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Abstract: Flexible, multiple-clock-cycle, hardware design for the quasi maximum likelihood (QML) algorithm core realization 
for the polynomial phase signals (PPSs) estimation is proposed. The QML algorithm significantly outperforms existing PPS 
estimators in terms of accuracy. However, its practical applications require efficient software and hardware systems. The 
main challenges in the proposed hardware development with respect to existing systems for time-frequency analysis are 
realization of time-frequency (TF) representation based instantaneous frequency (IF) estimator, the polynomial regression, 
and phase extraction. The developed design is tested on a PPS corrupted by a white Gaussian noise and verified by a field 
programmable gate array (FPGA) circuit design. All implementation and verification details are provided along with the 
comparison of the results achieved by hardware and software implementations. 
 

1. Introduction 
The polynomial phase signal (PPS) is the standard 

model of the nonstationary signals motivated by the 
Weierstrass theorem that states that any continuous time 
function can be modeled as a polynomial. This model has 
been studied for more than three decades with numerous 
techniques designed for parameter estimation. Three main 
groups of the parameter estimators are [1], [2]: 
 Maximum likelihood (ML) estimators (accurate but 

with unacceptable complexity for PPS of order higher 
than 3); 

 Phase unwrapping (PU) estimators (accurate only for 
narrowband signals and high signal-to-noise ratio 
(SNR) but inaccurate for wideband signals and/or more 
emphatic noise) [3]; 

 Phase differentiation (PD) estimators (efficient 
techniques but with limited accuracy especially for 
higher-order PPSs) [4]-[21]. 

 
For a long time due to efficiency reasons, the PD 

estimators were a primary research topic. They are reviewed 
in [1], [2]. However, their performance for higher-order PPS 
is not satisfactory. Recently an alternative approach has 
demonstrated excellent accuracy significantly improving 
results with respect to all three groups of estimators [22]-
[29]. It is essentially a combination of the PU and the ML 
estimators with pre-processing. In the pre-processing stage, 
the rough estimate of the signal parameters is obtained by 
polynomial regression of the instantaneous frequency (IF) 
estimates. The IF estimates are obtained from the position of 
the short-time Fourier transform (STFT) maxima [22], [30], 
[31]. Note that there are special purpose hardware systems 
with different configurations for the STFT realization [32]-
[39]. The STFT realizations are commonly used, as an initial 

stage, in more sophisticated systems dedicated for the 
realization of the advanced time-frequency (TF) 
representations [40]-[45], as well as for realization of the 
advanced time-varying and space-varying filtering systems, 
[46]-[49]. However, multiple STFTs are evaluated in the 
QML what is one of the main difficulties in both software 
and hardware realizations of this algorithm. After 
initial/rough PPS coefficients’ estimates are obtained by 
polynomial regression of the IF estimates, the noisy signal is 
demodulated using signal reconstructed by roughly 
estimated PPS coefficients. The resulting signal is the PPS 
of the same order as initial one but it is narrowband and 
low-pass suitable for the PU estimation. This signal is 
filtered with low-pass moving average filter reducing noise 
influence without impact to the signal content. In the fine 
stage, the phase coefficients are estimated from the 
unwrapped phase of demodulated and filtered signal. This 
process is referred as the O'Shea refinement strategy [18]. 
The fine estimate is an aggregation of results from the rough 
and fine stages. The final algorithm output is selected based 
on the ML criterion from estimates calculated with multiple 
STFTs for various window widths. In this case, the search is 
performed over the single parameter, i.e., window width in 
the STFT, and not as in traditional ML algorithm realization 
where the search is performed over all phase parameters that 
is infeasible for higher-order PPSs. 

 
Excellent results of the described technique qualify it 

for many practical applications, such as the radar/sonar 
systems, communications, sensor networks, or biomedical 
signals and systems. However, this technique also requires 
high calculation complexity that seriously reduces its 
applicability in real-time applications. Nevertheless, 
hardware implementation, if possible, can help in over-
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coming of this nuisance. Therefore, it is an urgent need to 
develop the hardware for the QML algorithm realization. 

