
Noname manuscript No.
(will be inserted by the editor)

Introduction to Graph Signal Processing

Ljubǐsa Stanković, Miloš Daković, and
Ervin Sejdić

Published in: L. Stanković and E. Sejdić (eds), Vertex-Frequency Analysis of Graph Signals,
Springer-Nature, 2019. ISBN 978-030-03573-0

Contents

1 Introduction . 3
2 Graphs . 6

2.1 Basic Definitions . 6
2.2 Properties of Graphs and Associated Matrices 10
2.3 Eigenvalue Decomposition of the Adjacency Matrix 15
2.4 Eigenvalue Decomposition of the Laplacian 21
2.5 Vertex Ordering, Coloring, and Segmentation 25

3 Signals on Graphs . 28
3.1 Adjacency Matrix and Graph Signal Shift . 30
3.2 Systems Based on a Graph Shifted Signals . 32
3.3 Graph Fourier transform based on the Adjacency matrix 33
3.4 Filtering in the Adjacency Matrix Spectral Domain 35

3.4.1 Normalization . 35
3.4.2 Spectral Domain Filtering . 35
3.4.3 Spectral Ordering of the Adjacency Matrix Eigenvectors 36
3.4.4 Spectral Domain Filter Design . 37

3.5 Graph Fourier Transform Based on the Laplacian 41
3.6 Ordering and Filtering in the Laplacian Spectral Domain 41
3.7 Systems on a Graph Defined Using the Laplacian 44
3.8 Convolution of Signals on a Graph . 45
3.9 Graph z-transform of a Signal . 46
3.10 Shift in the Spectral Domain . 49
3.11 Parseval’s Theorem on a Graph . 49
3.12 Optimal Denoising . 50

4 Subsampling, Compressed Sensing, and Reconstruction 52
4.1 Subsampling of the Low-Pass Graph Signals 52
4.2 Subsampling of the Sparse Graph Signals . 54

L. Stanković and M. Daković
University of Montenegro, Podgorica, Montenegro
E-mail: ljubisa@ac.me, milos@ac.me

E. Sejdić
University of Pittsburg, Pittsburg, PA, USA
E-mail: esejdic@pitt.edu

2 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

4.2.1 Known Coefficient Positions . 54
4.2.2 Support Matrices, Subsampling-Upsampling 55
4.2.3 Unknown Coefficient Positions . 56
4.2.4 On the Unique Reconstruction Conditions 57

4.3 Linear Combinations of Samples and Aggregated Sampling 58
4.4 On the Sampling Strategies . 59
4.5 Filter Bank on a Graph . 61

5 Time-Varying Signals on Graphs . 68
5.1 Diffusion on Graph and Low Pass Filtering 68

6 Random Graph Signals . 70
6.1 Adjacency Matrix Based Definition . 71
6.2 Spectral Domain Shift Based Definition of GWSS 73

7 Examples of Graphs Topologies . 74
7.1 Geometric Graph Topologies . 74
7.2 Topology Based on the Signal Similarity . 76
7.3 Correlation Based Graph Laplacian learning 78
7.4 Graph Laplacian Learning with the Smoothness Constraint 80
7.5 Generalized Laplacian Learning . 81
7.6 Graph Topology with some a Priori Knowledge 83
7.7 Graph Topology Based on the Eigenvectors 85
7.8 Physically Well Defined Graphs . 86

7.8.1 Resistive Electrical Circuits . 86
7.8.2 Heat Transfer . 88
7.8.3 Spring-Mass Systems . 89
7.8.4 Social Networks and Linked Pages . 90
7.8.5 PageRank . 91
7.8.6 Random Walk . 92

7.9 Gaussian Random Signal . 93
8 Appendix . 93

8.1 Graph Signal Calculation Using Laplacian . 93
8.2 Random Signal Simulation on a Graph . 96
8.3 From the Newton Minimization to the Graphical LASSO 98

8.3.1 Newton Method . 98
8.3.2 LASSO . 100
8.3.3 Graphical LASSO . 101

9 Conclusion . 103

Introduction to Graph Signal Processing 3

Abstract Graph signal processing deals with signals whose domain, defined
by a graph, is irregular. An overview of basic graph forms and definitions
is presented first. Spectral analysis of graphs is discussed next. Some simple
forms of processing signal on graphs, like filtering in the vertex and spectral do-
main, subsampling and interpolation, are given. Graph topologies are reviewed
and analyzed as well. Theory is illustrated through examples, including few
applications at the end of the chapter.

