
1

Hardware Implementation of the Quasi Maximum Likelihood Estimator Core for
Polynomial Phase Signals

Nevena R. Brnović 1, Igor Djurović 1,2, Veselin N. Ivanović 1*, Marko Simeunović 2,3

1 Electrical Engineering Department, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro
2 Institute for Cutting Edge Information and Communication Technologies, Džordža Vašingtona 66/354, 81000
Podgorica, Montenegro
3 Faculty for Information Systems and Technologies, University of Donja Gorica, Oktoih 1, 81000 Podgorica,
Montenegro
*very@ac.me

Abstract: Flexible, multiple-clock-cycle, hardware design for the quasi maximum likelihood (QML) algorithm core realization
for the polynomial phase signals (PPSs) estimation is proposed. The QML algorithm significantly outperforms existing PPS
estimators in terms of accuracy. However, its practical applications require efficient software and hardware systems. The
main challenges in the proposed hardware development with respect to existing systems for time-frequency analysis are
realization of time-frequency (TF) representation based instantaneous frequency (IF) estimator, the polynomial regression,
and phase extraction. The developed design is tested on a PPS corrupted by a white Gaussian noise and verified by a field
programmable gate array (FPGA) circuit design. All implementation and verification details are provided along with the
comparison of the results achieved by hardware and software implementations.

1. Introduction
The polynomial phase signal (PPS) is the standard

model of the nonstationary signals motivated by the
Weierstrass theorem that states that any continuous time
function can be modeled as a polynomial. This model has
been studied for more than three decades with numerous
techniques designed for parameter estimation. Three main
groups of the parameter estimators are [1], [2]:
 Maximum likelihood (ML) estimators (accurate but

with unacceptable complexity for PPS of order higher
than 3);

 Phase unwrapping (PU) estimators (accurate only for
narrowband signals and high signal-to-noise ratio
(SNR) but inaccurate for wideband signals and/or more
emphatic noise) [3];

 Phase differentiation (PD) estimators (efficient
techniques but with limited accuracy especially for
higher-order PPSs) [4]-[21].

For a long time due to efficiency reasons, the PD

estimators were a primary research topic. They are reviewed
in [1], [2]. However, their performance for higher-order PPS
is not satisfactory. Recently an alternative approach has
demonstrated excellent accuracy significantly improving
results with respect to all three groups of estimators [22]-
[29]. It is essentially a combination of the PU and the ML
estimators with pre-processing. In the pre-processing stage,
the rough estimate of the signal parameters is obtained by
polynomial regression of the instantaneous frequency (IF)
estimates. The IF estimates are obtained from the position of
the short-time Fourier transform (STFT) maxima [22], [30],
[31]. Note that there are special purpose hardware systems
with different configurations for the STFT realization [32]-
[39]. The STFT realizations are commonly used, as an initial

stage, in more sophisticated systems dedicated for the
realization of the advanced time-frequency (TF)
representations [40]-[45], as well as for realization of the
advanced time-varying and space-varying filtering systems,
[46]-[49]. However, multiple STFTs are evaluated in the
QML what is one of the main difficulties in both software
and hardware realizations of this algorithm. After
initial/rough PPS coefficients’ estimates are obtained by
polynomial regression of the IF estimates, the noisy signal is
demodulated using signal reconstructed by roughly
estimated PPS coefficients. The resulting signal is the PPS
of the same order as initial one but it is narrowband and
low-pass suitable for the PU estimation. This signal is
filtered with low-pass moving average filter reducing noise
influence without impact to the signal content. In the fine
stage, the phase coefficients are estimated from the
unwrapped phase of demodulated and filtered signal. This
process is referred as the O'Shea refinement strategy [18].
The fine estimate is an aggregation of results from the rough
and fine stages. The final algorithm output is selected based
on the ML criterion from estimates calculated with multiple
STFTs for various window widths. In this case, the search is
performed over the single parameter, i.e., window width in
the STFT, and not as in traditional ML algorithm realization
where the search is performed over all phase parameters that
is infeasible for higher-order PPSs.

Excellent results of the described technique qualify it

for many practical applications, such as the radar/sonar
systems, communications, sensor networks, or biomedical
signals and systems. However, this technique also requires
high calculation complexity that seriously reduces its
applicability in real-time applications. Nevertheless,
hardware implementation, if possible, can help in over-

2

coming of this nuisance. Therefore, it is an urgent need to
develop the hardware for the QML algorithm realization.

The QML algorithm realization is challenging with

evaluation of the STFT, IF estimation (the maxima STFT
detection), polynomial regression of the IF and phase,
demodulation, and filtering. A mitigating circumstance is
the fact that all the above listed procedures are repeated in
the same manner but for the different STFT window width.
Hence, a hardware implementation of these procedures for a
particular STFT window width is the key task that will be
solved and presented in this paper.

The paper is organized as follows. The QML

algorithm is presented in Section 2. Hardware
implementation of the algorithm, for a particular STFT
window width, is developed and described in Section 3. In
Section 4, the developed design is tested on a noisy PPS and
verified through the implementation on a field
programmable gate array (FPGA) device. Finally,
corresponding conclusions are derived in Section 5.

