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Abstract A new form of the multivariate median is introduced. It is defined
as a point in the multidimensional space whose sum of distances from a set of
multidimensional hyperplanes is minimal. This median can be used to formu-
late and solve the problem of sparse signal reconstruction. Application of the
proposed multivariate median is illustrated on examples.

1 Introduction

Median is an important operator in the robust statistics. It produces the so-
lution of the norm-one minimization problem. The optimal filtering of signals
(data) corrupted by an impulsive (Laplacian) noise is also obtained in a form
of the median [1, 2]. In the cases of complex-valued data, a two-dimensional
(complex) form of the median is used. It represents a point whose sum of
norm-one or norm-two distances from the given set of complex data is min-
imal [3, 4]. The median is used to define robust forms of the common signal
transforms [2, 5–7]. Multivariate forms of the median are defined as the point
in the multidimensional space whose sum of distances from the given set of
multidimensional data is minimal [8–10]. Since the multivariate median can
be formulated as the solution of a norm-one minimization problem, various
methods for its calculation are defined [8].

A new generalization of the multivariate median is proposed in this paper.
It is inspired by the recently emerging compressive sensing formulations. The
available data are considered as the parameters of the hyperplanes and the
median is defined as the point with the smallest possible sum of the distances
from the hyperplanes defined by the given data set. The standard median and
the weighted median are the special cases of this new median, as expected.
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The new median is used to formulate and solve the sparse signal recon-
struction problem from a reduced set of data. We expect that this median
form can be used in other mathematical and physical problems as well.

2 Definition

Consider a P -dimensional space RP and N hyperplanes in this space defined
as

c11x1 + c12x2 + · · ·+ c1PxP = b1

c21x1 + c22x2 + · · ·+ c2PxP = b2 (1)

· · ·
cN1x1 + cN2x2 + · · ·+ cNPxP = bN ,

where cnp and bn are the hyperplane coefficients and xp, p = 1, 2, . . . , P, are the
coordinates (variables) in the considered space. In order to avoid the ambiguity
in the definition of these hyperplanes we will assume

c2n1 + c2n2 + · · ·+ c2nP = 1 (2)

for each n.
The weighted median is a point in the P -dimensional space RP where

the sum of the weighted distances between this point and hyperplanes (1) is
minimal. Distance from a point to the n-th hyperplane is

Dn = |cn1x1 + cn2x2 + · · ·+ cnPxP − bn| . (3)

The weighted median as a point can be obtained by minimizing the weighted
sum of distances,

(x̄1, x̄2, . . . , x̄P ) = arg min
x1,x2,...,xP

N∑
n=1

dnDn, (4)

where dn are nonnegative weighting coefficients.
If all weighting coefficients are dn = 1, then we will obtain a normal (non-

weighted) form of the new median.
The presented median form can be considered as the norm-one minimiza-

tion problem. The norm-one minimization solutions for the multivariate me-
dian are reviewed in [8]. In the examples presented in this paper we will use
a method with variation of variables, using the gradient steepest-descend as
in [11].

We can rewrite (1) in a matrix notation as

Cx = b, (5)

where x = [x1, x2, . . . , xP ]T , b = [b1, b2, . . . , bN ]T , and C is an N × P matrix
with coefficients cnp. Each hyperplane is a set of points in the P -dimensional
space.
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The weighted generalized median is calculated as

x̄ = GenWMedian{b,C,d}. (6)

with the weights d = [d1, d2, . . . , dN ]T .

The median form with the weighting coefficients dn are equal to one will
be referred to as the generalized median

x̄ = GenMedian{b,C}. (7)

Condition (2) is required for a geometrical interpretation of the generalized
median only.

3 Special cases

3.1 Standard median

The standard weighted median is defined as

x̄1 = arg min
x1

N∑
n=1

dn |x1 − bn| = arg min
x1

N∑
n=1

|dnx1 − dnbn| . (8)

For a data set {b1, b2, . . . , bN} it requires a set of weighting coefficients denoted
by {d1, d2, . . . , dN} for each data sample. It means that the standard, one-
dimensional, weighted median is defined on the set {(b1, d1), (b2, d2), . . . , (bN , dN )}.
According to (4), this median is calculated as

x̄1 = arg min
x1

N∑
n=1

∣∣∣∣x1 − bn
cn1

∣∣∣∣ . (9)

It is the weighted median of a set of values b1, b2, . . . , bN with the weighting
coefficients 1/cn1

x̄1 = median

{
b1
c11

,
b2
c21

, . . . ,
bN
cN1

}
. (10)

If hyperplane coefficients are normalized, cn1 = 1, we get the standard median
form

x̄1 = median {b1, b2, . . . , bN} . (11)

In this case the considered space R1 is a line and the hyperplanes are points
on the line. The classical median interpreted as a minimization problem is
illustrated in Fig. 1.
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Fig. 1 One-dimensional median as a solution of the minimization problem
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Fig. 2 Two-dimensional median as a solution of the minimization problem. The median
belongs to two hyperplanes. It is marked with white dot and corresponding distances to the
remaining hyperplanes are plotted with white lines.

