutions of sparsity K cannot exist, and the solution is unique. The
proof is straightforward, following the case for K = 1.
Based on the previous analysis, the solution for a K sparse problem is unique if

spark{A} > 2K.

In general the number of measurements is M > 2K. Again we should consider each of possible
vectors Xg with K nonzero elements k € K = {ky,kp,....kx}. In this case we have M equations with K
unknowns. Since there are more equations than the unknowns the system is solved in the mean square
sense as

Xy = (A}jAK) ~Aly, (14)

Details and derivation of this formula are given in Section 3.1. This system has to be solved for (II\<] )
combinations of possible nonzero positions {kj,k, ... kx}. Among all solutions, the desired one is the

solution producing a minimal squared error calculated as ? = ||y — AKXK||§. In theory it should be

zero for the true solution of the problem. However, there are (II}] ) possible combinations.
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For any reasonable N and K the number of combinations (II}] ) is extremely large and computationally
not feasible since this combinatorial problem is an NP hard problem (with NonPolynomial number of
combinations).

As direct search is not a viable option, several alternative reconstruction algorithms have been pro-
posed. We will start with algorithms based on the direct problem solution with a minimal number
of nonzero coefficients that avoid a direct search combinatorial approach. In the second class of algo-
rithms the convex relaxation of the {p-norm to the ¢;-norm is used with appropriate iterative solvers.
Finally, the Bayesian approach to the sparse signals reconstruction is presented. Before we present the
commonly used reconstruction algorithms, we will look at some important conditions imposed on the
signal reconstruction.

2.4 Conditions for Reconstruction

For an arbitrary K sparse X and M > 2K its measurements the reconstruction solution is unique if all
measurement submatrices Ay are nonsingular for all possible positions {ki,k,....kox} and for any
combination of 2K indices from all possible measurement indices m € {0,1,2,...,M — 1}. It means that
rank(Ak) = 2K for all Ayk. Based on the previous analysis, we can again state that the solution for a K
sparse problem is unique if

spark{A} > 2K.

Note that for any square matrix its determinant is equal to the product of its eigenvalues det{ Ak } =
did; - ... - dyk. The uniqueness condition rank(A,g) = 2K can be rewritten as

min|d;| >0
1

for all submatrices A,x of the measurement matrix A.

If a matrix Ayg is of an order of M x 2K then the rank of this matrix can be checked by considering
AZTKAZK. It means that there is no need for combinations over measurements (to form a quadratic
matrix 2K x 2K from M x 2K matrix) if M > 2K since the rank of M x 2K matrix A,k can be checked by
calculating the rank of a 2K x 2K matrix A2TKA2K using

rank(Apx) = rank(AT Agy).

In numerical and practical applications we would not be satisfied if any of the determinant det{ Ayx }
or det{AzTKAZK} is close to zero. In this case, the theoretical condition for a unique solution would
be satisfied, however the analysis and possible inversion would be highly sensitive to noise in the
measurements. Thus, a practical requirement is that the determinant is not just different from zero, but
that it sufficiently differs from zero so that an inversion stability and noise robustness is achieved.

Restricted Isometry Property: From the matrix theory it is known that the norm of a matrix Ak
satisfies
1A2xXo |l _ XgxAdxAarXox

p
1 X2k |2 XJxXax

min > < Amax (15)
where Apin and Amax are the minimal and the maximal eigenvalue of the (Gram) matrix AzTKAZK and
X5 = |X(0)[2 4 ...|X(N — 1)|? is the squared £,-norm (norm-two) of X.
The isometry property for a linear transformation matrix A holds if
2
1AX]l3

|AX|j5 =[X|)3 or 7 =1
I1X]3

The restricted isometry property (RIP) for a matrix Apx holds if
| A2k Xax|l3
2
[1Xaxl2

for any 2K-sparse vector Xpx, where 0 < dyx < 1 is the isometric constant [7, 15,24, 28, 35,116]. From
Egs.(15) and (16) we can write

1-6 <

<1+ dxk (16)

Sk = max{1l — Amin, Amax — 1}
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Commonly, the isometric constant is defined by Amax — 1 and it is calculated as the maximal eigenvalue
of matrix AEKAZ x — I. Normalized energies of the columns of matrix A (that are equal to the diagonal
elements of A2TKA2K) are assumed. Otherwise, the normalization factors should be added. For complex-
valued matrices the Hermitian transpose should be used in A?KAZK.

For a K-sparse vector X and a measurement matrix A the RIP is satisfied if relation (16) holds for all
submatrices Ag with 0 < §x < 1. The solution for K-sparse vector is unique if the measurement matrix
satisfies the RIP for 2K-sparse vector X with 0 < d,x < 1. Note that if the RIP is satisfied then A, > 0.
It means that all AZTKAzK submatrices are nonsingular.

The restricted isometry property for small dk is closer to the isometry property and improves the
solution stability. It can be related to the matrix conditional number. The conditional number of a matrix
AZT x Aok is defined as the ratio of its maximal and minimal eigenvalues

cond{AgKAZK} = Amax.

)\min

If a matrix Ak satisfies the restricted isometry property with dyx then

cond {AZTKAZK} < L 521(.
With small values of d, the conditional number is close to one, meaning stable invertibility and low
sensitivity to the input noise (small variations of the input signal (measurements) do not cause large
variations of the result).

Incoherence condition: The mutual coherence (coherence index) of a matrix A is defined as the
maximal absolute value of the normalized scalar product of its two columns

u =max |u(m,k)|, form #k

where Mo
_ Yito am(Dag (i)
T yM-1 N2
21’:0 ‘“k (1) |

and ay (i) are the elements of the kth column of matrix A. Note that y(m, k) are the off-diagonal elements
of matrix A” A normalized with the corresponding diagonal elements. This index plays an important
role in the analysis of measurement matrices. The coherence index should be as small as possible (mean-
ing high incoherence). With smaller values of coherence index the matrix A7 A is closer to the identity
matrix.

The reconstruction of a K-sparse vector X from M measurements is unique if

p(m,k)

(17)

1 1
1<<2(1+V). (18)

The presented reconstruction condition based on the coherence index will be derived in Section 3.3.
The coherence index y cannot be arbitrarily small for an M x N matrix A (M < N). The Welch upper
bound relation holds
N-M

> 1
=\ MIN—T) (19)
We can use the mutual coherence to determine the spark lower bound
1
spark(A) > (1 + V> . (20)
If X is a solution of a system of equations y = AX such that
IXllp =K< 2 (14 2) < 2 spark(a) e1)
0=R= T e) =2 ’

then X is necessarily the sparsest possible solution.
The RIP constant can be related to the coherence index as

ok < (1= K)p.
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3 Norm-Zero Based Reconstruction

The formal signal reconstruction approach based on the signal sparsity states that the signal can be
reconstructed from its measurements defined by vector y, by finding the sparsest vector X that cor-
responds to the measurements y. Hence, by introducing the notation for the number of components
based on the {)-norm K = ||X||,, the fundamental minimization problem can be formulated as:

min ||X]|, subject to y = AX. (22)

Generally, the {p-norm is not suitable for minimization methods. However, a class of algorithms
is based on the minimization of the number of coefficients K = ||X||, in an implicit way. For instance,
in certain applications we can predict the number of components or we are able to estimate the posi-
tion of nonzero coefficients. In this way the computational complexity will be significantly reduced as
compared to the direct search method [58,111].

3.1 Reconstruction with Known or Estimated Positions

Let us initially assume that the positions of nonzero coefficients are already estimated and known. By
denoting the set of these positions by K = {ky,k,...,kx} and the vector of unknown coefficients by
Xk = [X(k1),X(kp),..., X (kk)]T, we reduce the undetermined system y = AX to the overdetermined
system

y = AxXk, (23)

where Ay is an M x K matrix (K < M) obtained from the measurements matrix A with columns cor-
responding to the zero-valued transform coefficients being omitted. Its solution, in the least mean-
squared sense, follows from the minimization of difference of the available measurements and their
values produced by the reconstructed coefficients Xk, defined by

2 H
e = [ly — AgXkll; = (y — AgXk)" (y — AgXk)
= |yl — 2XF Ay + XZAZAXk, (24)

where H denotes the Hermitian transpose conjugate. Using symbolic derivation over the vector of
unknowns, we obtain the minimum of error e? from

8e2 H H
with its solution being equal to
H N :
Xy = (AK AK) Ally = pinv(Ag)y. (25)

The pseudoinverse of matrix A is defined by pinv(Ag) = (A Ak) ! Al

3.2 Estimation of Nonzero Coefficient Positions

The positions of nonzero coefficients in X are not known in general. These positions can be estimated
using the matching pursuit (MP) approach to the sparse signal reconstruction. The orthogonal matching
pursuit (OMP) is an improved greedy reconstruction algorithm compared to the MP. The reconstruction
of nonzero coefficients X is iteratively updated by projecting the vector of measurements y onto the
columns of matrix A that corresponds to the current support set (see Algorithm 1). The idea behind this
approach is described next.