2. PPS Estimation and QML Algorithm
The Mth order PPS can be described as

0

() ex

() () (), [/ 2, / 2),

p(()) exp () ,
M

i
i

i

f n A j

x n f n n n S S

n A j a n






  

 
  








 (1)

where ()n is complex zero-mean white Gaussian noise

with variance 2 , A the signal amplitude, ()n the signal
phase, , 0,..., ,ia i M the phase parameters, and  the
sampling interval; S is a number of available samples. The
IF of signal f(n) is given as:

 1

1
() '() () ,

M
i

i
i

n n i a n 



     (2)

where the first derivative is with respect to n. The problem
of interest is to estimate signal parameters
{ ; , 0,..., }iA a i M from noisy observation x(n).

The QML algorithm can be summarized with the

following steps.

1. Calculate the STFT of x(n) given by (1) with different

window widths (,)hSTFT n  , :h H

(,) () () exp(),

[/ 2 / 2 , / 2 / 2),

h h
k

STFT n x n k w k j k

k S h S h

     

     


 (3)

where window function ()hw k is given as () 1hw k 
for [/ 2 , / 2)k h h    and () 0hw k  elsewhere; H is
the set of window widths and S is the number of signal
samples.

2. Estimate IFs for each window from the set :h H
 ˆ () arg max | (,) | .h hn STFT n


   (4)

3. Perform polynomial interpolation of IF estimates to
obtain a rough estimate of the phase parameters

,1 ,2 ,ˆ ˆ ˆ[, ,...,] :h h h h Ma a aa

 1() ,T T
h h

a Γ Γ Γ Ω (5)
where index h denotes estimates obtained based on the
window width h in the STFT. Matrix Γ is S M with
elements 1

, ,p
i p pi  where i are instants, [1,],p M

and hΩ is a column vector of IF estimates (4).

4. Perform dechirping, filtering, and phase unwrapping.
Dechirping is done using unit amplitude signal
obtained based on phase parameters estimates from the
rough estimation stage:

 ,
1

ˆ() () exp () .
M

i
h i

i
x n x n j a n



 
   

 
 (6)

Noise influence is attenuated with the moving average
filter:

(1)/2

(1) /2

1ˆ() ()
P

l P
x n x n l

P



 

   (7)

where filter length is P (assumed odd number). Then
the phase of dechirped (low-pass) and filtered signal
ˆ()x n is extracted and unwrapped
 ˆ() unwrap(phase(()).v n x n (8)

5. Now, residual phase parameters ˆ [1,,],i i ia a a i M   
can be estimated from ()v n using polynomial
regression:

 1() ,T T
h

 a Ξ Ξ Ξ v (9)
where elements of (1)M S  matrix Ξ are

, 1
p

i p i   , i are instants, [0,]p M are exponents
corresponding to the phase polynomial coefficients, v
is a column vector of phase samples ()v n . The fine

estimate is equal to h h h    a a a with elements
dependent on the window width ,ˆ f

i ha , h H .

6. The matched correlator (ML criterion function) is used
to determine the optimal window width

 ˆ arg max (),
h

h J h (10)

 ,
0

ˆ() ()exp () .
M

i
i h

n i
J h x n j a n



    
 

  (11)

7. The optimal window width determine final estimate
from the ensemble of estimates

 ˆ,
ˆ ˆ , [0,].i i h
a a i M  (12)

From the perspective of hardware implementation,

the algorithm steps 1 to 5 are the essential ones, and they
represent its core. Namely, those steps are repeating for each
STFT window width and, therefore, require the same
hardware implementation. Based on the simple criterion
(11), it is decided which results (for what STFT window
width realization) are the most accurate ones and they are
chosen as the final estimates, (12). Having in mind the

3

Figure 1. Hardware design of the QML algorithm-based estimator core for the polynomial phase signals. The stored
parameters’ names and their description are given into configuration registers. M is the order of the observed signal, N is the
width of the STFT lag window, S is the length of the observed signal, and P is the moving average filter length.

Figure 2. IF estimation block from Fig. 1. Unit denoted by
sqrt performs square root operation.

above elaboration, a hardware implementation of the QML
algorithm core presented in the next section is the main
contribution of this paper.

3. Hardware Implementation
Hardware implementation capable to provide the

QML algorithm-based estimation of the PPSs is given in
Figs. 1-5 and Table 1. It has three main functional modules.
In accordance with their associated names, the first two
modules provide the calculation of the rough and fine
coefficients of the QML algorithm, respectively. The third
module creates the final outputs of the implementation
based on the input signal and the outputs of the first two
modules (rough and fine coefficients). The final outputs are
estimated signal coefficients, filtered signal, as well as
estimated signal amplitude.

The STFT block from Fig. 1 represents one of the
well-known and already available modules that are used to

4

Figure 3. Matrix-Array Multiplication Block from Fig. 1. Notation given outside the brackets corresponds to the Matrix-Array
Multiplication Block from the Rough Coefficients Calculation Module, whereas the notation given inside the brackets
corresponds to the Matrix-Array Multiplication Block from the Fine Coefficients Calculation Module.

Table 1 Parameters from the Configuration registers, Fig. 1,
and their corresponding values. Parameters' values are
expressed by the number of needed CLK cycles.