 
The QML algorithm realization is challenging with 

evaluation of the STFT, IF estimation (the maxima STFT 
detection), polynomial regression of the IF and phase, 
demodulation, and filtering. A mitigating circumstance is 
the fact that all the above listed procedures are repeated in 
the same manner but for the different STFT window width. 
Hence, a hardware implementation of these procedures for a 
particular STFT window width is the key task that will be 
solved and presented in this paper. 

 
The paper is organized as follows. The QML 

algorithm is presented in Section 2. Hardware 
implementation of the algorithm, for a particular STFT 
window width, is developed and described in Section 3. In 
Section 4, the developed design is tested on a noisy PPS and 
verified through the implementation on a field 
programmable gate array (FPGA) device. Finally, 
corresponding conclusions are derived in Section 5. 

2. PPS Estimation and QML Algorithm 
The Mth order PPS can be described as 
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where ( )n  is complex zero-mean white Gaussian noise 

with variance 2 , A the signal amplitude, ( )n  the signal 
phase, , 0,..., ,ia i M  the phase parameters, and   the 
sampling interval; S is a number of available samples. The 
IF of signal f(n) is given as: 
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where the first derivative is with respect to n. The problem 
of interest is to estimate signal parameters
{ ; , 0,..., }iA a i M  from noisy observation x(n). 

 
The QML algorithm can be summarized with the 

following steps. 
 
 
1. Calculate the STFT of x(n) given by (1) with different 

window widths ( , )hSTFT n  , :h H  
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where window function ( )hw k  is given as ( ) 1hw k   
for [ / 2 , / 2 )k h h     and ( ) 0hw k  elsewhere; H is 
the set of window widths and S is the number of signal 
samples. 

2. Estimate IFs for each window from the set :h H  
 ˆ ( ) arg max | ( , ) | .h hn STFT n


     (4) 

3. Perform polynomial interpolation of IF estimates to 
obtain a rough estimate of the phase parameters 

,1 ,2 ,ˆ ˆ ˆ[ , ,..., ] :h h h h Ma a aa  

 1( ) ,T T
h h

a Γ Γ Γ Ω   (5)  
where index h denotes estimates obtained based on the 
window width h in the STFT. Matrix Γ  is S M  with 
elements 1

, ,p
i p pi  where i are instants, [1, ],p M

and hΩ  is a column vector of IF estimates (4). 

4. Perform dechirping, filtering, and phase unwrapping. 
Dechirping is done using unit amplitude signal 
obtained based on phase parameters estimates from the 
rough estimation stage: 
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Noise influence is attenuated with the moving average 
filter: 

 
( 1)/2

( 1) /2

1ˆ( ) ( )
P

l P
x n x n l

P



 

     (7)  

where filter length is P (assumed odd number). Then 
the phase of dechirped (low-pass) and filtered signal 
ˆ( )x n  is extracted and unwrapped 
 ˆ( ) unwrap(phase( ( )).v n x n   (8) 

5. Now, residual phase parameters ˆ [1,, ],i i ia a a i M     
can be estimated from ( )v n  using polynomial 
regression: 
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where elements of ( 1)M S   matrix Ξ  are 

, 1
p

i p i   , i are instants, [0, ]p M  are exponents 
corresponding to the phase polynomial coefficients, v  
is a column vector of phase samples ( )v n . The fine 

estimate is equal to h h h    a a a  with elements 
dependent on the window width ,ˆ f

i ha , h H . 

6. The matched correlator (ML criterion function) is used 
to determine the optimal window width 
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7. The optimal window width determine final estimate 
from the ensemble of estimates 

 ˆ,
ˆ ˆ , [0, ].i i h
a a i M    (12) 

 
 
From the perspective of hardware implementation, 

the algorithm steps 1 to 5 are the essential ones, and they 
represent its core. Namely, those steps are repeating for each 
STFT window width and, therefore, require the same 
hardware implementation. Based on the simple criterion 
(11), it is decided which results (for what STFT window 
width realization) are the most accurate ones and they are 
chosen as the final estimates, (12). Having in mind the  
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Figure 1. Hardware design of the QML algorithm-based estimator core for the polynomial phase signals. The stored 
parameters’ names and their description are given into configuration registers. M is the order of the observed signal, N is the 
width of the STFT lag window, S is the length of the observed signal, and P is the moving average filter length. 
 