We begin with an initial estimate given by:

Xo = Ally = ATAX. (26)

An intuitive idea for the initial estimate comes from the fact that the measurements are obtained as
linear combinations of the sparsity domain coefficients with the rows of the measurement matrix A as
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Algorithm 1 Norm-zero based OMP reconstruction
Input:
e Measurement vector y

e Measurement matrix A
e Number of selected coefficients in each iteration r, by default r =1

e Required precision ¢

1 K+ O
2. ey
3: while |le||, > edo
ositions of r highest
! (ke k) Salues in Afe i
5 K+ KU {kq,ko,... ks }
6: Ak < columns of matrix A selected by set K
7: Xk pinV(AK)y
8 yk < AxXk
9 e~ y-—Yyk
10: end while
0  for positions not in K

11: X+ . ]
Xk for positions in K

Output:
e Reconstructed signal coefficients X

weights. It means that the projection of the measurements y to the measurement matrix A can be used
to estimate the positions of nonzero coefficients. In an ideal case matrix A A should be an identity
matrix and the initial estimate Xy would fully correspond to the exact solution X. However with a
reduced number of measurements this cannot be achieved. Still the requirement is that the diagonal
elements of A" A are as large as possible with respect to the other nondiagonal elements.

The first element of the set K is estimated as the position of Xy maximum

ki = argmax |Afy|.

Then, the system (23) is solved to find minimum of |y — A KXK||§ with respect to Xg by using Eq.(25)
with K = {k; }. The reconstructed vector y; = A;Xj is calculated. If y; =y the signal is of sparsity K =1
and X is the problem’s solution. If this is not the case the estimated component is removed from y and
the signal e; =y — y; is formed.

Then the second nonzero position is estimated as

ky = argmax |Afe|

and the set K = {kq,k;} is formed. It is very important to use both coefficients X (k1) and X (k) in this
calculation and to reestimate the first coefficient X(k;) as well. We repeat the process with K = 2 as
outlined above to obtain the reconstruction X, measurements y,, and the error vector e; =y — y». If
e; is a zero vector, the solution is found as y = y,. If this is not the case, we will continue to estimate k3
using e; and find K = {ky,k,k3}, followed by X3 and y3 calculations.

The procedure is continued until zero (or acceptable) error is achieved.

Example 1. Signal
x(t) = 0.3 + 0.4exp(—jl127t) + 0.5exp(j407t)

is considered within 0 < t < 1. This signal is uniformly sampled at t, = nAt = n/N, with N = 64. A
random subset y of M = 16 samples y(i) = x(n;) atn;, i =1,2,...,M, is available, Fig.1 (first row, left). The
measurement matrix A is a partial inverse DFT matrix corresponding to the samples defined by time indices
n;, i=1,2,...,M. Since the inverse DFT matrix is scaled with 1/N the initial estimate in the DFT matrix
case is calculated as Xo = NAfy.

10
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Figure 1: Iterative signal reconstruction: Available samples y(n); Exact DFT coefficients X (k); Initial
estimation of the DFT coefficients Xy (k); The estimated DFT coefficient in the first iteration Xj (k); The
estimated DFT coefficients in the second, and the third iteration, denoted by X, (k), and X3(k), respec-
tively.

The iterative procedure for nonzero coefficient indices determination is used. The recovered signal
is calculated for detected DFT positions during the iterations according to the presented algorithm. The
recovered DFT values in the rth iteration are denoted by X, (k) and presented in Fig.1. After first iteration,
the strongest component in the initial transform is detected and its amplitude is estimated. Its value differs
from the true one, since the other four undetected components degrade the estimation accuracy. After three
steps, all components are detected, respectively. In this final iteration matching between the reconstructed
signal and the available signal samples is achieved and the algorithm is stopped. The DFT of the recovered
signal is presented as X3(k) in the last subplot of Fig.1. Its values are the same as in the DFT of the original
signal, Fig.1 (first row, right). A simple and efficient uniqueness check in this case is proposed [88]. O

3.3 Coherence Index Interpretation

One way to estimate the positions of nonzero coefficients (and to solve the signal reconstruction prob-
lem) is based on using the initial estimate Xo = Afy = AHAX. Since the ideal (identity matrix) form
of AH A can not be achieved, a measure of closeness to the identity matrix can be the ratio of the maxi-
mal value of nondiagonal elements and the diagonal elements of this matrix. Now we will analyze the
elements of A" A. The diagonal elements are

M-1
age =Y ag(i)ag (i) = (ag,05),
i=0

while the elements outside the diagonal are

M—-1
ﬂmk - Z Dém(l)a;(l) = <D‘m1“z>, m # k,
i=0

11
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where <ocm,zx;§> denotes the scalar product of &, and DCZ.

Consider a K-sparse signal coefficients X. Their measurements are y(m) = Y ycx X(k)ag(m), with
K = {ky,ka,...,kx}. The worst case of influence of other components to the strongest component in
the initial estimate occurs when the remaining K — 1 components are equally strong (with equal am-
plitudes X(k) =1, k € {kq,kp,...,kx}). Then the amplitude of the strongest component is 1 (assuming
normalized measurement matrix with g, = 1 and normalized signal component amplitude). The worst
case for the detection of this component is when all other components maximally reduce the value of
considered component in the initial estimate Xo(i) = Y e Eo—g ax(m)a (m). The influence of the kth
component on the mth position is Z%:_Ol a(m)a (m). Its maximal possible value is y. In the worst case
the amplitude of the considered strongest component is then 1 — (K — 1)u. At the position where there
is no component in X (k) the maximal possible contributions of all K components (being equal to y) sum
up in phase to produce the maximal possible disturbance Kyu. Detection of the strongest component is
always successful if the worst possible amplitude, at the considered component position, is greater than
the largest possible disturbance, [84],

1—(K—1)u>Kpu

producing the condition given in Eq.(21):

1 1
K<2<1+y)' (27)

After the first component is successfully detected then the previous relation will certainly hold for
K — 1 sparsity, guaranteeing the exact (unique) solution.

3.4 CoSaMP Reconstruction Algorithm

A slightly different reconstruction approach is based on the compressive sampling matching pursuit
(CoSaMP). CoSaMP is an algorithm where a signal with a desired sparsity K is obtained in an iterative
way [65]. The measurement vector y is projected onto the columns of the measurement matrix A and
2K positions with the highest projection magnitudes are selected. The set of the selected positions is
expanded with nonzero positions in the current estimate of the sparse signal X. A solution in the least
squared sense is found and K coefficients with the highest magnitudes are selected as the reconstructed
signal X. The measurement vector is adjusted by subtracting the current solution and the iterative pro-
cedure is repeated. The CoSaMP reconstruction procedure is presented in Algorithm 2. The procedure
can be performed with a predefined number of iterations or by obtaining a desired norm value of the
residual measurement vector e.

3.5 Noise in the Initial Estimate

Consider a K-sparse vector X with elements X (k), k=0,1,2,...,N — 1, whose nonzero values are at
K = {ky,ka,... kk}. The measurements of this sparse vector are

y(m) =Y Cuax(m), m=01,., M-1, (28)
keK

where X (k) = C; are unknown nonzero elements. The initial estimate Xo = Ay at a position i ¢ K
(non-component positions) is

M-1
Xo(i)= ), Cr ), ax(m)a(m).
keK m=0

For k # i and common measurement/basis functions, the expected value of the scalar product is

zero,
M-1

E{ y ock(m)ocl’-‘(m)} =0.

m=0

For a random set of 1 < M < N available measurements, according to the central limit theorem we
can also consider that the variable X;(7) is Gaussian. As a consequence of having a reduced number M

12
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Algorithm 2 CoSaMP reconstruction algorithm

Input:
e Measurement vector y

e Measurement matrix A

e Desired sparsity K

1: X4 Onx1

2: ey

3: repeat

4: T <+ positions of 2K highest values in Afe

5: T, < positions of nonzero coefficients in X

6: T+ T{UT,

7: At < columns from matrix A selected by set T

8 b+« pinv(Ar)y

9: Put K coefficients with highest magnitude from b to the corresponding positions in X and set

remaining coefficients to zero.

10: e+ y—AX
11: until stopping criterion is satisfied

Output:
e Reconstructed K-sparse signal vector X

of available values in y the initial estimate can be considered as a noisy version of the true coefficients
X (k). For i € K their mean-value is

keK m=0

M—-1 M-1
E{Xo(i)} = E{ Y. G ) Dék(m)“f(m)} =C; Zo aj(m)ef (m).

The variance of the random variable X (i) can be calculated for various basis/measurement functions
[103]. It corresponds to the noise of variance 02 in the transform domain representation X. This noise
depends on the number of missing samples.

For example, for the partial DFT matrix, with the DFT coefficients Cy, and the initial estimate in the
DFT matrix case calculated as Xo = NAHy, the mean value is obtained as:

E{X,(i)} = MC;. (29)

The coefficients C; corresponds to the signal amplitude in the time domain. The variance at the non-
component positions i ¢ K is given by [84,96]

N-M
N-1"

o? =var{Xo(i)} = ) |CG’M
keK

(30)

The value Y ik |Ci|? can be estimated as the mean energy of the measurements/available samples
using 4 T4y ()2

When all signal samples are available, M = N in the case of the DFT as sparsity domain, the variance
of this noise will be zero.

3.6 Single Iteration Reconstruction

The estimated variance can be further used to estimate the positions of the K signal components.
Namely, we can define the probability that all (N — K) nonsignal components are below a certain thresh-
old 7 as:
2 N—-K
P(1) = <1 —exp( )) . (31)

o2

13
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Algorithm 3 SIRA - Single iteration reconstruction algorithm
Input:
e Measurement vector y

e Measurement matrix A

e Probability P for components detection

e Variance o2

T+ \/—azlog(l - P%)

XO = AHy

: K {k:|Xo(k)| > 1}

: Ak ¢ columns of matrix A selected by set K
: Xk pil‘lV(AK)y

)

X 0  for positions not in K
Xk for positions in K

Output:
e Reconstructed signal coefficients X

In order to estimate the positions of signal components, we may fix the value for P(7) = P and
calculate the threshold according to:

T= \/—021og(1—Pﬁ) %J\/—log(l—Plﬁ). (32)

Based on the threshold derived from the variance of the random variable X((i), we can define a
simple single-iteration reconstruction algorithm (SIRA), [67,68,99,103,106] (Algorithm 3).