1 Introduction

Graph signal processing is an active research area in recent years resulting in
many advanced solutions in various applications. In numerous practical cases
the signal domain is not a set of equidistant instants in time or a set of points
in space on a regular grid. The data sensing domain could be irregular and, in
some cases, not related to the time or space. The data sensing domain is then
related to other properties of the considered system/network. For example, in
many social or web related networks, the sensing points and their connectiv-
ity are related to specific objects and their links. In some physical processes
other properties than the space or time coordinates define the relation between
points where the signal is sensed. Even for the data sensed in the well defined
time and space domain, the introduction of new relations between the sensing
points may produce new insights in the analysis and result in more advanced
data processing techniques.

The data domain, in these cases, is defined by a graph. The graph consists
of vertices, where the data values are defined/sensed, and the edges connecting
these vertices. Graph exploit the fundamental relations among the data based
on their relevant properties. Processing of signals whose sensing domains are
defined by graphs resulted in graph data processing as an emerging field in
big data signal processing today. This is a big step forward from the classical
time (or space) series data analysis.

Here we will present one simplified example for graph signal analysis. As-
sume that we measure temperature in a geographical region. The temperature
sensing points are chosen according to a plan and significance of specific areas
(for example, according to the population density). They are illustrated in Fig.
1.

The distance between sensing points is proportional to their distances in
Fig. 1(a). The measured temperature at each location is denoted by x(n), Fig.
1(b). It is equal to x(n) = s(n)+ε(n), where s(n) is a temperature that would
be obtained in the ideal measuring conditions and ε(n) represents influence of
the measurement micro-location, for example the proximity of trees, concrete
structures, or ventilation. This part of the signal is called noise. We want to
average the measured temperatures in order to reduce the influence of random
noise to the temperature at a specific measurement point. Of course, if we
average over a too large area around the considered sensing point we will lose
the local temperature and produce a bias caused by very distant and probably

4 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

Fig. 1 Graph and a signal on the graph illustration.

different temperatures. Therefore, we have to average temperatures from sens-
ing points within a small area around each of the measurement points. From
the sensing locations, we can see that some points have more dense structures
around them, while around some of the sensing locations the structure of mea-
surement points is sparse. Intuitively we can conclude that it would be the best
to perform averaging over a local region of each point, taking measured values
from its neighborhood, as

y(n) =
∑

m at and aroundn

x(m).

Graphical illustration of this calculation formula can be obtained by using lines
that connect the considered point with its neighboring points. The sensing
locations included in the calculation of y(1) for the sensing point n = 1 are

Introduction to Graph Signal Processing 5

shown in Fig. 1(c). The matrix form of this calculation, for all sensing points,
can be written as

y = x + Ax,

where matrix A indicates what neighboring measurement locations should
be included for each y(n) calculation. This matrix will be referred to as the
connectivity or adjacency matrix. Sensing locations with corresponding con-
nections are shown in Fig. 1(d). The sensing locations and their connectivity,
along with the measured signal at each location, are presented in Fig. 1(e).

In the calculation, we may add weights for different measurement points,

y(n) = x(n) +
∑
m 6=n

Wnmx(m).

The weights are higher for close points and smaller for distant points. They
are zero outside a specified local area. This case can be represented by lines
connecting the measurement points that are included in averaging each mea-
surement point. Each line has its weight Wnm. A matrix form of the weighted
averaging operation is

y = x + Wx.

If we want the averaging to be appropriately scaled, in order to produce un-
biased estimates, then the sum of all summation coefficients, for each y(n),
should be 1. It means that we can calculate

y =
1

2
(x + D−1Wx),

where the elements of diagonal normalization matrix D are Dnn =
∑
mWnm.

This matrix is called the degree matrix.
The simple example presented here can be interpreted within the graph

signal processing framework as follows:

– The measurement points are the graph vertices, Fig. 1(a).
– The lines indicating mutual relation and connectivity of the measurement

points are the graph edges.
– The vertices and edges form a graph, Fig. 1(d). The graph is now the

signal domain. It indicates the points where the signal is measured and
how these sensing points are related to each other. The graph is then used
for the analysis and processing of the measured data.

– The measured temperatures are the signal samples on this graph. They
represent a graph signal Fig. 1(e). This signal may have many realizations
on the same graph. It can include noise.

– The presented local averaging, taking into account the location of measure-
ment points, that is, taking into account the graph structure, is one simple
graph signal processing algorithm (linear first-order graph system).

Now we can use this framework for many different scenarios. For exam-
ple, we can perform an opinion poll among the members of a social network.
The members of a social network are the vertices (measurement points). Their

6 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

friendship relations are the edges, representing graph connectivity. The an-
swers they give are the graph signal values. This is then the basis for various
graph signal processing algorithms.