 
 
Figure 2. IF estimation block from Fig. 1. Unit denoted by 
sqrt performs square root operation. 

above elaboration, a hardware implementation of the QML 
algorithm core presented in the next section is the main 
contribution of this paper. 

3. Hardware Implementation 
Hardware implementation capable to provide the 

QML algorithm-based estimation of the PPSs is given in 
Figs. 1-5 and Table 1. It has three main functional modules. 
In accordance with their associated names, the first two 
modules provide the calculation of the rough and fine 
coefficients of the QML algorithm, respectively. The third 
module creates the final outputs of the implementation 
based on the input signal and the outputs of the first two 
modules (rough and fine coefficients). The final outputs are 
estimated signal coefficients, filtered signal, as well as 
estimated signal amplitude. 

 

The STFT block from Fig. 1 represents one of the 
well-known and already available modules that are used to  
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Figure 3. Matrix-Array Multiplication Block from Fig. 1. Notation given outside the brackets corresponds to the Matrix-Array 
Multiplication Block from the Rough Coefficients Calculation Module, whereas the notation given inside the brackets 
corresponds to the Matrix-Array Multiplication Block from the Fine Coefficients Calculation Module. 
 
Table 1 Parameters from the Configuration registers, Fig. 1, 
and their corresponding values. Parameters' values are 
expressed by the number of needed CLK cycles. 

Parameters  Parameters' values 

  
SMB1 M 
SMB2 M+1 
RM1 N 
DIFW N×S 
DSMB1 N×S×M 
EMA N×S×M+S 
RM2 N×S×M+S+1 
ESMB2 N×S×M+S+round(S/P)+1 
DSMB2 N×S×M+S+(M+1)round(S/P)+1 
AE N×S×M+2S+(M+1)round(S/P)+2 

 
provide the TF signal representation based on the linear 
STFT. These modules are implemented either by using the 
available FFT chips, [32], [33], or by using approaches 
based on the recursive algorithms, [34]-[39]. Based on the 
calculated STFT samples and the peak detection along the 
frequency direction, [50]-[52], the IF Estimation Block (see 
eq. (4)), given in Fig. 2, recognizes the instantaneous 
frequencies (IFs) of the analyzed signal. The COMP Block 
from the IF Estimation Block compresses set of 2-input 
comparators combined with the basic logic gates to perform 
the peak detection between the frequency-only-dependent 
STFT samples and, accordingly, to determine IF of the input 
signal in the TF point correspondent (in frequency) to the 
detected peak STFT sample. Finally, the Matrix-Array 
multiplication block, given in Fig. 3, generates (at the output 
and based on the estimated IFs and Matrix 1 elements) the 
rough coefficients Rcoeffs. Note that Matrix 1 represents the 
matrix used in polynomial interpolation of the IF estimates 
(5). Its elements, located in ROM, are the outcome of the 
product 1( )T TΓ Γ Γ  (eq. (5)). 

The Dechirp Coefficients Block together with Signal 
Modification Block, Fig. 4, provides a calculation of the 
dechirped signal, according to (6). The outputs of the 
Dechirp Coefficients Block, named Dcoeffs in Fig. 1, are 
dechirp coefficients ,1

ˆ ( )M i
h ii

a n


  from (6). Together with 
the analyzed PPS samples, these coefficients represent 
inputs of the Signal Modification Block. After calculation in 
the Signal Modification Block, the dechirped signal passes 
through the moving average filter (MA Filtering Block), (7). 
Extraction (and unwrapping) (8) is performed in the Phase 
Extraction Block, using the filtered, dechirped signal 
samples from the MA Filtering Block as the inputs. Matrix-
Array Multiplication Block, Fig. 3, is used in this functional 
module as well. Its architecture is the same as in the case of 
the Rough Coefficients Calculation Block. However, inputs 
of the Matrix-Array Multiplication Block from the Fine 
Coefficients Calculation Block are different. This block 
serves for multiplication of the extracted (and unwrapped) 
phase with the elements from Matrix 2. Note that Matrix 2 
represents the matrix used in polynomial regression, (9), and 
its elements, located in ROM, are the outcome of the 
product: 1( )T TΞ Ξ Ξ  (eq. (9)). In this way, we are calculating 
the fine coefficients Fcoeffs. 