Example 2. Signal

x(t) =sin (127rt + g) +0.6cos (327Il’ + g)
is considered within 0 < t < 1. This signal is uniformly sampled at t, = nAt =n/N, with N = 64. A random
subset y of M = 32 samples y(i) = x(n;) atn;, i =1,2,...,M, at n;, i =1,2,...,M is available, Fig.2 (first
row, left). The measurement matrix A is a partial DFT matrix corresponding to the samples defined by time
indices n;, i=1,2,..., M.

The one-step procedure for nonzero coefficient indices determination is used. The threshold T = 9.5
is calculated with P = 0.99 using (32), while ¢ is estimated based on the mean energy of the available
samples and (30). The recovered signal is calculated for detected DFT positions. The recovered DFT values
are denoted as X, (k) and presented in Fig.2 (second row, right). Its values are the same as in the DFT of the

original signal, Fig.2 (first row, right). A simple and efficient uniqueness check in this case is proposed [88].
O

3.7 Additive Noise

Assume now that an input additive noise €(m) exists in the measurements
y+e=AX.

The equations for noisy measurements and detected positions of sparsity coefficients k € K = {ky,k», ..., kg }
are
y + &= AxXRg, (33)

where Xy is the resulting noisy K sparse vector. The solution is obtained as

-1
Xe = (AFAK) A (y+e) = Xic+Xn (34)

14
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Figure 2: Single iteration reconstruction: Available samples y(n); Exact DFT coefficients X (k); Initial
estimation of the DFT coefficients X (k); The estimated DFT coefficients X (k).

where Xg = Xg + Xp. The true coefficients are Xg = (A?AK) - Allyand Xy = (A?AK) - Alleis the
noise influence on the reconstructed coefficients.

From (33) we can write ||y|, = ||[AxXk||, and ||e|l, = [|AxXn]|,- If ||AxXk]||, is normalized with
IIXk||, and ||AxXn||, with ||Xy/]|, the matrix Ax norms are obtained. The ratio of these norms is

Iyll2 A X2 q

X X

H KHz — Il KHZ S COl’ld(AK) — max
lel, — TAXnl: domin
Xn 2 Xn 2

This ratio is used for the condition number definition. Its maximal value is \/dmax / @min and the minimal
value of this ratio is /dmin/dmax, Where dmax, and dpin are the maximal and the minimal eigenvalue of
AIIg Ak, respectively. Therefore, the solution of noisy system (33) satisfies

2 2 2
i Y13 _ IXKIZ _ dono 13
2 = 2 — . 2
max [ell3 X~ dmin [le]}

or in [dB]

SNR; — 1010g(dmax) < SNR < SNR; + 1010g(dmax ),

dmin dmin
where the input and output signal-to-noise ratios are defined as SNR; = 10log( ||y|\§ /|le ||§) and SNR =

10log(]| Xk ||§ /1 XN H%) We assumed normalized columns energy of A for notation simplicity.
For small additive noise, a simplified analysis can be performed. It will produce the exact signal-to-
noise value. The signal-to-noise (SNR) ratio, for a full set of signal samples x(n) is defined as:

N-1 2
. Zn:() |x(n)|

Z,Iq\];ol 5(”)|2.

SNR; = 10lo

In the case of a reduced set of measurements y(m), m € M, the noise energy is reduced to:

Ea= Y [e(n)]*.

neM

The correct amplitude in the signal transform at an index i, in the case as if all signal samples were
available, would be NC; in (29), where C; is the amplitude of the of i-th signal component. Hence, in
order to compensate the resulting transform for the known bias in amplitude when only M samples are
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available, given by Eq.(29), the coefficients should be multiplied by N/M. The noise is multiplied by
the same factor, while the energy of noise in the reconstructed signal is increased to E.4N?/M?. The
SNR in the recovered signal is

I )
N Enem e

Since only K out of N coefficients are used in the reconstruction, the energy of the reconstruction
error is reduced by the factor of K/ N as well, [103,104]. The energy of noise in the recovered signal is

SNR =10log (35)

K NZ ” K N-1 5
Er=c7m 2 lem) =) [e(n)]".
NMZne]M Mn:O

Using the fact that the variances in measurements are the same 71 ¥_,cpv (1) > = ~§ Lo le(n) 2, the
SNR in the recovered signal is

SNR = SNR; — 10log (Aﬁ) (36)

It means that assuming smaller K in the reconstruction (ideally equal to the signal sparsity), may im-
prove the results in the case of additive input noise.

3.8 Nonsparse Signal Reconstruction

According to the results in Section 3.5, the missing samples can be represented as noise in the initial es-
timate. Assume that we use a reconstruction algorithm for a signal of sparsity K on a signal whose DFT
coefficients X are not sparse (or not sufficiently sparse). The sparse signal with K nonzero coefficients
equal to the largest K coefficients of X is denoted by Xg. Suppose that the number of components K
and the measurements matrix satisfy the reconstruction conditions so that a reconstruction algorithm
can detect (one by one or all at once) the largest K components whose values are (Cy, Cy,...,Ck) and
perform signal reconstruction to get Xg. The remaining N — K components (Cg1,Cx2,...,Cn) will be
treated as a noise in these K largest components. Variance from a signal component, according to (30),
is |C;|* M(N — M) /(N — 1). After the reconstruction this variance is multiplied by (N/M)?, according
to the analysis in previous subsection, producing

N-M

N2 M(N-M
2 MMV M) o N M

I VR v

The total energy of noise in the K largest reconstructed components Xz will be

2 N-M 2
IXr—Xkllz = KN—5— Y. G

Denoting the energy of remaining signal, when the K largest components are removed from the original
signal, by

N
IX-X[3= Y. INGP

i=K+1
we get
N-M
Xr—Xk|l; =K X — Xklf3. 7
Xk Xk 3 = K X~ X @)
If the signal is sparse, i.e., X = X, then || Xg—Xk H% = 0. The same result follows if N = M.

In the case of additive input noise in measurements, with a variance ¢Z, a general expression is

obtained in the form [84,89]

N-M
MN

2 2, K
[Xr—Xk|2 =K ||X_XKH2+MN2‘7£2-

Similar analysis can be done for other than the partial DFT measurement matrices.
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3.9 Noise Folding

The additive noise is assumed in the measurements y only, in Section 3.7, as
y+e=AX. (38)

The reconstruction performance of the reconstruction algorithms in the case when the pre-measurement
additive noise z exists in the sparse signal coefficients X will be considered next [5]. The measurements
model is of the form

y+e=A(X+z). (39)

The noise z exists in the signal coefficients X prior to taking the measurements. Here, the additive noise
affecting the signal measurements is denoted by & with covariance ¢21. The noise vector z is random
with covariance ¢?1. It is independent of e. Relation (39) can be written as

y+v=AX (40)

where
v=¢— Az (41)

Therefore, the resulting noise v covariance matrix is
C =021+ ?AA". (42)

When A is formed as a partial matrix from an orthonormal inverse transformation matrix, with nor-
malized energy of columns the relation AAT = %I holds. The variance of v is then

2 2 N 2
UU:UE+M0—Z’

with the covariance matrix C = ¢21. In this special case, models (38), (39) and (40) are equivalent with
the difference that the noise variance of v is increased for %UZZ.

In a more general case, with A being an arbitrary random matrix with low coherence or low RIP,
the noise v in (40) can be whitened multiplying the system with C~1/2 /¢, In that case, the equivalent
system § 4+ u = BX is obtained, where § = C’l/zy/ay, B=CY2A/0,, and u= C 2y /0,. Under the
reasonable assumption that ||[I — AAT||; is small, the coherence and the RIP constants of B and A are
similar [5].

We may conclude that the pre-measurement noise variance is increased by the factor of % In the
case when M < N this leads to a large noise increase, or noise folding. For most common measur-
ing schemes used in CS, the model with the pre-measurement noise § + u = BX is equivalent to the
standard model (38) assuming only measurements noise. The measurement matrix is changed and the
noise variance is increased by the factor % It means that all previous relations and conclusions can be
applied to this case as well.