The graph-based data processing approach can be applied not only to
technological, biological, and social networks but its application has also lead
to improvements and new methods in classical signal processing. In these cases
the classical signal domain (that may be represented as a linear or circular
graph) is structured in a more advanced way, considering the sensing points
connectivity from their properties or signal similarity points of view.

In graph signal processing, the first step is to define the graph as a sig-
nal domain. While the data sensing points (graph vertices) are commonly
well defined, that is not the case with their connectivity (graph edges). In
some applications, the vertex connectivity is naturally defined, resulting in an
exact underlying graph topology, such as the various computer, social, road,
transportation, and electrical networks. For some other cases, the data domain
definition in a graph form is a part of the problem itself. The vertex connectiv-
ity is not defined in advance. It can be determined based on the properties of
the sensing positions or the acquired data. The definition of appropriate graph
structure is of crucial importance for a meaningful and efficient application of
the graph signal processing approach.

In this chapter, we will review the basic definitions and properties of graphs.
Next, the signal on a graph and basic signal processing techniques in vertex
and spectral domains are described. In the third part, some graph topologies
are reviewed and discussed.

2 Graphs

Graph theory as a branch in mathematics has existed for almost three cen-
turies. It has been used for a long time in chemistry, operational research,
engineering, social networks, and computer sciences. The beginning of graph
theory applications in electrical engineering dates back to the mid-XIX cen-
tury when Kirchoff’s laws were defined. Recently, graph theory has been a
rapidly developing application and research area in signal processing. A short
review of the basic graph definitions and properties will be presented in this
section [1–23].

2.1 Basic Definitions

A graph is defined as a set of vertices V and set of edges B ⊂ V×V connecting
the vertices, where × is a direct product operation.

Examples of graphs with N = 8 vertices V = {0, 1, 2, 3, 4, 5, 6, 7} are pre-
sented in Fig. 2, along with the corresponding edges. The vertices are presented
as points (circles) and the edges are presented as lines. A line between vertices

Introduction to Graph Signal Processing 7

n and m means that (m,n) ∈ B. The graph from Fig. 2(b) is described by

V = {0, 1, 2, 3, 4, 5, 6, 7}
B ⊂ {0, 1, 2, 3, 4, 5, 6, 7} × {0, 1, 2, 3, 4, 5, 6, 7}

B = {(0,1),(1,3),(1,7),(2,0),(2,1),(3,2),(3,5),(4,6),(4,7),(5,3),(5,4),(6,5),(7,0),(7,1),(7,3)}.

0

1

2
3

4

5

6
7

(a)

0

1

2
3

4

5

6
7

(b)

Fig. 2 Examples of: (a) Undirected graph and (b) Directed graph.

A graph can be undirected and directed. In the case of undirected graphs,
as in Fig. 2(a), it is assumed that the edge connecting the vertex n to the vertex
m also connects the vertex m to the vertex n. This means that if (n,m) ∈ B
then (m,n) ∈ B.

In general, this property does not hold for directed graphs. An example of a
directed graph is shown in Fig. 2(b). The undirected graphs can be considered
as a special case of directed graphs.

For a given set of vertices and edges, the graph can be represented by an
adjacency matrix A. This matrix describes the vertices connectivity. If there
are N vertices then A is an N×N matrix. The elements Amn of the adjacency
matrix A assume values Amn ∈ {0, 1}. The value Amn = 0 is assigned if the
vertices m and n are not connected with an edge, and Amn = 1 if these vertices
are connected,

Amn =

{
1 if (m,n) ∈ B
0 if (m,n) /∈ B.

The adjacency matrices for the graphs from Fig. 2(a) and (b) are

A =

0

1

2

3

4

5

6

7

0 1 1 0 0 0 0 1
1 0 1 1 1 0 0 1
1 1 0 1 0 0 0 0
0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
1 1 0 1 1 0 0 0

0 1 2 3 4 5 6 7

, A =

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1
1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0

, (1)

8 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

respectively.
In the case of an undirected graph the adjacency matrix is symmetric

A = AT .

A graph is fully determined by its adjacency matrix, defined for a given
set of vertices. If the vertex numbering is changed it will cause correspond-
ing changes in the adjacency matrix. However vertices renumbering does not
change the graph itself (these graphs are isomorphic). Relation between adja-
cency matrix of original and renumerated graphs is defined using a permuta-
tion matrix P as

A2 = P A1P
T . (2)

If we change the vertex numbering as [0, 1, 2, 3, 4, 5, 6, 7]→ [3, 2, 4, 5, 1, 0, 6, 7],
the corresponding permutation and adjacency matrices of a graph isomorph
to the graph presented in Fig. 2(a) are

P =

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

, A2 =

0 1 1 1 1 0 0 1
1 0 0 0 1 1 0 0
1 0 0 1 1 0 1 1
1 0 1 0 0 0 1 0
1 1 1 0 0 1 0 1
0 1 0 0 1 0 0 1
0 0 1 1 0 0 0 0
1 0 1 0 1 1 0 0

. (3)

Relation (2) can easily be checked for this example. A permutation matrix has
exactly one value equal to 1 in each row and in each column.