 
Results of two previously described functional 

modules (Rcoeffs from Rough Coefficients Calculation 
Module and Fcoeffs from the Fine Coefficients Calculation 
Module) are inputs of the Final Coefficients Block, the input 
block of the third functional module named the Filtering 
Module. Estimated Signal Coeffs are calculated in this block 
according to h h h    a a a  (step 5 of the QML algorithm, 
described in the previous Section). Signal Modification 
Block, Fig. 4, is used in this functional module as well. Its 
architecture is the same as in the case of the second 
functional module, but with analyzed PPS samples and 
Estimated Signal Coeffs as the inputs. The output of the 
Signal Modification Block is the filtered PPS. The last 
calculation block in the developed design named the 

 



5 
 

 
 
Figure 4. Signal Modification Block from Fig. 1. Notation given outside the brackets corresponds to the Signal Modification 
Block from the Fine Coefficients Calculation Module, whereas the notation given inside the brackets corresponds to the Signal 
Modification Block from the Filtering Module. Value  is the sampling rate of the analyzed signal. Within the system 
initialization, the memory contents of register files are automatically loaded from outside (by using general purpose 
microcontroller or PC). Within the execution, these registers can only be read, their contents cannot be changed and, therefore, 
they should not be managed by control signals. Feedbacks on the multipliers denote execution of the exponentiation functions 
(number written on the feedback denotes exponent value). Units denoted by sin and cos perform sine and cosine operations, 
respectively and are implemented as a sum of the first two terms of the corresponding Taylor series. 
 
Amplitude Block uses filtered PPS samples and calculates 
the signal amplitude. 

 
Control logic from Fig. 1 manages the execution. It 

generates control signals based on the parameters from the 
Configuration registers, Table 1. To this end, the control 
logic groups modules that consist of the variable length 
up/down binary counters and the binary magnitude 
comparators whose references are parameters from 
Configuration registers. In this way, each of these modules 
creates the control signal corresponding to the parameter 
from the Configuration registers. 
 

Within the output signal calculation, the proposed 
implementation takes multiple and fixed number of clock 
cycles (CLKs). Calculations of the rough coefficients 
Rcoeffs and the fine coefficients Fcoeffs take N×S×M CLKs 
and S+(M+1)round(S/P)+1 CLKs, respectively, where 
operator round(x) denotes rounding of the real variable x to 
the nearest integer, whereas the Filtering Module requires 
S+1 CLKs to complete calculation of the output. Note that 
number of taken CLKs depends on the known algorithm 
parameters N, M, S, and P, which means that execution time 
of the proposed hardware implementation can be calculated 
in advance that can be of great importance in many practical 
applications. 

Real and imaginary parts of input STFT data, 
numerically calculated in STFT Block, are imported to the 
proposed implementation on every CLK and are stored in 
Register file 1 and Register file 2 of the IF Estimation Block, 
Fig. 2. After N CLKs, these register files contain all 
frequency-only-dependent STFT samples from the observed 
time instant. Over the absolute 

( , ), /2,..., /2 1STFT n k k N N  values, implemented as 

),(),(|),(| 2
Im

2
Re knSTFTknSTFTknSTFT  , the COMP 

Block performs, in the already described manner, the peak 
detection. According to (4), IF is detected in the TF point 
correspondent in frequency to the detected peak STFT 
sample. Hence, the IF Estimation Block takes N×S CLKs to 
complete the IFs estimation for the windowed PPS. 