4 Norm-One Based Reconstruction Algorithms

As mentioned above, minimizing the number of nonzero coefficients using the fy-norm is a noncon-
vex optmization problem that cannot be solved using well developed iterative algorithms and linear
programming methods. Therefore, to avoid dealing with NP-hard problems, significant efforts have
been undertaken to replace the nonconvex and discontinuous ¢y-norm with a convex and continuous
norm that would be more appropriate for optimization. As a result, the £;-norm (norm-one) has been
commonly employed in many signal reconstruction approaches. It has been shown that, under cer-
tain conditions, minimization of the /;-norm produces the same solution as the minimization of the
fo-norm [26,27,34,40].
In the ¢1-norm based reconstructions the problem is formulated as

min||X||; subjectto y=AX
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Figure 3: Illustration of the solution with the ¢;-norm, the ¢; ;4-norm (close to the {yp-norm), the ¢,-norm
for a three-dimensional case. In lower graphics, a view from the direction where the observations/mea-
surement lines and the considered norm-balls touches, is presented.

where
N-1
X[l = ) [X(K)|.
k=0

This is the so-called basis pursuit (BP) approach to sparse signal reconstruction.
As an illustration, consider the problem with sparsity K = 1, dimension N = 3 and two measure-
ments M = 2 described by

y(0) = X(0)ao(0) + X(1)a1(0) + X(2)a2(0)
y(1) = X(0)ao(1) + X(1)a1 (1) + X (2)az(1). (43)

Each of the equations is a plane in the space of variables X(0), X(1) and X(2), while both equations
together represent a line in this space. This is illustrated in Fig. 3 where a “ball” with the constant cost
function z = | X(0)|” + | X(1)|” + | X(2)|” is presented for the ¢;-norm and the ¢ /4-norm that is close to
the {p-norm (p =1 and p = 1/4). The solution of the minimization problem is the intersection of the
measurement line with the minimal possible “ball”. It is obvious that in both cases X(0) is indicated as
a nonzero coefficient. Note also that the /,-norm (p = 2) will not produce a sparse result.

The solution is the same as long as the measurement line does not penetrate through the minimal
“ball”. For the {yp-norm case the measurement line should not have zeros in the direction vector. For
this illustrative example this condition is equivalent to the condition that all submatrices of the mea-
surement matrix of order 2 x 2 have nonzero determinant (since these determinants are equal to the
direction coefficients of the "measurement line"). For the ¢1-norm case the condition for measurement
line direction is obviously more restrictive since it must not penetrate through the ¢;-“ball”.

In general, the equivalence of the /y-norm and the ¢;-norm solutions is defined by the restricted
isometry property.
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For a K-sparse vector and a measurement matrix A the solution of the £p-norm minimization prob-
lem is the same as the solution of the corresponding ¢;-norm based minimization process if the mea-
surement matrix satisfies

Aok Xox?
_52K§M <1+ (44)
X2k I3

where 0 < §,x < v/2 — 1 for all submatrices of order 2K of the measurement matrix A [24]. Note that for
the fp-norm the restricted isometry constant range was 0 < g < 1.

The problem of the £;-norm based minimization can be reformulated in various ways. For example,
its Lagrangian formulation is

2
F(X) =y — AX[[3 + A [IX]]y

where F(X) is the function to be minimized.
Reformulation of the problem in a constrained form reads

min|[X||; subjectto |y — AX|3 <¢,

where ¢ is sufficiently small parameter. This is the /;-norm based minimization with quadratic con-
straint.

There are many ways to solve the stated problem, based on the constrained or Lagrangian form
[40]. Many of them are developed within the regression theory. Here we will present in detail just
one of them, based on the least absolute selection and shrinkage operator (LASSO) formulation and
Lagrangian minimization form [108].

4.1 LASSO Minimization

The ¢1-norm based minimization can be formulated as the minimization of the error y — AX with a
condition imposed on X. The cost function

2
F(X) =lly — AX]l + A[|X]l;
= [ly3 - X"ATy — y"AX + X" AT AX+AX"sign{X}
is used here. The LASSO minimization problem formulation is

_ : . 2
X =argmin { |ly — AX|3 + A IX]}; .

The function ||X||; promotes sparsity. It produces the same results (under the described conditions) as
when ||X|| p» With p close to 0, is used, Fig. 3.

The minimization problem with the /1-norm constraint does not have a closed form solution. It is
solved in iterative ways. In order to define an iterative procedure a nonnegative term

G(X) = (X = X,)" (al -~ ATA) (X - X,)

having zero value at the solution X of the problem is added to the function F(X). This term will not
change the minimization solution. New cost function is

H(X) =F(X) + (X~ X)T (al — ATA) (X~ X,),

where « is such that the added term is always nonnegative. It means & > Anax, where Amax is the largest
eigenvalue of ATA. The gradient of H(X) is

VH(X):B;E;()

the solution of VH(X) = 0 is

= —2ATy + 2ATAX+Asign{X} 4 2(al — ATA)(X - X,).

—ATy—i-%sign{X}—(ucI —ATA)X; +aX=0

A 1
X+ 5 sign{X} :EAT(y — AX,) + X,
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The corresponding iterative relation is of the form

A 1
xs+1+ﬂs1gn{xs+1} :;AT(y — AX,) + X,.

The soft-thresholding rule is used as a solution for the scalar equation
x + Asign(x) =y.
It is defined by the function soft(y, A) as

y+A for y<-—A
x =soft(y,A) = 0 for |yl<A ,
y—A for y>A

or
soft(y,A) = sign(y)max{0, |y| — A}.

The same rule can be applied to each coordinate of vector X1,

1 A
X1 =soft(—AT(y — AX,) + X, o (45)

sz)
or . N
X1 (k) =soft( (a(k) — b(k) +X:(k), 5)

where a(k) and b(k) are coordinates of vectors a and b defined by a = ATy and b = ATAX;. The La-
grangian constant A is a balance between the error and the ¢;-norm value, while « = 2max {eig{ATA}}
is commonly used.

This is the Iterative Soft-Thresholding Algorithm (ISTA) for LASSO minimization. It can be easily
modified to improve convergence in the Fast ISTA (FISTA), [12,32]. Note that this is just one of possible
solutions of the minimization problem with the ¢;-norm.

One of the most popular software tools for the /;-norm based signal reconstruction is the ¢1-magic
[25]. It is based on the primal-dual algorithm for linear programming [19].

Algorithm 4 LASSO — ISTA reconstruction
Input:
e Measurement vector y

e Measurement matrix A
e Regularization parameter «

e Sparsity promotion parameter A

1: X Onx1
2: repeat
3 s %AT(y — AX) +X
4: fork < 1to N do
s(k)+ A fors(k) < —A
5: X(k)+ <0 for [s(k)| <A
s(k) — A fors(k) > A
6: end for
7. until stopping criterion is satisfied

Output:
e Reconstructed signal coefficients X
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Figure 4: A sparse signal with N =100 and K = 4 reconstructed using a reduced set of M = 40 measure-
ments and LASSO iterative algorithm. The results for A = 0.1 and A = 0.001 are presented.

Example 3. Measurement matrix A is formed as a Gaussian random matrix of the size 40 x 100. Since there
are 40 measurements the random variable A(0,0?) with ¢ = 1/40 is used. The original sparse signal of
total length N =100 is X (k) = 6(k —3) +0.76(k — 17) — 0.56(k — 35) + 0.75(k — 41) in the transformation
domain. It is measured with a matrix A with 40 measurements stored in vector y. All 60 signal values are
reconstructed using these 40 measurements y and the matrix A, in 1000 iterations. In the initial iteration
Xo = 0 is used. Then, for each subsequent s the new values of X are calculated using (45), given data y and
matrix A. The value of & = 2max {eig{ATA}} is used. The results for A = 0.1 and A = 0.001 are presented
in Fig. 4. For a very small A = 0.001 the result is not sparse, since the constraint is too weak.

O

4.1.1 Norm-Two Based Minimization Solution

Here we will also explain why commonly used the ¢;-norm based minimization is not suitable for this
application. If the cost function with the ¢>-norm is used

2 2
F(X) =[ly — AX[[3 + A [IX])2

then the solution can be obtained in an analytic way. Minimization of the />-norm constrained problem
can be reformulated in Lagrangian form using a parameter A as

_ . B 2 2
X =argmin { |y — AX|3 + A |X|3}
The solution of
2 2
F(X) =|ly — AX]l5 + A [[X][
= |ly|3 = X" AHy — yHAX + XHAHAX+AXHX

minimization can be obtained in a closed form using the symbolic derivative operator 9F(X) /9X" = 0.
Itis

Xridge = (AHA + IA) T Ay = (AHA + IA) ' Xo, (46)

where Xg = AH y is the initial transform defined by (26), for normalized measurement matrices. Param-
eter A represent a balance between the error and the constraint.
The />-norm minimization problem can also be formulated with the Lagrange multipliers as,

F(X) = X[l + A" (y — AX),

where A = [A1,Ay,...,Ap]T are the Lagrange multipliers. Its minimization, using the symbolic deriva-
tive operator, 9F (X) /9XH = 0 produces

2X — AAT =0or X =AFA/2.
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If this value of X is replaced in the constraint relation y = AX we gety = AAFA/2 or A =2(AAH) " 1y.
Finally
X=AHA/2=A"(AAH) 1y = X,.

In most of the measurement matrices, like the partial DFT and the partial DCT matrix, AAM =T holds,
up to a constant equal to the energy of the measurement matrix rows. In the Gaussian measurement
matrix this relation holds approximately for large N.

The standard ridge regression, based on the /,-norm, minimizes the energy of solution X (k) and not
its sparsity.

4.2 Signal Reconstruction with a Gradient Algorithm

Let us consider a sparse vector X of the length N. Assume that X is obtained as a linear and invertible
transformation of a signal x. In this case the vector X and corresponding signal x are related via direct
and inverse transformation matrices

x = ¥X, (47)
X = ®x. (48)

The transformation matrices ¥ and & are of size (N x N). Vectors X and x are of the same length (N
coefficients/samples). Signal samples x(n), n =0,1,...,N — 1 can be considered as a full (complete)
set of measurements of X. The arbitrary signal X can be uniquely reconstructed from the full set of
measurements x using Eq. (48).