Parameters Parameters' values

SMB1 M
SMB2 M+1
RM1 N
DIFW N×S
DSMB1 N×S×M
EMA N×S×M+S
RM2 N×S×M+S+1
ESMB2 N×S×M+S+round(S/P)+1
DSMB2 N×S×M+S+(M+1)round(S/P)+1
AE N×S×M+2S+(M+1)round(S/P)+2

provide the TF signal representation based on the linear
STFT. These modules are implemented either by using the
available FFT chips, [32], [33], or by using approaches
based on the recursive algorithms, [34]-[39]. Based on the
calculated STFT samples and the peak detection along the
frequency direction, [50]-[52], the IF Estimation Block (see
eq. (4)), given in Fig. 2, recognizes the instantaneous
frequencies (IFs) of the analyzed signal. The COMP Block
from the IF Estimation Block compresses set of 2-input
comparators combined with the basic logic gates to perform
the peak detection between the frequency-only-dependent
STFT samples and, accordingly, to determine IF of the input
signal in the TF point correspondent (in frequency) to the
detected peak STFT sample. Finally, the Matrix-Array
multiplication block, given in Fig. 3, generates (at the output
and based on the estimated IFs and Matrix 1 elements) the
rough coefficients Rcoeffs. Note that Matrix 1 represents the
matrix used in polynomial interpolation of the IF estimates
(5). Its elements, located in ROM, are the outcome of the
product 1()T TΓ Γ Γ (eq. (5)).

The Dechirp Coefficients Block together with Signal
Modification Block, Fig. 4, provides a calculation of the
dechirped signal, according to (6). The outputs of the
Dechirp Coefficients Block, named Dcoeffs in Fig. 1, are
dechirp coefficients ,1

ˆ ()M i
h ii

a n


 from (6). Together with
the analyzed PPS samples, these coefficients represent
inputs of the Signal Modification Block. After calculation in
the Signal Modification Block, the dechirped signal passes
through the moving average filter (MA Filtering Block), (7).
Extraction (and unwrapping) (8) is performed in the Phase
Extraction Block, using the filtered, dechirped signal
samples from the MA Filtering Block as the inputs. Matrix-
Array Multiplication Block, Fig. 3, is used in this functional
module as well. Its architecture is the same as in the case of
the Rough Coefficients Calculation Block. However, inputs
of the Matrix-Array Multiplication Block from the Fine
Coefficients Calculation Block are different. This block
serves for multiplication of the extracted (and unwrapped)
phase with the elements from Matrix 2. Note that Matrix 2
represents the matrix used in polynomial regression, (9), and
its elements, located in ROM, are the outcome of the
product: 1()T TΞ Ξ Ξ (eq. (9)). In this way, we are calculating
the fine coefficients Fcoeffs.

Results of two previously described functional

modules (Rcoeffs from Rough Coefficients Calculation
Module and Fcoeffs from the Fine Coefficients Calculation
Module) are inputs of the Final Coefficients Block, the input
block of the third functional module named the Filtering
Module. Estimated Signal Coeffs are calculated in this block
according to h h h    a a a (step 5 of the QML algorithm,
described in the previous Section). Signal Modification
Block, Fig. 4, is used in this functional module as well. Its
architecture is the same as in the case of the second
functional module, but with analyzed PPS samples and
Estimated Signal Coeffs as the inputs. The output of the
Signal Modification Block is the filtered PPS. The last
calculation block in the developed design named the

5

Figure 4. Signal Modification Block from Fig. 1. Notation given outside the brackets corresponds to the Signal Modification
Block from the Fine Coefficients Calculation Module, whereas the notation given inside the brackets corresponds to the Signal
Modification Block from the Filtering Module. Value  is the sampling rate of the analyzed signal. Within the system
initialization, the memory contents of register files are automatically loaded from outside (by using general purpose
microcontroller or PC). Within the execution, these registers can only be read, their contents cannot be changed and, therefore,
they should not be managed by control signals. Feedbacks on the multipliers denote execution of the exponentiation functions
(number written on the feedback denotes exponent value). Units denoted by sin and cos perform sine and cosine operations,
respectively and are implemented as a sum of the first two terms of the corresponding Taylor series.

Amplitude Block uses filtered PPS samples and calculates
the signal amplitude.

Control logic from Fig. 1 manages the execution. It

generates control signals based on the parameters from the
Configuration registers, Table 1. To this end, the control
logic groups modules that consist of the variable length
up/down binary counters and the binary magnitude
comparators whose references are parameters from
Configuration registers. In this way, each of these modules
creates the control signal corresponding to the parameter
from the Configuration registers.

Within the output signal calculation, the proposed
implementation takes multiple and fixed number of clock
cycles (CLKs). Calculations of the rough coefficients
Rcoeffs and the fine coefficients Fcoeffs take N×S×M CLKs
and S+(M+1)round(S/P)+1 CLKs, respectively, where
operator round(x) denotes rounding of the real variable x to
the nearest integer, whereas the Filtering Module requires
S+1 CLKs to complete calculation of the output. Note that
number of taken CLKs depends on the known algorithm
parameters N, M, S, and P, which means that execution time
of the proposed hardware implementation can be calculated
in advance that can be of great importance in many practical
applications.

Real and imaginary parts of input STFT data,
numerically calculated in STFT Block, are imported to the
proposed implementation on every CLK and are stored in
Register file 1 and Register file 2 of the IF Estimation Block,
Fig. 2. After N CLKs, these register files contain all
frequency-only-dependent STFT samples from the observed
time instant. Over the absolute

(,), /2,..., /2 1STFT n k k N N  values, implemented as

),(),(|),(| 2
Im

2
Re knSTFTknSTFTknSTFT  , the COMP

Block performs, in the already described manner, the peak
detection. According to (4), IF is detected in the TF point
correspondent in frequency to the detected peak STFT
sample. Hence, the IF Estimation Block takes N×S CLKs to
complete the IFs estimation for the windowed PPS.