 
For each N×CLK cycle, the estimated IFs are 

imported to the Register file 1 of the Matrix-Array 
Multiplication Block, Fig. 3. Simultaneously, on every 
N×CLK cycle, and controlled by the Read_Matrix_1 signal, 
the Matrix 1 elements are imported to the Register file 2 of 
the same block. After N×S CLKs, all the estimated IFs are 
imported to the Register file 1, but only one Matrix 1 
column is imported into the Register file 2. At that instant,  
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Figure 5. Amplitude Calculation Block from Fig. 1. Unit denoted by div performs division operation between the sqrt unit 
output and the length S of the observed signal. 
 
by the multiplication of the corresponding elements from the 
Register file 1 and Register file 2, and afterward by the 
summation of the calculated products, one rough coefficient 
is produced at the output of the Matrix-Array Multiplication 
Block. This procedure is repeated M times (one time per a 
Matrix 1 column). As a result, after N×S×M CLKs all rough 
coefficients Rcoeffs are calculated and imported to the 
Shift_Memory_Buffer_1 block. Note that, controlled by the 
IF_dis signal, when all estimated IFs are imported to the 
Register file 1, registers from this file do not change their 
values. In the same manner, the SMB1_dis signal disables 
the Shift_Memory_Buffer_1 block to change its content 
after N×S×M CLKs, which allows the design to have the 
Rcoeffs (in the Shift_Memory_Buffer_1 block) until 
completion of the execution. 
 

Implementing (6) based on the calculated Rcoeffs, the 
Dechirp Coefficients Block (the simple combinational logic 
containing a set of the two-input dividers) performs the 
calculation of the dechirp coefficients Dcoeffs simul-
taneously imported to the Signal Modification Block. At the 
same time, on every CLK cycle and controlled by the 
Read_1 signal, the estimated signal samples (both their real 
and imaginary parts) are imported to the Signal 
Modification Block of the Fine Coefficients Calculation 
Module. After S CLKs, all signal samples are imported to 
this block, providing a base for the execution of the 
necessary operations (exponentiation, multiplication, 
summation, sine, and cosine). As a result, real and 
imaginary parts of the dechirped signal (Dechirped 
Signal_re and Dechirped Signal_im) are produced at the 
output. 

 

Controlled by the MA_Filt_en signal, real and 
imaginary parts of the calculated dechirped signal are 
separately imported to the MA Filtering Block. To create a 
base for the moving average filtering (7) with no 
overlapping windows, the imported samples are grouped in 
the P length register files. Filtering (7) is implemented by 
the simple combinational logic containing a set of the P-
input adders and two-input dividers. The MA_Signal_re and 
MA_Signal_im samples, produced at the output of MA 
Filtering Block, are imported to the combinational Phase 

Extraction Block, which performs the arcus tangent and the 
phase unwrapping function (8). This block requires only one 
CLK to finish the calculation and to produce the Phase 
signal at its output. 

 
On every CLK, the calculated Phases are imported to 

the Register file 1 of the Matrix-Array Multiplication Block, 
shown in Fig. 3. Simultaneously, on every CLK, and 
controlled by the Read_Matrix_2 signal, the Matrix 2 
elements are imported to the Register file 2 of the same 
block. After round(S/P) CLKs, all the calculated Phases are 
imported to the Register file 1, but only one Matrix 2 
column is imported into the Register file 2. At that instant, 
by the multiplication of the corresponding elements from the 
Register file 1 and Register file 2, and afterward by the 
summation of the calculated products, one fine coefficient is 
produced at the output of the Matrix-Array Multiplication 
Block. This procedure is repeated (M+1) times (one time 
per a Matrix 2 column). As a result, after round(S/P)(M+1) 
CLKs all fine coefficients Fcoeffs are calculated and 
imported to the Shift_Memory_Buffer_2 block. Note that, 
controlled by the PE_dis signal, when all the estimated 
Phases are imported to the Register file 1, registers from this 
file do not change their values. In the same manner, the 
SMB2_dis signal disables the Shift_Memory_Buffer_2 
block to change its content after (N×S×M+S+(M+1)× 
round(S/P)+1) CLKs, which allows the design to have the 
Fcoeffs (in the Shift_Memory_Buffer_2 block) until 
completion of the execution. 
 