Sparse X can be reconstructed from a reduced set of M < N measurements. The measurements
vector, denoted by y, of length M is obtained by selecting M measurements from the full set of signal x
samples (considered and denoted as measurements)

y = [x(m),x(n),..., x(np)]"-
The set of selected indices {n1,ny,...,1p} will be denoted as M. The measurements with indices n ¢ M
can be considered as unavailable/missing measurements. The set of the indices of remaining measure-
ments will be denoted by Q

M= {Tl],nz,...,nM} C {0,1,...,N— 1}
Q = {nM+1,nM+2,...,nN} = {O,l,...,N— 1} \M

Note that MNQ =® and MUQ = {0,1,...,N — 1}. The vector of missing measurements will be
denoted by y., where

Ve = [ye(0),yc(1),...,ye(N — M = D)]" = [x(npr41), x(np142), - .., x(ny-1)] "

The measurement matrix A is obtained by selecting M rows from the inverse transformation matrix
¥ with indices that belongs to the set M.
The /1-norm based reconstruction of the sparse signal

min||X||; subjecttoy = AX

can be reformulated in the following way. If we can reconstruct the missing measurements y,, then
the full set of measurements is obtained. The direct transformation matrix @ is used to calculate recon-
structed signal in its sparsity domain Eq. (47). The missing measurements y. are obtained by minimiz-
ing ||X||; = ||®x||;, where x is a complete vector of the measurements with elements x(n;) = y(i) for
n; € M and x(n;) = y.(i) for n; € Q.

This minimization problem can be solved by varying all unavailable/missing samples x(n;), n; € M
within the range of their possible values and selecting values which produced the minimal sparsity
measure. The available samples are kept unchanged. This is a kind of direct search over the missing
measurement/sample values. However, when the number of missing samples is large, then this direct
search cannot be used due to its high calculation complexity.
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Another approach to minimization of the sparsity measure ||X||; = ||®x]|; is to use the gradient
descent (or steepest descent) algorithm. The minimum of sparsity measure, with respect to the missing
samples as minimization variables, is determined through an iterative procedure

m m d||Px
(1) _ g 9 ®Xlly

yC 7
Y. ye=y™

where yﬁ”” is the vector of missing samples in the mth iteration and « is the iteration step. The /;-

norm is used as the sparsity measure [85]. The gradient of sparsity measure, calculated at y. = y((;m), is

denoted by
" =9 [ @x|4 /aYC‘yC:y(m)

The iterative procedure convergence depends on the iteration step «.

The gradient of the sparsity measure in mth iteration can be estimated using finite difference method.
For each missing sample n;, i = 1,2,..., M we can form two full sets of measurements z;(n) and z(n),
where the value of the ith missing sample (located at position n; in z1 (1) and z,(n)) is increased and
decreased by some A

[ xm(n) for n # n;
Zl(n)—{x(m)(n>+A forn=mn; €Q

[ x(m () for n # n;
z(n) = {x(m)(n) _ forn=mn;€Q

The n;th coefficient of gradient vector g(™) is then estimated as

(m) 1Pzl — [ ®22]ly
g (nl) ZA N

The iteration step « is commonly used in the form & = 2Ac, where c is a Constant equal to the energy of
the inverse transform basis functions. Then, in the algorithm we can use g ( i) =|®z1|[1 — || Pz, |1
and & = ¢, since the variable iteration step is now included into the form of g (n;).

Coefficients of the gradient vector for available samples are zero valued, g™ (n;) = 0,1; € M.

(0)

In the initial iteration for missing measurements we can use zero values y; ° = 0, or the mean value
of available samples/measurements. The reconstruction procedure is presented in Algorithm 5.

Due to specific form of the ¢1-norm in the very vicinity of its minimum (the solution) the algorithm
will approach to the solution with a bias whose upper limit is proportional to the A. Its value can
be estimated as AK/N. This bias can be reduced to an acceptable precision by using very small A.
However, calculation with a small A would be time consuming (requiring many iterations). Efficient
implementation ( [16,61,62,83,92]) can be achieved by using variable A. In the initial iterations A should
be of the same order as the amplitude of the available samples A = max{|y|}. When the algorithm
reaches a stationary point, with a given A, the value of the mean squared error will assume an almost
constant value, determined with the bias, and the values of missing samples will oscillate [92].

Example 4. Consider a signal x(n) = 3cos(2m 5 — 71/5) with N = 8. The signal is sparse in the DFT domain.
Assume that the missing measurements/samples are at positions #n € Q = {1,6}. The signal is reconstructed
using the gradient based algorithm in 60 iterations. The initial algorithm parameter A =1, step x =1/N
and the initial value of missing samples x(1) = 0 and x(6) = 0 are used. The values of missing samples in
the first 20 iterations are represented by dots (connected by a line) in Fig. 6. After about 6 iterations the
algorithm with A = 1 does not significantly change the missing sample values (zoomed changes are shown
in lower subplot within the figure). Close to the stationary point obtained for A = 1 the gradient coordinates
are almost zero-valued (with direction changes for almost 77). After the step is reduced to A = 0.1 in the 20th
iteration, the algorithm resumes its fast approach toward the exact value, until reaching a new stationary
state. With a new change of A to A = 0.01 the approach is again continued. The stationary state bias for
A =1 is lower than %A =1/4. For a signal of amplitude 3 it corresponds to the bias caused by an MSE
lower than —201log(3/(1/4)) = —21.6 [dB], Fig. 5. By each reduction of A to A/10 the bias caused MSE will
be lower for 20 [dB]. The reconstruction result and the MSE for the estimated missing values x(1) and x(6)
are presented in Fig. 5.

23



This is a pre-print of an article published in Circuits Systems and Signal Processing.
The final authenticated version is available online at: https:/ /doi.org/10.1007 /s00034-018-0909-2

Algorithm 5 Gradient based reconstruction procedure

Input:
e Set of missing/omitted sample positions Q

e Set of available sample positions M

Available samples (measurements) y

e Transformation matrix ®

Step a

1: m<+0
2: Set initial estimate signal vector x(*) as x(%) (1;) = y(i) for n; € M and x(©) (;) = 0 for n; € Q
3 A < max |x© (n)]

n

4: repeat

5: repeat

6: x(m+1) ¢ x(m)

7: for n; € Q do

8: z1 + x(M

9: Zl(i’ll‘) <—Zl(Tli) + A
10: Zy < X(m)
11: Zz(ni) — Zz(?’l,’) —A
12: 8(nj) < [[@z1]; — [[®22]|;
13: ) () = x) () — acg(m;)
14: end for
15: m+—m+1
16:  until stopping criterion is satisfied
17: A+ A/3

18: until required precision is achieved
19: x ¢ x(")
20: X < Px
Output:

e Reconstructed signal vector X

e Full set of measurements x

In order to approach the true signal values with a given precision A should be reduced. The fact
that the reconstructed values oscillate when the stationary point is reached may be used as an indicator
to reduce the step A. The oscillations of the solution are detected by measuring the angle between two
successive gradient vectors

£V g1 (i)™ (i) |
VENS (gm0 (0)2 /TN (g™ ()2

If the angle B, is lower than, for example 170°, the calculation is continued with the same A. Otherwise
the A is reduced. This is a possible stopping criterion in Algorithm 5.

A possible divergence in a gradient-based algorithm is related to the algorithm behavior for large
steps A. Small step A significantly increase the number of iterations in the algorithm. It can be shown
that the value of the estimated gradient g™ that is used to correct the missing signal samples does
not depend on the value of step A if A is large. The missing signal values will be adapted for a value
independent of A in that case. The missing samples will oscillate within the range of the available signal
samples, until A is reduced. Then the missing samples will start approaching to the minimum of the
sparsity measure.

The iterative algorithm should be stopped when A is small enough, or when the change of recon-
structed missing samples between two consecutive A reductions is bellow the desired precision.

Bm = arccos
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Figure 5: Gradient-based reconstruction Figure 6: Illustration of a signal reconstruction using the
of a sparse signal. adaptive gradient algorithm.

4.3 Total variations

The presented ¢1-norm based algorithms may be used to solve other convex problems. Here we will
also mention the possibility that the coefficients in vector X are not sparse, but instead, for example,
their first-order finite difference

Z(k) = X(k) — X(k—1)
Z = diff{X}

is sparse. A simple example is X (k) =1 for 0 <k < N/2 and X(k) = —1 for N/2 < k < N. In this case
the minimization problem is formulated as

min || Z||; subjectto  y = AX,

since the first difference vector Z is sparse. This is the minimization of total variations in the space
of X. The result is the value of Z with the smallest possible number of nonzero elements. The value
of X is then with a minimal variations (maximally flat). Its values follow from X(0) = Z(0), X(1) =
Z(1)+ X(0),..., X(N—=1)=Z(N —-1) + X(N —2).

Total variations (TV) can be extended to two-dimensional signals in order to get maximally flat
images. The TV of a 2D signal X(k1,k;) can be defined as the sum of the magnitudes of the discrete
gradient at each point:

TVX) = ) [[Di 2’
k1 k2
where the gradient approximation for the position (ki,kz) is denoted as Dy, t,. It is defined as:

D X(ki +1,kp) — X(kq,k2)
kuke = X (ky,kp + 1) — X(ky, ko) |-

The discrete form of the TV is

TV = T /(X (k1 + 1k2) — X (k1 ka))P + (X (ki ko +1) — X(Ky +1,k2))>
ky ko
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Figure 7: Illustration of a signal reconstruction whose first difference is sparse (with K = 4) using the
adaptive gradient algorithm and a reduced set of M = 80 out of N = 128 measurements in the DCT
domain, X(k) = DCT{x(n)}.