For each N×CLK cycle, the estimated IFs are

imported to the Register file 1 of the Matrix-Array
Multiplication Block, Fig. 3. Simultaneously, on every
N×CLK cycle, and controlled by the Read_Matrix_1 signal,
the Matrix 1 elements are imported to the Register file 2 of
the same block. After N×S CLKs, all the estimated IFs are
imported to the Register file 1, but only one Matrix 1
column is imported into the Register file 2. At that instant,

6

Figure 5. Amplitude Calculation Block from Fig. 1. Unit denoted by div performs division operation between the sqrt unit
output and the length S of the observed signal.

by the multiplication of the corresponding elements from the
Register file 1 and Register file 2, and afterward by the
summation of the calculated products, one rough coefficient
is produced at the output of the Matrix-Array Multiplication
Block. This procedure is repeated M times (one time per a
Matrix 1 column). As a result, after N×S×M CLKs all rough
coefficients Rcoeffs are calculated and imported to the
Shift_Memory_Buffer_1 block. Note that, controlled by the
IF_dis signal, when all estimated IFs are imported to the
Register file 1, registers from this file do not change their
values. In the same manner, the SMB1_dis signal disables
the Shift_Memory_Buffer_1 block to change its content
after N×S×M CLKs, which allows the design to have the
Rcoeffs (in the Shift_Memory_Buffer_1 block) until
completion of the execution.

Implementing (6) based on the calculated Rcoeffs, the
Dechirp Coefficients Block (the simple combinational logic
containing a set of the two-input dividers) performs the
calculation of the dechirp coefficients Dcoeffs simul-
taneously imported to the Signal Modification Block. At the
same time, on every CLK cycle and controlled by the
Read_1 signal, the estimated signal samples (both their real
and imaginary parts) are imported to the Signal
Modification Block of the Fine Coefficients Calculation
Module. After S CLKs, all signal samples are imported to
this block, providing a base for the execution of the
necessary operations (exponentiation, multiplication,
summation, sine, and cosine). As a result, real and
imaginary parts of the dechirped signal (Dechirped
Signal_re and Dechirped Signal_im) are produced at the
output.

Controlled by the MA_Filt_en signal, real and
imaginary parts of the calculated dechirped signal are
separately imported to the MA Filtering Block. To create a
base for the moving average filtering (7) with no
overlapping windows, the imported samples are grouped in
the P length register files. Filtering (7) is implemented by
the simple combinational logic containing a set of the P-
input adders and two-input dividers. The MA_Signal_re and
MA_Signal_im samples, produced at the output of MA
Filtering Block, are imported to the combinational Phase

Extraction Block, which performs the arcus tangent and the
phase unwrapping function (8). This block requires only one
CLK to finish the calculation and to produce the Phase
signal at its output.

On every CLK, the calculated Phases are imported to

the Register file 1 of the Matrix-Array Multiplication Block,
shown in Fig. 3. Simultaneously, on every CLK, and
controlled by the Read_Matrix_2 signal, the Matrix 2
elements are imported to the Register file 2 of the same
block. After round(S/P) CLKs, all the calculated Phases are
imported to the Register file 1, but only one Matrix 2
column is imported into the Register file 2. At that instant,
by the multiplication of the corresponding elements from the
Register file 1 and Register file 2, and afterward by the
summation of the calculated products, one fine coefficient is
produced at the output of the Matrix-Array Multiplication
Block. This procedure is repeated (M+1) times (one time
per a Matrix 2 column). As a result, after round(S/P)(M+1)
CLKs all fine coefficients Fcoeffs are calculated and
imported to the Shift_Memory_Buffer_2 block. Note that,
controlled by the PE_dis signal, when all the estimated
Phases are imported to the Register file 1, registers from this
file do not change their values. In the same manner, the
SMB2_dis signal disables the Shift_Memory_Buffer_2
block to change its content after (N×S×M+S+(M+1)×
round(S/P)+1) CLKs, which allows the design to have the
Fcoeffs (in the Shift_Memory_Buffer_2 block) until
completion of the execution.

The Estimated Signal Coefficients are calculated
inside the Final Coefficients Block (the simple
combinational logic containing a set of the two-input
multipliers and a set of the two-input dividers), based on the
already calculated rough and fine coefficients Rcoeffs and
Fcoeffs. Simultaneously with the calculation, the Estimated
Signal Coefficients are imported to the Signal Modification
Block. At the same time, on every CLK cycle and controlled
by the Read_2 signal, the estimated signal samples (both
their real and imaginary parts) are imported to the Signal
Modification Block. After S CLKs, all signal samples are
imported to this block, providing a base for the execution of

7

Table 2 Summarized resource utilization of the proposed design implemented on the Cyclone III EP3C16E144C7 FPGA
device and determined by N=128, M=6, S=256, P=5, and input data length l=32. *Note that a total number of pins used by the
complete design correspond to the sum of input pins of the first module and output pins of the third module. **Note that a total
number of memory bits used by the complete design correspond to the sum of a total number of memory bits used by each
module separately increased for a total number of memory bits necessary to locate input signal samples, Fig. 1.