The Estimated Signal Coefficients are calculated 
inside the Final Coefficients Block (the simple 
combinational logic containing a set of the two-input 
multipliers and a set of the two-input dividers), based on the 
already calculated rough and fine coefficients Rcoeffs and 
Fcoeffs. Simultaneously with the calculation, the Estimated 
Signal Coefficients are imported to the Signal Modification 
Block. At the same time, on every CLK cycle and controlled 
by the Read_2 signal, the estimated signal samples (both 
their real and imaginary parts) are imported to the Signal 
Modification Block. After S CLKs, all signal samples are 
imported to this block, providing a base for the execution of  
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Table 2 Summarized resource utilization of the proposed design implemented on the Cyclone III EP3C16E144C7 FPGA 
device and determined by N=128, M=6, S=256, P=5, and input data length l=32. *Note that a total number of pins used by the 
complete design correspond to the sum of input pins of the first module and output pins of the third module. **Note that a total 
number of memory bits used by the complete design correspond to the sum of a total number of memory bits used by each 
module separately increased for a total number of memory bits necessary to locate input signal samples, Fig. 1. 

Resource utilization I Rough Coeffs 
Calculation Module 

II Fine Coeffs 
Calculation Module III Filtering Module In total (complete 

design) 
Total Logic Elements 2,956/15,408 (19%) 2,106/15,408 (14%) 7,234/15,408 (47%) 12,296/15,408 (80%) 
Combinational 
Functions 2,956/15,408 (19%) 2,106/15,408 (14%) 3,376/15,408 (22%) 8,438/15,408 (55%) 

Dedicated Logic 
Registers 2,467/15,408 (16%) 2,051/15,408 (13%) 4,383/15,408 (28%) 8,901/15,408 (58%) 

Total Pins 33/85 (39%) 65/85 (76%) 80/85 (94%) 33/85 (39%)* 
Total Virtual Pins 0 0 0 0 
Total Memory Bits 26,600/516,096 (5%) 3,856/516,096 (7%) 2,048/516,096 (4%) 48,888/516,096 (9%)** 
Embedded Multiplier  
9-bit elements 6/112 (5%) 16/112 (14%) 42/112 (38%) 64/112 (57%) 

Total PLLs 0/4 (0%) 0/4 (0%) 0/4 (0%) 0/4 (0%) 
 
the necessary operations (exponentiation, multiplication, 
summation, sine, and cosine). As a result, real and 
imaginary parts of the filtered signal (Filtered Signal_re and 
Filtered Signal_im) are produced at the output. 
 

Controlled by the Amplitude_en signal, real and 
imaginary parts of the filtered signal are separately imported 
to the Register file 1 and the Register file 2 of the Amplitude 
Block, as shown in Fig. 5. Calculation of the Signal 
Amplitude signal (including summation, multiplication, 
dividing, and square root operation performed inside this 
block) requires only one CLK (the last CLK taken within 
the execution). 

4. Testing and verification 
To verify the developed hardware approach for the 

QML algorithm-based estimation of PPS, it is first 
implemented on an FPGA device and is tested, after that, on 
the PPS (1) of the sixth-order, M=6, within the time interval  
[–1,1), and with the sampling interval of Δ=1/128. Signal (1) 
is corrupted by the additive white noise. The implementation 
is done by considering different input SNR values (from 0 
dB to 20 dB in a stepwise of 2 dB). Within the 
implementation, the Cyclone III EP3C16E144C7 device has 
been selected in accordance with the optimal resource 
occupation, Table 2. Besides, as a key implementation detail, 
the maximum CLK rate of 50 MHz is achieved within the 
execution. Samples of the observed noisy signal are written 
in the signed 32-bit fixed-point notation including 8-bit 
fraction, as well as the numerically calculated and imported 
STFTs. Within the STFT numerical calculation, the 
rectangular lag-window width of N=128 is selected. For the 
moving average filter length of P=5 is chosen. 