The TV minimization problem formulation reads
minTV(X) subject to y = AX.

The signal and its transform can also switch their common roles. If a signal x is sparse then the trans-
formation domain coefficients X, where the signal is dense, can be considered as its measurement space.
The minimization problem is then min ||diff{x}||; subject to Y = Ax, with an appropriate measurement
matrix A corresponding now to a direct signal transform.

Example 5. Consider a signal x(n) = 32u(n — 28) — 40u(n — 40) + 48u(n — 62) — 40u(n — 96) within0 <n <N —1
and N = 128. Unit step function is denoted by u(n). This signal is not sparse, but its first difference is sparse
with sparsity K = 4, Fig.7 (top-left). The measurements are the DCT domain coefficients X (k) = DCT{x(n)}.
Note that here the signal (its first difference) is sparse in the time domain where the measurement domain
is the transform domain. A reduced set of randomly positioned M = 80 measurements Y is available, Fig.7
(top-right). The red cross indicates missing measurements. The signal reconstructed using available mea-
surements and setting the missing ones to zero values is presented in Fig.7 (middle-left). The minimization
problem min ||diff{x}||; subject to Y = Ax is solved using the gradient algorithm in 1000 iterations, with the
algorithm step A being reduced to A/ v/10 after each 100 iterations, respectively. The missing measurements
are reconstructed and presented in Fig.7 (middle-right). The reconstructed signal is shown in Fig.7 (bottom-
left), along with the reconstruction error through iterations Fig.7 (bottom-right). This kind of reconstruction
promotes signal flatness (the first difference sparsity).

5 Bayesian-Based Reconstruction

A set of the output values and a set of the input values are given in the supervised learning. The main
goal is to learn the model that describes the relation between the input and the output data. This model
is then used for the next input values prediction. The measurement relation y = AX can be understood,
in this sense, as a linear combination of functions in A with parameters X that can adjust as inputs to
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this model. Elements of the output vector y are

N-1
y(m) =} X(k)ay(m). (49)
k=0
The problem can now be defined as a determination of Bayesian model for the estimation of parameters
X. The a priori knowledge about these parameters is that they are sparse [6,10,45,109,114].
Consider a noisy measurement
y=AX+e

A Gaussian noise of zero-mean and variance ¢? is denoted by e. The probability density function of the
measurement error ¢ = y — AX is Gaussian. Then the Gaussian likelihood model is defined as

2
y—AX|3

pyX,0) = —ew! (50)

(0v27)

Next we have introduce the sparsity promotion prior condition on X. The Laplacian density function is
a common sparsity promotion on X in Bayesian formulation. It corresponds to the ¢;-norm,

pOXIA) = (5)Ne X, 61

However, instead of imposing a Laplacian prior on X, a hierarchical prior has been used in the
relevance vector machine approach. Thus prior exhibits similar properties. The zero-mean Gaussian
prior distribution for X is assumed with hyperparameters d;

N-1 1 NP o N1 1
p(XID)=T] e~ XX (i) — ,2~XTDXTT 2 52)

i=0 \/27td; ! i=0 ,/27111;1'

A diagonal matrix of hyperparameters is defined as D = diag(dp,d,...,dn—_1). The role of hyperparam-
eters is to promote sparsity.
Posterior distribution of X will be denoted by p(X,D,c?|y). It could be found from

p(X,D,d%y)p(y) = p(y|X,D,0?)p(X,D,0?). (53)

The calculation of corresponding probabilities in this equation is not possible in an analytic way. There-
fore, approximations should be carried out. To this aim the posterior for X is decomposed

p(X,D,c*ly) = p(X|y,D,0*)p(D,c?|y) (54)

and the probabilities in this relation are calculated. The first term

2, _ plyX,e?)p(X|D)
p(X|Y/D/(T ) - P(Y|D,(72) (55)

is obtained from the probabilities given by Egs.(50) and (52). Using

p(Xly, D,0?)p(y|D,o%) = p(y|X,0*)p(X|D) (56)

and grouping the terms in exponent on the right side of Eq.(56) with Eq.(50) and Eq.(52). After appro-
priate matrix transformations we will get that the probability p(X|y, D,c?) is Gaussian. Its covariance
and mean-value matrices are defined by [45,109]

>=(ATA/?+D)7}, (57)
V=xATy/c?% (58)

Note that the solution for the mean-value, for small noise variance ¢, has the form of Eq.(25) since

V=3ATy/c? = (ATA+’D) ATy~ (ATA)'ATy. (59)
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This form is similar to Eq.(46), as well. Different weights for each X(k), defined by matrix D, are
used here. The next step is in promoting sparsity. It is done by detecting candidates for zero-valued
coefficients. These coefficients are then omitted from X and A, until the desired K-sparse vector Xk is
achieved. The corresponding measurement matrix A is used, resulting in (AL Ax)~'Aly as in Eq.(25).

We can see that in MP algorithms sparsity is promoted starting from its lowest order, by taking the
strongest component. The sparsity is then increased until the true sparsity is achieved. Here in the
Bayesian approach the process runs in opposite direction. The sparsity is reduced from its maximal
value N to the true value K by using hyperparameters.

As we stated, in order to calculate the function p(D,c?|y) and promote sparsity, some approxi-
mations are needed. One possible approximation is in replacing this function with its most-probable
value. With this approximation the search for the hyperparameters D reduces to the maximization
of p(D,c?|y) = p(y|D,c?)p(D)p(c?). If the hyperparameters are unform only p(y|D,c?) should be
minimized. Its value can be obtained in analytic form, as the marginal value

pyID,0?) = [ p(yIX,oH)p(X|D)ax (60)
= ! ! 1 H(,2 —1AT\-1
@M [T AD AT P ¥ (TTEADTATD ) (61)

This is the marginal likelihood. Its maximization is of type-II maximum likelihood method. Note that
D and ¢? that maximize this probability cannot be obtained in a closed form. A possible iterative
procedure for their calculation is defined by [45,109]

i
d;"lﬁw — Vilz

where V; are the elements of the posterior mean vector V defined by Eq.(58) and coefficients 7y; are
related to the diagonal elements X;; of the covariance matrix X, defined by Eq.(57), and the sparsity
hyperparameters d; as

vi=1—d%.

After the coefficient v; is calculated the noise variance is estimated as

2
ly — Av|*
M =37

The final result are the coefficients, representing the resulting mean values of the coefficients. In addi-
tion, we get the variances of the estimated values. They follow from the covariance matrix. The iterative
procedure is repeated until a required precision is obtained.

Note that in iterations, some of parameters d; will tend to infinity. This indicates that the corre-
sponding coefficients X (i) tend to zero. These coefficients d; and corresponding X(7) are omitted from
their matrices in next iterations. A small set of finite values d; will remain in the final iteration. They
indicate the positions of nonzero values in X (7). Vector Xk is calculated with corresponding Ag. The
result of the iterative procedure are mean values of nonzero coefficients in vector V,

(UZ)new —

XK =V = Z](z&}éy/a'2

given by Eq.(58) and (59). The variances of coefficients Xg will be obtained as well. If a component po-
sition is wrongly detected and omitted it will influence the result accuracy as described in Section 3.8.
This result for the variance in the reconstructed signal obtained here is the same as the one obtained by
a quite simple derivation in Section 3.7. Note that after the positions of nonzero coefficients are found,
using an iterative procedure in the Bayesian approach, coefficients with large hyperparameters are ex-
cluded along with the corresponding elements of matrix D and columns of A. The hyperparameters
for the nonzeroo coefficients are zero.

Example 6. A signal sparse in the discrete sine transform (DST) domain
2 X . /2m(2n + 1)k;
x(m) =/~ 1; X(k;) sin (T) te(n), ki#0
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Algorithm 6 Bayesian based reconstruction

Input:

R AU R ol

—_
=

11:

12:
13:
14:
15:

e Measurement vector ysx1

e Measurement matrix Ay« n

di 1 >Fori=1,2,...,N
0?1 > Initial estimate
T, = 10? > Threshold
p=I[12,...,N]T

repeat

D <— diagonal matrix with d; values
X<+ (ATA/0? 4+ D) !

V «+ ZATy/0?
vi 1 —d;%y > For each i
di i/ Vi > For each i
2
2, lly—Av|
.
M =Y

R« {i:|d;| > Ty}

Remove columns from matrix A selected by R
Remove elements from array d; selected by R
Remove elements from vector p selected by R

16: until stopping criterion is satisfied
17: Reconstructed vector X nonzero coefficients are in vector V with corresponding positions in vector

p' XP,‘ = Vl

Output:

e Reconstructed signal vector X

5.1

with N = 128, K = 10, and noise variance ¢ = 0.01 is considered. The coefficients X(k;) values and
positions are presented in Fig.8(a). They are considered as unknown and they should be found from
the available measurements. Assume that only M = N/2 = 64 randomly positioned measurements y =
[x(n1),x(n1),...,x(np)]T are available, Fig.8(b). The observation matrix A is obtained from the full DST
matrix by keeping the rows corresponding to the measurement instants r1,n5,...,71) only. In order to start
the iterative algorithm the initial values D =1 and o = 0.1 are assumed. The assumed threshold for con-
sidering hyperparameters extremely large is T, = 100. Hyperparameters above this threshold are omitted
from calculation (along with the corresponding values in X, A, D and V). The results for the estimated mean
value V in the first iteration are shown in Fig.8(c), along with the values of hyperparameters V in Fig.8(d).
The hyperparameters whose value is above Tj, are omitted (pruned) along with the corresponding values
at the same positions in all other matrices. In the second iteration the values of remaining hyperparameters
V are shown in Fig.8(e). After the elimination of hyperparameters above the threshold, the third iteration
is calculated with the remaining positions of the hyperparameters. In this iteration all hyperparameters,
except those whose values are close to one, are eliminated Fig.8(f). The remaining positions, after this iter-
ation, correspond to the nonzero coefficients X(k;),i = 1,2,...,K positions, with the corresponding pruned
matrices Xk, Ag, Dg. The values of X(k;) are estimated using V; given by

Vi =XxAky/o? = (Ax"Ak + 0?Dg) 'Aly
in the final iteration. If the measurements were noise-free this would be the exact recovery. The values

of estimated X(k;),i =1,2,...,K are shown in Fig.8(g). The diagonal values of X are the variances of the
estimated X (k;). The parameters d; for the estimated nonzero coefficients tend to zero.