In general, the edges can be weighted. If the weights of edges are defined,
a weighted graph is obtained. The set of weights W corresponds to the set
of edges B. A weighted graph is a more general case than the unweighted
graph. Commonly, it is assumed that the edge weights are nonnegative real
numbers. If we associate weight 0 to the nonexisting edges then the graph can
be described with a weight matrix W similar to the adjacency matrix A. A
nonzero element Wmn describes an edge between the vertices m and n and the
corresponding weight. The value Wmn = 0 means that there is not an edge
between the vertices m and n.

An example of a weighted undirected graph is presented in Fig. 3.
The weight matrix for this graph is

W =

0 0.54 0.14 0 0 0 0 0.47
0.54 0 0.63 0.35 0.30 0 0 0.31
0.14 0.63 0 0.31 0 0 0 0

0 0.35 0.31 0 0.54 0.43 0 0.13
0 0.30 0 0.54 0 0.54 0.62 0.54
0 0 0 0.43 0.54 0 0.37 0
0 0 0 0 0.62 0.37 0 0

0.47 0.31 0 0.13 0.54 0 0 0

. (4)

Introduction to Graph Signal Processing 9

0

1

2
3

4

5

6
7

0
.5
4

0
.1
4

0.47

0
.6
3 0.3

5

0.30

0.31

0.31

0
.5
4

0.43

0
.1
3

0.5
4

0.62

0.
54

0
.3
7

Fig. 3 An example of a weighted graph.

In this manner the adjacency matrix A can be considered as a special case
of the weight matrix W where all nonzero weights are equal to 1.

For undirected graphs the weighting matrix is symmetric,

W = WT .

For directed graphs this property does not hold, in general.

A degree matrix for an undirected graph, denoted by D, is a diagonal
matrix where the diagonal elements Dmm are equal to the sum of weights of
all edges connected with the vertex m

Dmm =
∑
n

Wmn.

In the case of an unweighted and undirected graph, the value of Dmm is
equal to the number of edges connected to the m-th vertex.

The degree matrix for the graph from Fig. 3 is

D =

1.15 0 0 0 0 0 0 0
0 2.13 0 0 0 0 0 0
0 0 1.08 0 0 0 0 0
0 0 0 1.76 0 0 0 0
0 0 0 0 2.54 0 0 0
0 0 0 0 0 1.34 0 0
0 0 0 0 0 0 0.99 0
0 0 0 0 0 0 0 1.45

. (5)

The Laplacian matrix L of a graph is defined as

L = D−W.

For an undirected graph the Laplacian matrix is symmetric L = LT .

10 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

The Laplacian for the graph from Fig. 3 is

L =

1.15 −0.54 −0.14 0 0 0 0 −0.47
−0.54 2.13 −0.63 −0.35 −0.30 0 0 −0.31
−0.14 −0.63 1.08 −0.31 0 0 0 0

0 −0.35 −0.31 1.76 −0.54 −0.43 0 −0.13
0 −0.30 0 −0.54 2.54 −0.54 −0.62 −0.54
0 0 0 −0.43 −0.54 1.34 −0.37 0
0 0 0 0 −0.62 −0.37 0.99 0

−0.47 −0.31 0 −0.13 −0.54 0 0 1.45

. (6)

The normalized Laplacian is defined as

LN = D−1/2(D−W)D−1/2.

The normalized Laplacian for the graph from Fig. 3 is

LN =

1 −0.35 −0.13 0 0 0 0 −0.36
−0.35 1 −0.42 −0.18 −0.13 0 0 −0.18
−0.13 −0.42 1 −0.22 0 0 0 0

0 −0.18 −0.22 1 −0.26 −0.28 0 −0.08
0 −0.13 0 −0.26 1 −0.29 −0.39 −0.28
0 0 0 −0.28 −0.29 1 −0.32 0
0 0 0 0 −0.39 −0.32 1 0

−0.36 −0.18 0 −0.08 −0.28 0 0 1

. (7)

2.2 Properties of Graphs and Associated Matrices

1. For an undirected graph, the matrices A, W, and L are symmetric.

2. A graph is complete if there is an edge between each pair of vertices. The
adjacency matrix of a complete graph has elements Amn = 1 for all n 6= m
and Ann = 0. An example of a complete graph is presented in Fig. 4(a).