 
Results of the real-time implementation for different 

input SNRs are given in Table 3 (rows named Hardware). In 
addition, to check the accuracy of the achieved results, 
numerical results obtained from MATLAB simulation are 
also presented in Table 3 (rows named Software 1). To 
provide a fair comparison, numerical results are obtained for 
the same input noisy PPS and for the same numerically 

calculated STFTs, as in the hardware implementation case. 
The proposed hardware implementation provides high 
quality estimation and only small differences in the 
parameter estimation can be noticed. Typically, differences 
are from 0.03% (in the case of parameter a0 estimation and 
for SNRin=20dB) up to 2.66% (in the case of parameter a3 
estimation and for SNRin=12dB). The inaccuracy is mainly 
caused by the approximate realization of some basic 
functions within the hardware implementation. For example, 
the trigonometric functions realization is based on Taylor 
series representation and within hardware implementation, 
only first two terms of the corresponding Taylor series are 
taken into account. On the other hand, calculation of these 
functions in MATLAB uses, by default, 250 terms of the 
Taylor series. To confirm this statement, default 
trigonometric functions realizations have been replaced in 
MATLAB by the corresponding Taylor series 
representations, but with the same accuracy as in the 
hardware implementation case (only first two terms of the 
corresponding Taylor series have been taken into account). 
Results achieved in this way are also presented in Table 3 
(rows named Software 2), for each particular input SNR 
value. Now, comparing the corresponding Hardware and 
Software 2 rows from Table 2, the accuracy of the proposed 
hardware implementation can easily be checked. Note that, 
in this case, differences in the parameters estimation (from 
0.012% in the case of parameter a5 estimation and for 
SNRin=20dB up to 0.51% in the case of parameter a1 
estimation and for SNRin=8dB) are caused by the finite 
register length influence [53] and are significantly smaller 
than differences noted within the comparison of the 
proposed hardware implementation and the MATLAB 
implementation which uses default realizations of the 
trigonometric functions. 
 

Note that, if it would be required, the accuracy of the 
proposed hardware implementation can be improved by 
using more precise mathematical formulas for the mentioned 
basic functions realization. However, in this way, hardware 
complexity would be significantly increased, together with 
the increase in execution time. Therefore, the hardware  
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Table 3 Results of the observed PPS (1) parameters estimation. Results, achieved by the developed hardware design 
(Hardware), by the MATLAB simulation (Software 1), and by the MATLAB simulation with reduced accuracy (Software 2), 
are given for different input SNR values (from 0 dB to 20 dB in a stepwise of 2 dB). 

Parameters A a6 a5 a4 a3 a2 a1 a0 

SNRin=20dB 
Hardware 0.730 18.506 62.829 -57.198 67.611 -82.090 -30.576 65.559 
Software 1 0.734 18.566 62.810 -57.107 67.657 -82.150 -30.274 65.538 
Software 2 0.733 18.530 62.821 -57.158 67.629 -82.019 -30.525 65.540 

SNRin=18dB 
Hardware 0.737 18.575 63.122 -57.433 67.797 -82.239 -30.524 65.992 
Software 1 0.734 18.562 62.808 -56.978 67.730 -81.912 -30.282 65.469 
Software 2 0.735 18.570 62.997 -57.231 67.750 -82.014 -30.432 65.689 

SNRin=16dB 
Hardware 0.738 18.516 63.131 -56.540 67.862 -83.950 -30.541 66.089 
Software 1 0.732 18.530 62.817 -56.667 67.595 -83.359 -30.299 66.410 
Software 2 0.735 18.509 63.030 -56.501 67.849 -83.914 -30.432 66.209 

SNRin=14dB 
Hardware 0.736 18.658 62.995 -57.257 67.869 -84.133 -30.569 66.952 
Software 1 0.731 18.529 62.807 -57.142 67.599 -83.466 -30.357 66.619 
Software 2 0.734 18.598 62.871 -57.193 67.702 -83.890 -30.418 66.876 

SNRin=12dB 
Hardware 0.734 18.431 62.885 -56.513 65.902 -83.029 -30.666 66.735 
Software 1 0.730 18.528 62.805 -56.614 67.707 -83.720 -30.359 66.830 
Software 2 0.732 18.445 62.877 -56.583 66.003 -83.121 -30.561 66.782 