Resource utilization I Rough Coeffs
Calculation Module

II Fine Coeffs
Calculation Module III Filtering Module In total (complete

design)
Total Logic Elements 2,956/15,408 (19%) 2,106/15,408 (14%) 7,234/15,408 (47%) 12,296/15,408 (80%)
Combinational
Functions 2,956/15,408 (19%) 2,106/15,408 (14%) 3,376/15,408 (22%) 8,438/15,408 (55%)

Dedicated Logic
Registers 2,467/15,408 (16%) 2,051/15,408 (13%) 4,383/15,408 (28%) 8,901/15,408 (58%)

Total Pins 33/85 (39%) 65/85 (76%) 80/85 (94%) 33/85 (39%)*
Total Virtual Pins 0 0 0 0
Total Memory Bits 26,600/516,096 (5%) 3,856/516,096 (7%) 2,048/516,096 (4%) 48,888/516,096 (9%)**
Embedded Multiplier
9-bit elements 6/112 (5%) 16/112 (14%) 42/112 (38%) 64/112 (57%)

Total PLLs 0/4 (0%) 0/4 (0%) 0/4 (0%) 0/4 (0%)

the necessary operations (exponentiation, multiplication,
summation, sine, and cosine). As a result, real and
imaginary parts of the filtered signal (Filtered Signal_re and
Filtered Signal_im) are produced at the output.

Controlled by the Amplitude_en signal, real and
imaginary parts of the filtered signal are separately imported
to the Register file 1 and the Register file 2 of the Amplitude
Block, as shown in Fig. 5. Calculation of the Signal
Amplitude signal (including summation, multiplication,
dividing, and square root operation performed inside this
block) requires only one CLK (the last CLK taken within
the execution).

4. Testing and verification
To verify the developed hardware approach for the

QML algorithm-based estimation of PPS, it is first
implemented on an FPGA device and is tested, after that, on
the PPS (1) of the sixth-order, M=6, within the time interval
[–1,1), and with the sampling interval of Δ=1/128. Signal (1)
is corrupted by the additive white noise. The implementation
is done by considering different input SNR values (from 0
dB to 20 dB in a stepwise of 2 dB). Within the
implementation, the Cyclone III EP3C16E144C7 device has
been selected in accordance with the optimal resource
occupation, Table 2. Besides, as a key implementation detail,
the maximum CLK rate of 50 MHz is achieved within the
execution. Samples of the observed noisy signal are written
in the signed 32-bit fixed-point notation including 8-bit
fraction, as well as the numerically calculated and imported
STFTs. Within the STFT numerical calculation, the
rectangular lag-window width of N=128 is selected. For the
moving average filter length of P=5 is chosen.

Results of the real-time implementation for different

input SNRs are given in Table 3 (rows named Hardware). In
addition, to check the accuracy of the achieved results,
numerical results obtained from MATLAB simulation are
also presented in Table 3 (rows named Software 1). To
provide a fair comparison, numerical results are obtained for
the same input noisy PPS and for the same numerically

calculated STFTs, as in the hardware implementation case.
The proposed hardware implementation provides high
quality estimation and only small differences in the
parameter estimation can be noticed. Typically, differences
are from 0.03% (in the case of parameter a0 estimation and
for SNRin=20dB) up to 2.66% (in the case of parameter a3
estimation and for SNRin=12dB). The inaccuracy is mainly
caused by the approximate realization of some basic
functions within the hardware implementation. For example,
the trigonometric functions realization is based on Taylor
series representation and within hardware implementation,
only first two terms of the corresponding Taylor series are
taken into account. On the other hand, calculation of these
functions in MATLAB uses, by default, 250 terms of the
Taylor series. To confirm this statement, default
trigonometric functions realizations have been replaced in
MATLAB by the corresponding Taylor series
representations, but with the same accuracy as in the
hardware implementation case (only first two terms of the
corresponding Taylor series have been taken into account).
Results achieved in this way are also presented in Table 3
(rows named Software 2), for each particular input SNR
value. Now, comparing the corresponding Hardware and
Software 2 rows from Table 2, the accuracy of the proposed
hardware implementation can easily be checked. Note that,
in this case, differences in the parameters estimation (from
0.012% in the case of parameter a5 estimation and for
SNRin=20dB up to 0.51% in the case of parameter a1
estimation and for SNRin=8dB) are caused by the finite
register length influence [53] and are significantly smaller
than differences noted within the comparison of the
proposed hardware implementation and the MATLAB
implementation which uses default realizations of the
trigonometric functions.

Note that, if it would be required, the accuracy of the
proposed hardware implementation can be improved by
using more precise mathematical formulas for the mentioned
basic functions realization. However, in this way, hardware
complexity would be significantly increased, together with
the increase in execution time. Therefore, the hardware

8

Table 3 Results of the observed PPS (1) parameters estimation. Results, achieved by the developed hardware design
(Hardware), by the MATLAB simulation (Software 1), and by the MATLAB simulation with reduced accuracy (Software 2),
are given for different input SNR values (from 0 dB to 20 dB in a stepwise of 2 dB).

Parameters A a6 a5 a4 a3 a2 a1 a0

SNRin=20dB
Hardware 0.730 18.506 62.829 -57.198 67.611 -82.090 -30.576 65.559
Software 1 0.734 18.566 62.810 -57.107 67.657 -82.150 -30.274 65.538
Software 2 0.733 18.530 62.821 -57.158 67.629 -82.019 -30.525 65.540

SNRin=18dB
Hardware 0.737 18.575 63.122 -57.433 67.797 -82.239 -30.524 65.992
Software 1 0.734 18.562 62.808 -56.978 67.730 -81.912 -30.282 65.469
Software 2 0.735 18.570 62.997 -57.231 67.750 -82.014 -30.432 65.689

SNRin=16dB
Hardware 0.738 18.516 63.131 -56.540 67.862 -83.950 -30.541 66.089
Software 1 0.732 18.530 62.817 -56.667 67.595 -83.359 -30.299 66.410
Software 2 0.735 18.509 63.030 -56.501 67.849 -83.914 -30.432 66.209