3. Bipartite graph is a graph where the graph vertices V could be partitioned
into two disjunct sets E and H, V = E ∪H and E ∩H = ∅, such that there
are no edges between vertices in the same set. If the vertex ordering is done
in a such way that all vertices belonging to E are before vertices belonging
to H then the adjacency matrix can be written as

A =

[
0 AEH

AHE 0

]
,

where the matrices AEH and AHE define the connections between the
vertices in set E and set H. For an undirected bipartite graph AEH = AT

HE .
An example of a bipartite undirected graph is given in Fig. 4(b), with
E = {1, 2, 3} and H = {4, 5, 6, 7}. The graph in Fig. 4(b) is also a complete
bipartite graph because all possible edges are present.

Introduction to Graph Signal Processing 11

0 1

2

3

45

6

7
0

1

2

3

4

5

6

0 1

2

3

45

6

7

0

1

2

3

45

6

7

0

1

2

3

4

0 1

2

3

45

6

7

(a) Complete graph (b) Bipartite graph (c) Regular graph

(d) Star graph (e) Line graph (f) Circular graph

Fig. 4 Special cases: (a) complete graph with 8 vertices, (b) complete bipartite graph, (c)
regular graph where each vertex is connected to 4 vertices, (d) star graph, (e) line graph,
(f) circular graph

4. An unweighted graph is regular (or K-regular) if all vertices are with the
same degree K. An example of the regular graph with K = 4 is given
in Fig. 4(c). The Laplacian and the normalized Laplacian of a K-regular
graph are

L = K I−A and LN = I− 1

K
A.

5. A star graph has one central vertex that is connected to all other vertices.
There are no other edges. An example of a star graph is given in Fig. 4(d).
A star graph is also a complete bipartite graph where there is only one
vertex in the first set.

6. A line graph is defined by a series of connected vertices. The first and
the last vertex have a degree equal to 1, while all other vertices are with
the degree 2. An example of a line graph with 5 vertices is presented in
Fig. 4(e).

12 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

7. A graph is circular if each vertex has the degree 2. This graph is also a
regular graph with K = 2. An example of a circular graph with 8 vertices
is given in Fig. 4(f).

8. A walk between a vertex n and a vertex m is a connected sequence of edges
and vertices that begins at the vertex n and ends at the vertex m. Edges
and vertices can be included into a walk more than once.
The length of a walk is equal to the number of included edges.
The number of walks between the vertex n and the vertex m of the length
K is equal to the element of matrix AK in the n-th row and the m-th
column.
As an example consider vertex 1 and vertex 5 in the graph from Fig. 5.
Consider the walks of length K = 2. There are two such walks (1→ 3→ 5
and 1 → 4 → 5). The element in the second row and the sixth column of
matrix A2 is 2 indicating that there are two walks between these vertices.

A2 =

3 2 1 3 2 0 0 1
2 5 2 3 2 2 1 3
1 2 3 1 2 1 0 3
3 3 1 5 3 1 2 2
2 2 2 3 5 2 1 2
0 2 1 1 2 3 1 2
0 1 0 2 1 1 2 1
1 3 3 2 2 2 1 4

. (8)

0

1

2
3

4

5

6
7

Fig. 5 Walks of length K = 2 from vertex 1 to vertex 5.

9. The number of walks between the vertices n and m of the length not higher
than K is equal to the element of matrix

BK = A + A2 + · · ·+ AK

in the n-th row and the m-th column.

Introduction to Graph Signal Processing 13

10. The K-neighborhood of a vertex n is defined as a set of vertices that are
reachable from the vertex n in up to K length walks. It can be obtained
as a set of positions of non-zero elements in the n-th row of matrix BK .
The K-neighborhoods of vertex 0 for K = 1 and K = 2 are illustrated in
Fig. 6.

3

4

5

60

1

2

7

(a)

5

60

1

2
3

4

7

(b)

Fig. 6 The K-neighborhoods of vertex 0 for: (a) K = 1 and (b) K = 2. The neighboring
vertices are shaded.

11. Path is a walk where each vertex can be included only once. The path
length is equal to the number of edges included in a path.

12. Distance between two vertices is equal to the minimal path length between
them. The distance between vertex 1 and vertex 5 for the graph presented
in Fig. 5 is 2.

13. The diameter d of a graph is equal to the largest distance between all pairs
of the vertices in the graph. The diameter of a complete graph is d = 1.
For the graph presented in Fig. 5 its diameter is 3.

14. An undirected graph is connected if there exists a walk between each pair
of its vertices.

15. If the graph is not connected, it consists of two or more connected graphs
(components). The components represent disjoint graphs. Components pro-
duce a block diagonal form of the adjacency matrix and Laplacian. For M
components of a graph this form would be

A =

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · AM

 and L =

L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...
0 0 · · · LM

 .
Note that the block diagonal form is obtained only if the vertex numbering
follows graph components.