3.2 Two-dimensional median

For P = 2 the equations in (1) represent the lines in a plane. Consider first
the normalized case when

√
c2n1 + c2n2 = 1 for each n. The generalized two-

dimensional median can be calculated by minimizing

(x̄1, x̄2) = arg min
x1,x2

N∑
n=1

|cn1x1 + cn2x2 − bn| . (12)

The solution of this minimization problem is a point in the two-dimensional
plane such that the sum of distances from this point to N given lines is min-
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imal. If the coefficients cn1, cn2 are not normalized then we deal with the
weighted generalized two-dimensional median.

The generalized two-dimensional median is calculated over the set of points
belonging to the hyperplanes (lines) defined by b1, b2, . . . , bN and (cn1, cn2).

An illustration of the generalized two-dimensional median is presented in
Fig. 2.

4 Compressive sensing reconstruction formulation

Assume a K-sparse signal x(n), n = 1, 2, . . . , N with the total length N . Signal
values can be arranged into an N × 1 vector x = [x(1), x(2), . . . , x(N)]T .

Assume that M measurements are obtained as linear combination of the
signal values

y = Ax, (13)

where y is an M × 1 measurement vector, M < N , and A is an M × N
measurement matrix. We will also assume that the measurements are linearly
independent, meaning that the rank of the measurement matrix is M .

We can split matrix A and vector x into two blocks,

A =
[
A1 A2

]
and x =

[
x1

x2

]
, (14)

such that A1 is an M × P matrix, P = N −M , A2 is a square matrix of
the order M , the length of x1 = [x(1), x(2), . . . , x(P )]T is P = N −M , and
the length of vector x2 = [x(P + 1), x(P + 2), . . . , x(N)]T is M . Now we can
rewrite (13) as

A2x2 = y −A1x1. (15)

Without loss of generality we can assume that matrix A2 is invertible. Note
that the rank of the matrix A is M , (the measurements are independent) so
there exist a subset of M linearly independent columns. These columns can
always appear as the last columns of matrix A, denoted by A2, with a proper
reordering.

The norm-one formulation of the reconstruction problem is

min ||x||1 subject to y = Ax. (16)

Constraints in this minimization problem are represented by a set of M equa-
tions (13). We can consider signal values x1 as independent variables. The
values in x2 can be calculated from (15) as

x2 = A−1
2 y −A−1

2 A1x1 = b−Cx1 (17)

where b = A−1
2 y = [b1, b2, . . . , bM ]T and C = A−1

2 A1 is an M × P matrix
with the elements cmn.
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The reconstruction problem reduces to the minimization of norm-one of
the vector

x =

[
x1

x2

]
=

[
x1

b−Cx1

]
(18)

by varying P = N −M independent signal coefficients x1. In a scalar form,
the norm-one of this vector is

‖x‖1 = |x(1)|+ |x(2)|+ . . .+ |x(P )|+
|b1 − c11x(1)− c12x(2)− · · · − c1Px(P )|+
|b2 − c21x(1)− c22x(2)− · · · − c2Px(P )|+

. . .

+|bM − cM1x(1)− cM2x(2)− · · · − cMPx(P )|.

The dependent coefficients x(P + 1), x(P + 2), . . . , x(N) from vector x2 are
calculated using (17). This minimization problem can be expressed in a gen-
eralized median form. The set of hyperplanes is

x(1) = 0

x(2) = 0

. . .

x(P ) = 0

c11x(1) + c12x(2) + · · ·+ c1Px(P ) = b1

c21x(1) + c22x(2) + · · ·+ c2Px(P ) = b2

. . .

cM1x(1) + cM2x(2) + · · ·+ cMPx(P ) = bM .

Independent coefficients x1 are obtained as the generalized median of vector

b0 =

[
0P

b

]
(19)

with an N × P directional matrix

C0 =

[
−IP
C

]
. (20)

Here IP stands for a P ×P identity matrix and 0P is a vector column with P
zeros. Finally, the compressive sensing reconstruction problem can be formu-
lated as

x = b0 −C0 GenMedian{b0,C0}. (21)

The compressive sensing reconstruction procedure based on the proposed
generalized median is summarized in Algorithm 1. For the generalized median
calculation we can use any norm-one minimization method. For example, we
can use the gradient-based minimization as in [11] that is given in Algorithm 2.
Since the most of the resulting coefficients for a sparse signal will be zero-valued
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it is appropriate to assume zero-valued initial iteration (step 2). The stopping
criterion (step 16) can be defined by monitoring the angle between successive
gradient vectors, and the required precision (step 18) is closely related to
the algorithm parameter ∆ [11]. Other optimization methods that have been
developed in literature can be used as well. Some of these algorithms, including
the metaheuristic ones, are presented in [12,16–22].