SNRin=14dB
Hardware 0.736 18.658 62.995 -57.257 67.869 -84.133 -30.569 66.952
Software 1 0.731 18.529 62.807 -57.142 67.599 -83.466 -30.357 66.619
Software 2 0.734 18.598 62.871 -57.193 67.702 -83.890 -30.418 66.876

SNRin=12dB
Hardware 0.734 18.431 62.885 -56.513 65.902 -83.029 -30.666 66.735
Software 1 0.730 18.528 62.805 -56.614 67.707 -83.720 -30.359 66.830
Software 2 0.732 18.445 62.877 -56.583 66.003 -83.121 -30.561 66.782

SNRin=10dB
Hardware 0.715 18.954 63.430 -58.765 68.267 -82.339 -29.296 63.608
Software 1 0.709 18.767 62.865 -57.897 67.726 -81.767 -29.180 63.355
Software 2 0.712 18.899 63.210 -58.555 67.997 -81.987 -29.201 63.594

SNRin=8dB
Hardware 0.707 18.307 62.821 -58.608 69.253 -81.199 -27.149 63.001
Software 1 0.701 18.300 62.911 -58.028 69.538 -80.660 -27.652 63.077
Software 2 0.705 18.302 62.859 -58.493 69.349 -81.018 -27.290 63.022

SNRin=6dB
Hardware 0.797 18.327 64.101 -58.657 68.956 -85.086 33.124 62.748
Software 1 0.791 18.200 63.846 -58.077 69.653 -85.343 33.258 62.250
Software 2 0.795 18.250 64.009 -58.463 69.211 -85.219 33.198 62.560

SNRin=4dB
Hardware 0.812 16.400 63.222 -57.179 68.499 -88.089 26.459 58.547
Software 1 0.817 16.304 63.917 -58.370 69.983 -88.170 26.355 58.490
Software 2 0.814 16.352 63.359 -57.274 68.509 -88.199 26.397 58.501

SNRin=2dB
Hardware 0.849 16.158 64.867 -58.106 70.463 -88.743 34.373 58.197
Software 1 0.843 15.999 64.225 -58.516 70.323 -88.566 34.546 57.645
Software 2 0.846 16.104 64.632 -58.244 70.347 -88.621 34.445 58.003

SNRin=0dB
Hardware 0.620 13.234 64.070 -64.688 71.120 -76.402 -36.469 54.690
Software 1 0.602 13.531 64.718 -64.985 71.715 -76.195 -36.516 54.861
Software 2 0.611 13.262 64.285 -64.707 71.150 -76.300 -36.497 54.701

implementation should be developed by making a trade-off
between required precision from one side, and hardware
complexity and execution time from the other side, as
performed here.

To complete estimation of the observed 6-th order
PPS, the developed hardware design requires a period of
time depending on the number of taken CLKs, discussed for
each used module in Section 3, and on the single CLK
duration, where the single CLK duration of 20ns
corresponds to the maximum CLK rate of 50 MHz. This
period of time (about 3.95 ms) is about 10 times smaller
than the period required by the MATLAB simulation,
performed on a high performance computer (24GB RAM, i7
Intel processor).

5. Conclusion
Efficient multiple-clock-cycle hardware

implementation of the QML estimator core, the recently
proposed powerful alternative to the state-of-the-art PPS

estimators, is developed, tested, and verified. Based on the
fact that PPSs have great importance in many practical
applications (radars, sonars, sensor networks, biomedicine,
and communications), as well as that the QML significantly
outperforms other corresponding algorithms (in terms of
both characteristics: the SNR and the mean square error),
the efficient hardware implementation of such estimation
obviously is of great benefit and importance. In that way,
this accurate and useful estimation algorithm will get its full
practical valorization through possible real-time applications.
The developed design is verified by implementation on an
FPGA device and is tested on the real, noisy PPS, whereas
the achieved very high accuracy is proven by comparison
with the results obtained by the MATLAB simulation. It is
shown that deviations in the estimation of signal coefficients
are mainly caused by the limited precision in the realization
of some basic mathematical functions, but also that their
precision can be increased if required. A future research
could be focused on the parallelization of the necessary
number of QML algorithm cores, along with the

9

implementation of conditional steps of that algorithm.
However, due to the expected extensive increase in
calculation complexity (that is already high in the realization
of the single algorithm core), advanced methods for
optimization should be required.

6. Reference
[1] I. Djurović, M. Simeunović, B. Lutovac, “Are genetic

algorithms useful for the parameter estimation of FM
signals,“ Digital Signal Processing, vol. 22, no. 6, Nov.
2012, pp. 1137-1144.

[2] I. Djurović, M. Simeunović, P. Wang, “Cubic phase
function: A simple solution for polynomial phase signal
analysis,“ Signal Processing, vol. 135, June 2017, pp.
48-66.

[3] R. McKilliam, B. Quinn, I. Clarkson, B. Moran, B.
Vellambi, “Polynomial phase estimation by least
squares phase unwrapping,“ IEEE Transactions on
Signal Processing, vol. 62, no. 8, August 2014, pp.
1962-1975.

[4] B. Friedlander, J. M. Francos, “Estimation of
amplitudes and phase parameters of multicomponent
signals,“ IEEE Transactions on Signal Processing, vol.
43, no. 4, Apr. 1995, pp. 917-926.

[5] S. Peleg, B. Porat, “Estimation and classification of
polynomial phase signals,“ IEEE Transactions on
Information Theory, vol. 37, no. 2, Mar. 1991, pp. 422-
430.