14 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

0

1

2
3

4

5

6
7

Fig. 7 A disconnected graph.

As an example, let us consider a graph derived form Fig. 2(a) by removing
some edges. This graph is presented in Fig. 7.
The adjacency matrix for this graph is

A =

0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 1
0 0 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0

(9)

with the corresponding Laplacian

L =

2 −1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0 0
−1 −1 2 0 0 0 0 0

0 0 0 3 −1 −1 0 −1
0 0 0 −1 4 −1 −1 −1
0 0 0 −1 −1 3 −1 0
0 0 0 0 −1 −1 2 0
0 0 0 −1 −1 0 0 2

. (10)

These matrices are in a block-diagonal form with two blocks.
If there is an isolated vertex in a graph, then the corresponding row and
column of the matrices A and L will be zero-valued.

16. If we have two graphs defined on the same vertices, with adjacency matrices
A1 and A2, we can define a sum of the graphs as a new graph with the
adjacency matrix

A = A1 + A2.

If we want to keep binary values 0, 1 in the adjacency matrix then the
logical (Boolean) summation rule 1 + 1 = 1 should be used in the matrix
addition. In this chapter we will use the arithmetic summation rule only.

Introduction to Graph Signal Processing 15

0

1

2

3

4

× a b =

0a

1a

2a

3a

4a

0b

1b

2b

3b

4b

Fig. 8 Kronecker (tensor) product of two graphs.

17. Kronecker (tensor) product of two disjoint graphs G1 = (V1,B1) and G2 =
(V2,B2) is a graph G = (V,B) where V = V1×V2 and

(
(n1,m1), (n2,m2)

)
∈

B only if (n1, n2) ∈ B1 and (m1,m2) ∈ B2. The adjacency matrix of G is
equal to the Kronecker product of adjacency matrices A1 and A2,

A = A1 ⊗A2.

The Kronecker product of two simple graphs is illustrated in Fig. 8.

18. Cartesian product (graph product) of two disjoint graphs G1 = (V1,B1) and
G2 = (V2,B2) is a graph G = (V,B), where V = V1×V2 and

(
(n1,m1), (n2,m2)

)
∈

B only if

m1 = m2 and (n1, n2) ∈ B1 or

n1 = n2 and (m1,m2) ∈ B2.

The adjacency matrix of a Cartesian product of two graphs is

A = A1 ⊗ IN2
+ IN1

⊗A2,

where A1 and A2 are the adjacency matrices of graphs G1 and G2, respec-
tively. The numbers of vertices in G1 and G2 are denoted by N1 and N2,
respectively.
The Cartesian product of two simple graphs is illustrated in Fig. 9.

2.3 Eigenvalue Decomposition of the Adjacency Matrix

Graph matrices can be decomposed using the eigenvalue decomposition. A
column vector u is an eigenvector of the adjacency matrix A if

Au = λu

holds, where the constant λ is called the eigenvalue, corresponding to the
eigenvector u.

16 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

1

2

3

4

5

1 2 3 =�

11

12

13

14

15

21

22

23

24

25

31

32

33

34

35

Fig. 9 Cartesian product of two graphs

The previous relation can be written as (A−λI)u = 0. A nontrivial solution
for u exists if

det ||A− λI|| = 0.

The determinant det ||A− λI|| is a polynomial of λ. It is called the character-
istic polynomial of matrix A,

P (λ) = det ||A− λI|| = λN + c1λ
N−1 + · · ·+ cN .

Order of the characteristic polynomial is equal to the number of vertices
N . Eigenvalues are the roots of the characteristic polynomial, P (λ) = 0. In
general, there are N eigenvalues λ0, λ1, . . . , λN−1. In some cases the eigen-
values can be repeated meaning that the zeros of algebraic multiplicity higher
than one exist in the characteristic polynomial. Denote distinct eigenvalues
as µ1, µ2, . . . , µNm

, and their corresponding algebraic multiplicities as p1, p2,
. . . , pNm , where p1 +p2 + · · ·+pNm = N is equal to the order of the considered
matrix/polynomial and Nm ≤ N is the number of distinct eigenvalues. The
characteristic polynomial can be written in a form

P (λ) = (λ− µ1)p1(λ− µ2)p2 · · · (λ− µNm)pNm .

The minimal polynomial of the considered matrix is obtained from the
characteristic polynomial by reducing algebraic multiplicities of each eigen-
value to 1. Its form is

Pmin(λ) = (λ− µ1)(λ− µ2) · · · (λ− µNm
).