Bayesian-Based Reconstruction with Contiguous Structures/Patterns

Contiguous structure/pattern can be readily exploited in Bayesian-based reconstruction by imposing
proper priors [53,118, 119], which provides additional robustness in the signal reconstruction and pa-
rameter estimation. For example, in practice, the measured data may experience missing samples [96],
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Figure 8: Bayesian reconstruction of a signal sparse in the DST domain. (a) Signal coefficients in the
DST domain. (b) Available samples/measurements. (c) Distribution mean-values (estimation of coef-
ficients) in the initial iteration. (d)-(f) Hyperparameters in the first, second, and third iteration with a
threshold. (g) The final mean-value (the final estimated DST coefficients) at the positions of remaining
hyperparameters from (f).
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which induce noise-like artifacts in the time-frequency distributions [51]. As desirable signal compo-
nents generally exhibit sparsity in a certain domain, structure-aware Bayesian method, together with
the aid of time-frequency techniques, can effectively mitigate the missing-sample artifacts and robustly
recover the useful signal [51,52]. This approach has been successfully applied to the co-existence of
radio telescope arrays with frequency-hoping wireless communication systems [50].

6 Applications in Signal Processing

6.1 Audio Signals

The presented reconstruction will be illustrated on audio signals [82,87]. Audio signals are nonstation-
ary with changing spectral content in time. In general, they are not sparse. The sparsity can be improved
considering the localized segments of audio signals. These kind of signals can then be considered as
approximately sparse. In order to improve the sparsity of audio signals, a windowed form of the DCT is
used, as in the case of MDCT, widely employed in compression procedures involved in modern audio
formats. Long duration audio signals x(n) are analyzed with the DCT applied on consecutive blocks of
windowed signals
xm(n) =w(n)x(n+ mN/2),

where w(n) is a window within 0 < #n < N — 1. The subsequent blocks are overlapped such that the
second half of one block coincides with the first half of the subsequent block. It is important to note
that such a block-based approach in the analysis and processing of audio signals is adequate for the
presented sparse signal reconstruction algorithms involving pseudo-inversion of partial DCT matrices
(since it reduces the dimensionality of the problem). Note that the block approach is also used in the
DCT based image analysis as well. If the window form satisfies the condition w(n) + w(n+ N/2) =1
within the overlapping interval, N/2 < n < N — 1, then the reconstruction is quite simple from the
reconstructed windowed segments x,,g (1) as

xg(n) =) xur(n—mN/2).

Many window forms satisfy this condition [91]. The most commonly used window among them is the
Hann window w(n) = 0.5(1 + cos(3% (n + §))) = sin?(fn). The condition that w(n) + w(n+ N/2) =1
within the overlapping interval, corresponds to well known Princen-Bradley condition w?(n) + w?(n +
N/2) =1 within the overlapping interval. If the same window is used on both, the analysis and recon-
struction side. Then the window w(n) = sin(§;n) would be used. In our example the window is used
on the analysis side only.

Next we will assume that a reduced set of signal samples is available (sensed) or reliable. Various
circumstances may cause the unavailability of audio signal samples. One illustrative example includes
clicks and pops present in old recordings that significantly corrupt a certain percent of samples. Af-
ter removal of these impulsive disturbances, these randomly positioned samples can be considered as
unavailable, and reconstructed using the presented CS-based approach [83,84,100,102].

The audio signal "mtlb.wav" from MATLAB is considered. Its form is shown in Fig.9. The signal is
corrupted by impulsive noise in 15% of randomly positioned samples. Positions of the impulsive noise
can easily be detected using a limiter (a method for more complex cases detection of impulsive noise
with amplitudes within the signal values can be found in [93]). The signal samples at the positions
of strong noise are considered as unavailable and the reconstruction of the signal is performed using
the rest of samples on blocks with a Hann window of length N = 500 with half of window length
overlapping. Reconstruction is performed using the presented OMP algorithm with various assumed
sparsities K. The estimated error in the signal is calculated along with the one presented by (37). The
estimated error is presented by "*" and the one expected in theory by a line. The agreement is high. The
reconstructed signal segments are added up and the final reconstructed signal is presented in Fig.9 for
the case of assumed sparsity K = 150.
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Figure 9: Error energy in the reconstruction (Section 3.2) of noisy non-sparse signal - calculated numer-
ically and according to the theory (Section 3.8). Error is shown for various assumed sparsities.

6.2 Image Reconstruction

The gradient-based reconstruction algorithm is applied to image reconstruction. In general, it can be
assumed that common images are sparse in the two-dimensional discrete cosine transform (2D-DCT)
domain [9, 14,22, 39,49, 73,83,121]. That is true for smaller image blocks used in the 2D-DCT image
transform as well. Sparsity assumptions imply that the image can be reconstructed from a reduced set
of measurements (pixels). Assume that an image is degraded by salt and pepper noise Fig.10 (middle).
The disturbed pixels can be easily detected, omitted and marked as unavailable. The undisturbed
pixels are considered as the available measurements. They are rearranged into a column vector form
and denoted by y. The sparsity domain is the 2D-DCT. The 2D-DCT coefficients are also rearranged

into a column vector form and denoted by X. The measurement matrix A follows from the 2D-DCT
coefficients (rearranged into matrix form),

N-1N-1
y(i) =x(mjn;) =Y Y vgojcos (

27t(2m; + 1)k 27t(2n; + 1)1
( 1 ) )COS( ( nl )
k=0 1=0

4N 4N > X k1),

where vp = +/1/N and vy = v/2/N for k # 0 and N is the size of the blocks used in the 2D-DCT analysis.
Rows corresponding to the available pixels are retained from the full 2D-DCT matrix.
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Figure 10: Image reconstruction from a reduced set of pixels: Original image (top). Image with 50% of
salt and pepper noisy pixels considered as unavailable (middle). Reconstructed image (bottom).

The task then reduces itself to the described minimization problem. Find the signal, or in this case
unavailable pixels, by minimizing the ¢;-norm of the transform, subject to the available samples, i.e.,
min || X]|; subject to y = AX.

The unavailable pixels are iterated using the presented gradient algorithm, until the desired accu-
racy is achieved. The resulting reconstructed image is shown in Fig.10. The mean absolute error in the
noisy and reconstructed image is MAE = 40.77, and MAE = 0.30, respectively. The peak signal-to-noise
ratio is PSNR = 27.85[dB], and PSNR = 44.78[dB], respectively.
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Figure 11: Illustration of one revisit (chirp series) discretization in coordinates m (chirp index, slow
time) and # (time within one chirp, fast time), along with a real time. The case of N, = 8 chirps in one
revisit and N = 8 samples within a chirp is presented. The CIT is 64 samples. Unavailable or heavily
corrupted data are marked by red.

6.3 Application to Radar (ISAR) Signal Processing

In inverse synthetic aperture radar (ISAR) a high resolution image of a target is obtained by using
the two-dimensional Fourier transform (FT) of a received (and processed) signal. The ISAR image
of a point target is a highly concentrated two-dimensional function whose peak position corresponds
to the target’s range and cross-range. For a number of scattering points, the radar image consists of
several peaks at the range and cross-range positions. Usually the number (area) of nonzero values
in the ISAR image is small as compared to the total number of signal samples. Thus, we may say
that a common signal in ISAR is sparse in the two-dimensional Fourier domain. As such it can be
reconstructed from much fewer samples than the sampling theorem requires. Unavailable, randomly
positioned samples could also result from heavily corrupted parts of the signal, that are omitted and
declared as unavailable, before the ISAR image recovery and calculation is done. Measurements and
physical constraints of the target and radar interferences may also cause only some of the randomly
positioned data to be received and measured. The fact that the two-dimensional FT domain is the
domain of the ISAR signal sparsity is used in signal recovery [31,38,43,47,71,75,94,95,97,98,115].
The received signal, from the ith scattering point, after the distance compensation, is

f]i(m,n) _ UiejZHﬂim/NcejZT('yin/N’

where B; and v; are the parameters proportional to the cross-range and range. The number of chirps is
denoted by N, while the number of samples within a chirp is N. The total signal for K scattering points
is

q(m,n) = Ti1q;(m,n).
Assume that some samples or blocks of samples of the received radar signal are either unavailable or
heavily corrupted so that they are omitted from the analysis [86,95]. Assume that the blocks of omitted
signal samples are randomly positioned. The two-dimensional FT of this signal is then

A M-1 +(2mmk | 27mtnl
Q=) Y q(mmn)e KRR (62)
m=0neM,,

It can happen that the unavailable/corrupted data are: all within one chirp or spread over two or more
chirps, including the possibility that a few chirps in a row are affected in this way, Fig. 11. These cases
are included by using the notation n € IM;;, where IM,, is the set of available samples within the mth
chirp. For some m it could also happen that M,, = &, i.e., that there are no available samples within
that chirp. The total number of available samples is 1 < M < N:N.