[6] S. Barbarossa, V. Petrone, “Analysis of polynomial-
phase signals by the integrated generalized ambiguity
function,“ IEEE Transactions on Signal Processing,
vol. 45, no. 2, Feb. 1997, pp. 316-327.

[7] D. S. Pham, A. M. Zoubir, “Analysis of
multicomponent polynomial phase signals,“ IEEE
Transactions on Signal Processing, vol. 55, no. 1, Jan.
2007, pp. 56-65.

[8] B. Porat, B. Friedlander, “Asymptotic statistical
analysis of the high-order ambiguity function for
parameter estimation of polynomial-phase signals,“
IEEE Transactions on Information Theory, vol. 42, no.
3, May 1996, pp. 995-1001.

[9] S. Barbarossa, A. Scaglione, G. B. Giannakis, “Product
high-order ambiguity function for multicomponent
polynomial phase signal modeling,“ IEEE Transactions
on Signal Processing, vol. 46, no. 3, Mar. 1998, pp.
691-708.

[10] P. O'Shea, “A new technique for instantaneous
frequency rate estimation,“ IEEE Signal Processing
Letters, vol. 9, no. 8, Aug. 2002, pp. 251-252.

[11] T. G. Zhou, Y. Wang, “Exploring lag diversity in the
high-order ambiguity function for polynomial phase
signals,“ IEEE Signal Processing Letters, vol. 4, no. 8,
August 1997, pp. 240-242.

[12] P. O'Shea, “A fast algorithm for estimating the
parameters of a quadratic FM signal,“ IEEE Trans. Sig.
Proc., vol. 52, no. 2, Feb. 2004, pp. 385-393.

[13] M. Farquharson, P. O'Shea, “Extending the
performance of the cubic phase function algorithm,“
IEEE Tran. Sig. Proc., vol. 55, no. 10, Oct. 2007, pp.
4767 - 4774.

[14] I. Djurović, M. Simeunović, S. Djukanović, P. Wang,
“A hybrid CPF-HAF estimation of polynomial-phase

signals: detailed statistical analysis,“ IEEE Transactions
on Signal Processing, vol. 60, no. 10, Oct. 2012, pp.
5010-5023.

[15] M. Simeunović, I. Djurović, “CPF-HAF estimator of
polynomial-phase signals,“ IET Electronics Letters, vol.
47, no. 17, Aug. 2011, pp. 965-966.

[16] P. O'Shea, “An iterative algorithm for estimating the
parameters of polynomial phase signals,“ in Proc. of
ISSPA, vol. 2, August 1996, pp. 730-731.

[17] I. Djurović, P. Wang, C. Ioana, “Parameter estimation
of 2-D polynomial cubic signals using cubic phase
function with genetic algorithms,“ Signal Processing,
vol. 90, no. 9, Sep. 2010, pp. 2698-2707.

[18] P. O'Shea, “On refining polynomial phase signal
parameter estimates,“ IEEE Transactions on Aerospace
and Electronics Systems, vol. 46, no. 3 July 2010, pp.
978-987.

[19] B. Ristić, B. Boashash, “Comments on “The Cramer-
Rao lower bounds for signals with constant amplitude
and polynomial phase“,“ IEEE Transactions on Signal
Processing, vol. 46, no. 6, June 1998, pp. 1708-1709.

[20] F. Gini, G. B. Giannakis, “Hybrid FM-polynomial
phase signal modeling: parameter estimation and
Cramer-Rao bounds,“ IEEE Transactions on Signal
Processing, vol. 47, no. 2, Feb. 1999, pp. 363-377.

[21] P. Wang, P. V. Orlik, K. Sadamoto, W. Tsujita, F. Gini,
“Parameter estimation of hybrid sinusoidal FM-
polynomial phase signal,“ IEEE Signal Processing
Letters, vol. 24, no. 1, Jan. 2017, pp. 66-70.

[22] I. Djurović, LJ. Stanković, “Quasi maximum likelihood
estimator of polynomial phase signals,“ IET Signal
Processing, vol. 13, no. 4, June 2014, pp. 347-359.

[23] I. Djurović, “On parameters of the QML PPS
estimator“, Signal Processing, vol. 116, Nov. 2015, pp.
1-6.

[24] I. Djurović, LJ. Stanković, “STFT-based estimator of
polynomial phase signals“,Signal Processing, vol. 92,
no. 11, Nov. 2012, pp. 2769-2774.

[25] I. Djurović, “Quasi ML algorithm for 2-D PPS
estimation,“ Multidimensional Signals and Systems, vol.
28, no. 2, Apr. 2017, pp. 371-389.

[26] I. Djurović, “High precision technique for PPS
estimation in impulsive noise environment,“ Signal
Processing, vol. 127, Oct. 2016, pp. 151-155.

[27] I. Djurović, “QML-RANSAC: PPS and FM signals
estimation in heavy noise environments,“ Signal
Processing, vol, 130, Jan. 2017, pp. 142-151.

[28] I. Djurović, M. Simeunović, “Resolving aliasing effect
in the QML estimation of PPSs,“ IEEE Transaction on
Aerospace and Electronic Systems, vol. 52, no. 3, June
2016, pp. 1494-1499.

[29] I. Djurović, V. Popović-Bugarin, M. Simeunović, “The
STFT-based estimator of micro-Doppler parameters,“
IEEE Transactions on Aerospace and Electronics
Systems, vol. 53, no. 3, June 2017, pp. 1273-1283.