Properties of the characteristic and minimal polynomial:

– The characteristic polynomial order is equal to the number of vertices.
– For λ = 0, P (0) = det(A) = (−λ0)(−λ1) · · · (−λN−1).
– A sum of the eigenvalues is equal to the sum of diagonal elements of matrix

A. It means that c1 = 0 for the characteristic polynomial of the adjacency
matrix.

– Coefficient c2 in P (λ) is equal to the number of edges multiplied by −1.

Introduction to Graph Signal Processing 17

– Degree of the minimal polynomial Nm is larger than the graph diameter. As
an example consider a connected graph with only two distinct eigenvalues
λ0 and λ1. The minimal polynomial order is 2. It means that the diameter
of this graph is d = 1. This is a complete graph.

– For a connected graph the multiplicity of the largest eigenvalue is 1.

The characteristic polynomial of the adjacency matrix for the graph from
Fig. 2(a) is

P (λ) = λ8 − 15λ6 − 18λ5 + 33λ4 + 60λ3 + 16λ2 − 6λ

with eigenvalues (−2.1929,−1.7498,−1.3214,−0.7958, 0, 0.2039, 1.7963, 4.0597).
The minimal polynomial is equal to characteristic polynomial Pmin(λ) = P (λ).

The characteristic polynomial of the adjacency matrix for the graph from
Fig. 7 is

P (λ) = λ8 − 10λ6 − 8λ5 + 24λ4 + 34λ3 + 3λ2 − 12λ− 4

with eigenvalues (− 1+
√
5

2 ,−1.4728,−1,−1,−0.4626,
√
5−1
2 , 2, 2.9354). There is

an eigenvalue of multiplicity higher than 1. The minimal polynomial is

Pmin(λ) = λ7 − λ6 − 9λ5 + λ4 + 23λ3 + 11λ2 − 8λ− 4.

If all eigenvalues are distinct (of algebraic multiplicity 1), instead of N
equations Auk = λkuk, k = 0, 1, . . . , N − 1, we can write one matrix equation
for the adjacency matrix

AU = UΛ

or

A = UΛU−1,

where Λ is a diagonal matrix with eigenvalues on the diagonal and U is a
matrix composed of eigenvectors uk as columns. Since one coefficient of the
eigenvector can be arbitrarily chosen, common choice is such that ‖uk‖22 = 1
for each k = 0, 1, . . . , N − 1.

For an undirected graph, the matrix A is symmetric. The eigenvalues of
a symmetric matrix are real-valued. For undirected graphs, if matrix A is
diagonalizable then

U−1 = UT .

All real symmetric matrices are diagonalizable. The adjacency matrix of an
undirected graph is always diagonalizable. The square matrix is diagonalizable
if all its eigenvalues are distinct (this condition is sufficient, but not necessary).
For some directed graphs, when the eigenvalues of algebraic multiplicity higher
than one exist, the matrix A may not be diagonalizable. In such cases the alge-
braic multiplicity is higher than the geometrical multiplicity of the considered
eigenvalue and the Jordan normal form could be used.

The set of the adjacency matrix eigenvalues is called the graph adjacency
spectrum.

18 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

For the graph presented in Fig. 2(a), the graph adjacency spectrum is given
in Fig. 10. The spectrum of the graph adjacency matrix transformed with per-
turbation matrix (3) is given in Fig. 11. We can see that vertex renumbering
with the perturbation matrix does not change the eigenvalues. The eigen-
vectors are also the same with coefficient reordering induced by the vertex
renumbering.

The DFT basis functions as a special case of adjacency matrix eigenvectors

The eigenvalue decomposition for the directed circular graph presented in Fig.
19 will follow from the definition Auk = λkuk. For this particular graph it
reduces to

uk(n− 1) = λkuk(n),

where uk(n) are the elements of vector uk. A solution of this linear difference
equation is

uk(n) =
1√
N
ej2πnk/N and λk = e−j2πk/N , k = 0, 1, . . . , N − 1. (11)

These eigenvectors correspond to the DFT basis function in this case.

Decomposition of matrix powers and polynomials

The eigenvalue decomposition of the adjacency matrix AA = A2 is

A2 = UΛU−1UΛU−1 = UΛ2U−1,

assuming that U−1 exists, that is, that matrix A is diagonalizable.

This form can easily be generalized for an arbitrary integer power

An = UΛnU−1.

In general, for any matrix function f(A) that can be written in a polynomial
form

f(A) = h0A
0 + h1A

1 + h2A
2 + · · ·+ hN−1A

N−1

the eigenvalue decomposition is

f(A) = Uf(Λ)U−1.

The proof is evident using the matrix power and linearity properties.