Algorithm 1 CS reconstruction using generalized median
Input:

– Measurements vector y and measurement matrix A

1: [M,N ]← size(A)
2: P ← N −M
3: A1 ← A(:, 1 : P )
4: A2 ← A(:, (P + 1) : end)
5: b← A−1

2 y, C← A−1
2 A1

6: b0 ←
[
0P

b

]
, C0 ←

[
−IP
C

]
7: x← b0 −C0 GenMedian(b0,C0)

Output:
– Reconstructed sparse signal x
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Algorithm 2 Generalized median – Gradient-based minimization procedure
Input:

– Matrix C and vector b

1: Set m← 0
2: Set initial estimate vector x(0) to zero
3: Set ∆← max

n
|b(n)|

4: repeat
5: repeat
6: x(m+1) ← x(m)

7: for all n do
8: z1 ← x(m)

9: z1(n)← z1(n) +∆
10: z2 ← x(m)

11: z2(n)← z2(n)−∆
12: g(n)← ‖Cz1 − b‖1 − ‖Cz2 − b‖1
13: x(m+1)(n)← x(m)(n)− g(n)/2
14: end for
15: m← m+ 1
16: until stopping criterion is satisfied
17: ∆← ∆/3
18: until required precision is achieved
19: x̄← x(m)

Output:
– Generalized median vector x̄
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5 Numerical examples

5.1 Two-Dimensional New Median Example

Consider a set of N = 5 lines in the two-dimensional space (P = 2) shown in
Fig. 2,

0.9848x1 + 0.1736x2 = 1

0.8660x1 + 0.5000x2 = 2

0.9397x1 − 0.3420x2 = −1 (22)

0.7660x1 − 0.6428x2 = 0

x2 = −3.

The point whose sum of distances to these lines (hyperplanes in the two-
dimensional space) is minimal is obtained as the solution of (7) with b and C
in (1) defined by (22). The result produced by Algorithm 2 is

x̄ = (x̄1, x̄2) = (0.85, 1). (23)

It is shown as a white point in Fig. 2.

5.2 Compressive Sensing Higher-Dimensional Examples

Consider a measurement matrix A defined by

A =


0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.42 −0.10 −0.49 −0.28 0.28 0.49 0.10 −0.42
0.35 −0.35 −0.35 0.35 0.35 −0.35 −0.35 0.35
0.10 −0.28 0.42 −0.49 0.49 −0.42 0.28 −0.10
−0.46 −0.19 0.19 0.46 0.46 0.19 −0.19 −0.46

 .
A sparse signal x whose length is N = 8 is measured using this measurement
matrix and M = 5 values are obtained as

y = [1.995 0.905 −1.995 −1.946 −0.133]
T
.

Values of the sparse signal x are obtained as the solution of the compressive
sensing reconstruction formulation (21), with Algorithm 1, in the form

x =
[
0, 3.2, 0, 0, 0, 2.5, 0, 0

]T
. (24)

This signal is sparse with sparsity K = 2. It is easy to check that this solution
satisfies Ax = y.

In the next example we will consider a partial DCT (Discrete Cosine Trans-
form) measurement matrix with N = 32 and M = 5 obtained by selecting
rows 4, 14, 16, 17 and 22 of the full DCT matrix. A sparse signal, with spar-
sity K = 2, in the DCT domain is reconstructed using the presented algorithm
from M = 5 measurements. The results are shown in Fig. 3. The multivariate
median dimensionality is P = N −M = 27.
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Fig. 3 Sparse signal reconstruction from M = 5 measurements. The original signal (left)
with sparsity K = 2, the measurements (middle) and the reconstructed signal (right) are
presented.
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Fig. 4 Sparse signal reconstruction from M = 32 noisy measurements obtained with a
Gaussian measurement matrix. The original signal (left) with length N = 64 and sparsity
K = 5, the measurements (middle) and the reconstructed signal (right) are presented.

The Gaussian measurement matrix with N = 64 and M = 32 is considered
for a sparse signal with sparsity K = 5. The measurements are contaminated
with a Gaussian noise with the signal-to-noise ratio (SNR) 26 dB. The re-
sults are shown in Fig. 4. The SNR in the reconstructed signal is 19 dB. The
multivariate median dimensionality in this example is P = N −M = 32.

Finally, an example with a sparse signal of length N = 128 and sparsity
K = 8, sensed with M = 64 noisy measurements is considered. The mea-
surement noise is heavy-tailed (cubed Gaussian) with the SNR of 17.75 dB.
The signal is sparse in the DCT domain. The reconstruction is performed
by using the proposed multivariate median. The results are shown in Fig. 5.
The SNR in the reconstructed signal is 17.2 dB. It is approximately equal to
the SNR in the measurements. Dimensionality of this multivariate median is
P = N −M = 64.

While the median is robust to impulsive disturbances, the signals with
strong outliers in the measurements should be analyzed using the methods as
in [14,15,23].
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Fig. 5 Sparse signal reconstruction from M = 64 noisy measurements. The original signal
(left) with length N = 128 and sparsity K = 8, the noisy measurements (middle), and the
reconstructed signal (right) are presented.

6 Conclusion

A new multivariate form of median is introduced. This median is a point in
the multidimensional space with a minimal sum of distances from a given
set of hyperplanes. The new median provides a compact formulation of the
compressive sensing reconstruction problem.
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