[30] LJ. Stanković, I. Djurović, S. Stanković, M.
Simeunović, M. Daković, “Instantaneous frequency in
time-frequency analysis: Enhanced concepts and
performance of estimation algorithms,“ Digital Signal
Processing, vol. 35, Dec. 2014, pp. 1-13.

[31] J. Lerga, V. Sučić, “Nonlinear IF estimation based on
the pseudo WVD adapted using the improved sliding

10

pairwise ICI rule,“ IEEE Signal Processing Letters, vol.
16, no. 11, Nov. 2009, pp. 953-956.

[32] A. Papoulis, Signal Analysis, McGraw-Hill, New York,
USA, 1997.

[33] A. Oppenheim, R.W. Schafer, Discrete-Time Signal
Processing, 3rd edition, Prentice-Hall,2009.

[34] S. Stanković, LJ. Stanković, V.N. Ivanović, R.
Stojanović, “An architecture for the VLSI design of
systems for time-frequency analysis and time-varying
filtering”, Annales des Telecommunications, vol. 57, no.
9/10, Sept./Oct. 2002, pp. 974-995.

[35] K. J. R. Liu, “Novel parallel architectures for Short-
time Fourier transform”, IEEE Trans. on Circuits and
Systems–II: Analog and Digital Signal Processing, vol.
40, no 12, Dec. 1993, pp. 786-790.

[36] M. G. Amin, “A new approach to recursive Fourier
transform”, Proc. of the IEEE, vol. 75, no. 11, 1987, pp.
1537-1538.

[37] M. Unser, “Recursion in short time signal analysis”,
Signal Processing, vol. 5, no 5, 1983, pp. 229-240.

[38] M. G. Amin, “Spectral smoothing and recursion based
on the nonstationarity of the autocorrelation function”,
IEEE Trans. on Signal Processing, vol. 41, no 2, Feb.
1993, pp. 930-934.

[39] M. G. Amin, K .D. Feng, “Short time Fourier transform
using cascade filter structures”, IEEE Trans. on Circuits
and Systems–II: Analog and Digital Signal Processing,
vol. 42, no 10, Oct. 1995, pp. 631-641.

[40] B. Boashash, Time frequency signal analysis and
processing: a comprehensive reference, Second edition,
Amsterdam: Academic Press, Elsevier, 2016.

[41] E. Sejdić, I. Djurović, J. Jiang, “Time-frequency feature
representation using energy concentration: An overview
of recent advances,“ Digital Signal Processing, vol. 19,
no. 1, Jan. 2009, pp. 153-183.

[42] V. N. Ivanović, R. Stojanović, LJ. Stanković, “Multiple
clock cycle architecture for the VLSI design of a system
for time-frequency analysis,” EURASIP Journal on
Applied Signal Processing, Special Issue on Design
Methods for DSP Systems, vol. 2006, pp. 1-18.

[43] V. N. Ivanović, R. Stojanović, “An efficient hardware
design of the flexible 2-D system for space/spatial-
frequency signal analysis,” IEEE Trans. on Signal
Processing, vol. 55, no. 6, June 2007, pp. 3116-3125.

[44] V. N. Ivanović, S. Jovanovski, “Signal adaptive system
for time–frequency analysis,” Electronics Letters, vol.
44, no. 21, Oct. 2008, pp. 1279-1280.

[45] V. N. Ivanović, S. Jovanovski, “Signal adaptive system
for space/spatial–frequency analysis,” EURASIP
Journal on Advances in Signal Processing, vol. 2009,
pp. 1-16.

[46] S. Jovanovski, V. N. Ivanović, “Signal adaptive
pipelined hardware design of time-varying optimal filter
for highly nonstationary FM signal estimation,” Journal
of Signal Processing Systems, vol. 62, no. 3, 2011, pp.
287-300.

[47] V. N. Ivanović, S. Jovanovski, N. Radović, “Superior
execution time design of optimal (Wiener) time-
frequency filter,” Electronics Letters, vol. 52, no. 17,
Aug. 2016, pp. 1440-1442.

[48] V. N. Ivanović, N. Radović, S. Jovanovski, “Real–time
design of space/spatial–frequency optimal filter,”
Electronics Letters, vol. 46, no. 25, Dec. 2010, pp.
1696-1697.

[49] V. N. Ivanović, N. Radović, “Signal adaptive hardware
implementation of a system for highly nonstationary
two-dimensional FM signal estimation,” AEUE –
International Journal of Electronics and
Communications, vol. 69, no. 12, Dec. 2015, pp. 1854–
1867.

[50] V. N. Ivanović, M. Daković, LJ. Stanković,
“Performances of quadratic time-frequency
distributions as instantaneous frequency estimators”,
IEEE Transactions on Signal Processing, vol. 51, no. 1,
Jan. 2003, pp. 77-89.

[51] LJ. Stanković, M. Daković, V. N. Ivanović,
“Performances of spectrogram as an IF estimator”,
Electronics Letters, vol. 37, no. 12, June 2001, pp. 797–
799.

[52] V. N. Ivanović, M. Daković, I. Đurović, LJ. Stanković,
“Instantaneous frequency estimation by using time-
frequency distributions”, in Proc. of IEEE ICASSP
2001, Salt Lake City, May 2001, pp. 3521-3524.

[53] V.N. Ivanović, LJ. Stanković, D. Petranović, “Finite
word-length effects in implementation of algorithms for
time-frequency signal analysis”, IEEE Trans. on Signal
Processing, vol.46, no.7, July 1998, pp.2035-2041.