SNRin=10dB 
Hardware 0.715 18.954 63.430 -58.765 68.267 -82.339 -29.296 63.608 
Software 1 0.709 18.767 62.865 -57.897 67.726 -81.767 -29.180 63.355 
Software 2 0.712 18.899 63.210 -58.555 67.997 -81.987 -29.201 63.594 

SNRin=8dB 
Hardware 0.707 18.307 62.821 -58.608 69.253 -81.199 -27.149 63.001 
Software 1 0.701 18.300 62.911 -58.028 69.538 -80.660 -27.652 63.077 
Software 2 0.705 18.302 62.859 -58.493 69.349 -81.018 -27.290 63.022 

SNRin=6dB 
Hardware 0.797 18.327 64.101 -58.657 68.956 -85.086 33.124 62.748 
Software 1 0.791 18.200 63.846 -58.077 69.653 -85.343 33.258 62.250 
Software 2 0.795 18.250 64.009 -58.463 69.211 -85.219 33.198 62.560 

SNRin=4dB 
Hardware 0.812 16.400 63.222 -57.179 68.499 -88.089 26.459 58.547 
Software 1 0.817 16.304 63.917 -58.370 69.983 -88.170 26.355 58.490 
Software 2 0.814 16.352 63.359 -57.274 68.509 -88.199 26.397 58.501 

SNRin=2dB 
Hardware 0.849 16.158 64.867 -58.106 70.463 -88.743 34.373 58.197 
Software 1 0.843 15.999 64.225 -58.516 70.323 -88.566 34.546 57.645 
Software 2 0.846 16.104 64.632 -58.244 70.347 -88.621 34.445 58.003 

SNRin=0dB 
Hardware 0.620 13.234 64.070 -64.688 71.120 -76.402 -36.469 54.690 
Software 1 0.602 13.531 64.718 -64.985 71.715 -76.195 -36.516 54.861 
Software 2 0.611 13.262 64.285 -64.707 71.150 -76.300 -36.497 54.701 

 
implementation should be developed by making a trade-off 
between required precision from one side, and hardware 
complexity and execution time from the other side, as 
performed here. 
 

To complete estimation of the observed 6-th order 
PPS, the developed hardware design requires a period of 
time depending on the number of taken CLKs, discussed for 
each used module in Section 3, and on the single CLK 
duration, where the single CLK duration of 20ns 
corresponds to the maximum CLK rate of 50 MHz. This 
period of time (about 3.95 ms) is about 10 times smaller 
than the period required by the MATLAB simulation, 
performed on a high performance computer (24GB RAM, i7 
Intel processor). 

5. Conclusion 
Efficient multiple-clock-cycle hardware 

implementation of the QML estimator core, the recently 
proposed powerful alternative to the state-of-the-art PPS 

estimators, is developed, tested, and verified. Based on the 
fact that PPSs have great importance in many practical 
applications (radars, sonars, sensor networks, biomedicine, 
and communications), as well as that the QML significantly 
outperforms other corresponding algorithms (in terms of 
both characteristics: the SNR and the mean square error), 
the efficient hardware implementation of such estimation 
obviously is of great benefit and importance. In that way, 
this accurate and useful estimation algorithm will get its full 
practical valorization through possible real-time applications. 
The developed design is verified by implementation on an 
FPGA device and is tested on the real, noisy PPS, whereas 
the achieved very high accuracy is proven by comparison 
with the results obtained by the MATLAB simulation. It is 
shown that deviations in the estimation of signal coefficients 
are mainly caused by the limited precision in the realization 
of some basic mathematical functions, but also that their 
precision can be increased if required. A future research 
could be focused on the parallelization of the necessary 
number of QML algorithm cores, along with the 
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implementation of conditional steps of that algorithm. 
However, due to the expected extensive increase in 
calculation complexity (that is already high in the realization 
of the single algorithm core), advanced methods for 
optimization should be required. 
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