The full data set based image is shown in Fig.12(a). The delta-wing data set was collected using
T, =1/2000 s. Each range profile is generated in 0.5 ms and each profile had 41 bins. The total data set
contains 60000 samples. The delta-wing was at a range of 2 km and was rotating at 2 °/s. Only the data
corresponding to the interval of 61 range bins (where the target was located) are used for calculation
and presentation. Data blocks of a random duration are considered as unavailable/corrupted, like in
Fig.12(b). The reconstruction results in this case are presented in Fig.12(d).
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Figure 12: Analysis of radar data of 6-point scatterer based on 12.5% of the signal samples missing in
blocks. In the reconstruction K = 30 is used.

Another illustrative example assumes the simulated 2D ISAR signal of an aircraft, exhibiting spar-
sity in the 2D DFT domain. The detailed description of the signal model is given in [71]. In Fig.13(a) we
present the 2D DFT of the full data set. Further, it is assumed that only 25% of the data are available,
where the available samples are randomly selected and represented as a measurement vector y having
M samples. The initial 2D DFT is calculated using the values of available measurements. It is shown in
Fig.13(b). Next, the reconstruction algorithm is applied to recover the missing data. The 2D version of
the threshold based reconstruction algorithm (Algorithm 3) is applied, where the variance is calculated
as:

) (N:N — M)
C=EMIN ) (63)
where E represents the energy estimated as:
M-1
E=Y Y |g(mn)|/M (64)
m=0neM(m)

The 2D threshold is then calculated using (32) with N = N:N, with P being set to the value 0.99. In or-
der to obtain efficient results, the iterative version of the algorithm is employed. Namely after applying
a threshold T and detecting the support of signal components being above 7, the least-squared mini-
mization is performed. Then, the influence of detected components is removed from the measurements.
After updating the measurements, we need to recalculate the amplitude, variance, and threshold. Then
Algorithm 3 can be repeated again. The reconstruction results are shown in Fig.13(c).

6.4 ECG signal reconstruction

ECG signals belongs to the group of biomedical signals used for analysis and detection of different
heart diseases [46,56,78]. Particularly, the specific waves of ECG signals called QRS complexes play an
important role in medical diagnoses and treatments. It has been shown that the compact representation
of ECG signals, especially the QRS complexes can be achieved using the Hermite transform allowing
fast processing and compression of ECG signals [11,20,21,30,54,59,69,79,80,101,105,117]. Due to their
specific shape, the Hermite basis functions are found to be suitable for the representation of QRS com-
plexes. Therefore, these signals can be represented using just a few Hermite coefficients. Consequently,
the Hermite transform representation allows us to exhibit the sparsity of QRS complexes, bringing
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Figure 13: A single iteration based algorithm applied to the simulated radar signal: a) 2D DFT of the
full data (signal) set; b) Initial 2D DFT of the signal with 25% of available samples, c) 2D DFT of the
reconstructed signal

advantages for their application to compressive sensing, but also for the automatic recognition and
classification of QRS complexes.
The Hermite basis functions are easily calculated using the following recursive formula [59,69,101]:

Vo

zp(tn)—ie =, a(tn) = Y2

tn =tp \/7 ¢z tn \/ 11[’71 tn)

where it is assumed that the Hermite basis functions are sampled at N points ¢, being the roots of the
N-th order Hermite polynomial. The Hermite transform coefficients are usually calculated using the
Gauss-Hermite quadrature:

N
— = x(ty),i=0,1,.,N -1,
; [N - 1(tn)]

where x(t,) is a signal sampled at the zero of the N-th order Hermite polynomial, while N is the length
of the signal.

The Hermite transform N x N matrix ® has the elements ¢(i,1n) = ;(t,)/[(¥n_1(tz))*N], for i =
0,1,...,N—1,and n =1,2,...,N. Vector of the transform domain coefficients is given by

C = dx.

In the case we are dealing with a smaller number of measurements compared to the signal length N,
the measurement vector y can be written as follows:

y =Bx=BYC,

where ¥ is the inverse Hermite transform matrix with elements 9;(t,).

The compressive sensing matrix is A = BY. Usually, the CS matrix A can be efficiently constructed
as a partial random inverse Hermite transform.

As already mentioned, in order to provide the most compact or the sparsest representation in the
Hermite transform domain, the discrete signals of length N should be sampled at non-uniform points
being proportional to the roots of the N-th order Hermite polynomial. Since the signals are usually
sampled uniformly, we can apply the sinc interpolation formula to obtain the values at the desired
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non-uniform points:

K
x(My)~ Y x(mAt)
m=—K

sin (7t(At, — mAt) / At)
w(Aty —mAt) /At

where n =1,..,N, m = —K,..,K and At is the sampling period. Now the scaling factor ¢ (that allows
stretching and compressing of the Hermite functions) should be adapted to the analyzed signal, in
this case the ECG signal or its QRS complex. Instead of doing so, we can use a fixed value ¢ =1 and
introduce the signal time-axis scaling factor A. The optimal value of A should produce the sparsest
representation. It is obtained as a solution of the following optimization problem:

Aapt = min |[Cy | = min [x, |, = min @A,

where @ is the Hermite transform matrix, x, is the vector with elements x(At,), and A, is the matrix
with elements
sin [t (At, — (m — K —1)At) /At]

Aty — (m—K—=1)At) /At

Anm =

withn,m=1,2,..N.

The optimization can be done using the presented steepest descent approach with iterative param-
eter A variations.

A real ECG signal is considered in this example. The QRS complexes are extracted from the observed
signal and the time domain representation of one of its QRS complexes is shown in Fig.14(a). Note that
this is the original full signal that will be used as a reference in order to test the efficiency of the CS
reconstruction. In order to achieve sparsity in the Hermite transform domain, the QRS complex should
be sampled at the points proportional to the roots of the Hermite polynomial. The corresponding sparse
Hermite domain representation is shown in Fig.14(b), proving that the QRS signals can be characterized
by only a few low-order Hermite coefficients. The available measurements are depicted in Fig.14(c).

Original QRS complex in an ECG signal Hermite transform coefficients of the QRS complex
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Figure 14: Compressed sensing applied to ECG signals: a) Original QRS complex extracted from an
ECG signal, b) Hermite transform representation of the QRS complex, c) available measurements, d)
reconstructed QRS complex.

The reconstruction of QRS signals is performed using the gradient algorithm (Algorithm 5), [21].
The amount of missing samples that are reconstructed in each QRS signal is approximately 45%. The
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reconstructed QRS complex is shown in Fig.14(d), where we may observe good match with the original
QRS signals. The value of parameter A is A = 6.2/500 = 0.0124 sec. Generally, when taking into account
all QRS complexes from the same ECG signal, the optimal values of parameter A,y calculated using
the presented optimization algorithm range between 6.1/500 and 6.4/500. Since these values are very
close to each other, we use one of the values from this range for the representation and reconstruction
of all QRS signals (A = 6.2/500).

7 Conclusions

Signals that are sparse in one of their representation domains can be reconstructed from a reduced set
of measurements. Conditions to reconstruct these signals are reviewed and discussed. Several methods
for signal reconstruction are presented, along with the pseudocode algorithms and examples.

The presentation starts with the direct search method. It is simple and well defined, however com-
putationally not feasible for practical problem dimensions. The second group of reconstruction methods
is based on the minimization of the number of nonzero coefficients in the signal sparsity domain. These
methods belong to the group of matching pursuit approaches. The next group of methods is based on
the reformulation of the presented problem into a constrained convex problem. The problem is then
solved by using well established linear programming tools. These methods belong to the group of basis
pursuit approaches. Finally the Bayesian formulation of the reconstruction problem is presented, along
with a specific algorithm to reconstruct a sparse signal from a reduced set of measurements.

A reduced set of measurements is interesting in practice from several points of view. It can result
from the desire to sense a sparse signal with the lowest possible number of measurements (compressive
sensing). It can also result from the physical unavailability to take a complete set of measurements/sam-
ples. Then the unavailable samples are reconstructed to the full signal, using the sparsity property. It
also can happen that some arbitrarily positioned samples of a signal are heavily corrupted by distur-
bances making it better to omit them and consider them as unavailable in the analysis and to try to
reconstruct the signal with a reduced set of uncorrupted samples. In this way efficient filtering and
disturbance removal can be achieved. Practical areas of application are numerous and can be found in
many recent papers.

Although compressive sensing and its applications have been intensively studied in the last decade,
there are still open questions in this field, like for example, computationally efficient uniqueness tests
and optimal sampling strategies. Adaptive dictionary learning in compressive sensing, based on the
machine learning algorithms, is another challenging research direction. Structure-aware Bayesian ap-
proach, together with the time-frequency representations, can provide a good basis for improvement of
the compressive sensing based reconstruction robustness. Although many applications of compressive
sensing in signal processing are already well described and implemented, this field remains an open
area for researches and engineers, with many improvements and new applications still to be discov-
ered.
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