Introduction to Graph Signal Processing 19

0 1 2 3

4 5 6 7

0

1 2

3 4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5 6 7

0

1

2

3

4

5

6

7

0 1

2 3

4 5

6 7

0

1

2

3

4

5

6

7

0

1 2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1 2 3 4 5

6

7

0

1

2

3

4

5

6

7

0

1

2 3

4

5 6

7

0

1

2

3

4

5

6

7

0 1 2

3 4 5 6

7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 10 Eigenvalues λk and corresponding eigenvectors uk(n) for the adjacency matrix of
the graph presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left)
and on the graph (right).

20 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

0 1 2 3

4 5 6 7

0

1

2

3 4

5 6

7

5

4

1

0

2

3

6

7

0

1 2

3 4

5

6 7

5

4

1

0

2

3

6

7

0 1

2 3 4 5

6 7

5

4

1

0

2

3

6

7

0

1 2

3

4

5

6

7

5

4

1

0

2

3

6

7

0 1 2 3 4

5 6

7

5

4

1

0

2

3

6

7

0 1

2

3

4

5 6

7

5

4

1

0

2

3

6

7

0

1

2 3

4 5

6

7

5

4

1

0

2

3

6

7

0 1 2 3 4 5 6 7

5

4

1

0

2

3

6

7

Fig. 11 Eigenvalues λk and corresponding eigenvectors uk(n) for the adjacency ma-
trix of the graph presented in Fig. 2(a) with vertex renumbering [0, 1, 2, 3, 4, 5, 6, 7] →
[3, 2, 4, 5, 1, 0, 6, 7].

Introduction to Graph Signal Processing 21

2.4 Eigenvalue Decomposition of the Laplacian

Eigenvalue decomposition can be done for the Laplacian as well. Here we
will use the same notation for the eigenvalues and eigenvectors, as general
mathematical forms, although they are not related to the eigenvalues and
eigenvectors of the adjacency matrix. For an undirected graph the Laplacian
can be written as

L = UΛUT or LU = UΛ,

where Λ is a diagonal matrix with the Laplacian eigenvalues and U is the
matrix of its eigenvectors (as columns), with U−1 = UT . Note that the Lapla-
cian of an undirected graph is always diagonalizable since it is a real symmetric
matrix.

Each eigenvector uk of a Laplacian satisfies

Luk = λkuk.

The set of the Laplacian eigenvalues is called the graph spectrum (or graph
Laplacian spectrum).

The Laplacian spectrum of the graph from Fig. 2(a) is presented in Fig.
12, along with the corresponding eigenvectors. The Laplacian spectrum of the
disconnected graph from Fig. 7 is plotted in Fig. 13.

Properties of the Laplacian eigenvalue decomposition:

– Since the Laplacian is defined in such a way that the sum of each row
(column) elements is zero, then at least one eigenvalue of the Laplacian is
zero with the corresponding eigenvector u0 = [1, 1, . . . 1]T /

√
N = 1/

√
N .

The relation Lu0 = 0 u0 is always satisfied.

– Multiplicity of zero as an eigenvalue of the Laplacian is equal to the number
of connected components in a graph. For example, if λ0 = λ1 = 0 then the
graph is not connected. If λ2 > 0 then there are two connected components
in this graph.

– Sum of the eigenvalues is equal to the trace of the Laplacian matrix. For
the normalized Laplacian the sum of its eigenvalues is equal to N if there
are no isolated vertices.

– Coefficient cN in the Laplacian characteristic polynomial

P (λ) = det ||L− λI|| = λN + c1λ
N−1 + · · ·+ cN

is equal to 0. Coefficient c1 is equal to the number of edges multiplied by
−2.
The characteristic polynomial of the Laplacian for graph from Fig. 2(a) is

P (λ) = λ8−30λ7 +374λ6−2500λ5 +9618λ4−21106λ3 +24094λ2−10712λ

22 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3

4 5 6

7

0

1

2

3

4

5

6

7

0

1

2

3 4 5

6

7

0

1

2

3

4

5

6

7

0 1

2 3

4

5

6 7

0

1

2

3

4

5

6

7

0

1 2 3 4

5

6 7

0

1

2

3

4

5

6

7

0 1

2 3

4

5 6 7

0

1

2

3

4

5

6

7

0 1

2

3

4 5

6

7

0

1

2

3

4

5

6

7

0

1

2 3 4

5 6 7

0

1

2

3

4

5

6

7

Fig. 12 Eigenvalues λk and corresponding eigenvectors uk(n) for the Laplacian of the graph
presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left) and on the
graph (right).

Introduction to Graph Signal Processing 23

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4

5 6

7

0

1

2

3

4

5

6

7

0 1 2

3

4

5

6 7

0

1

2

3

4

5

6

7

0 1

2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

1 2

3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4

5

6

7

0

1

2

3

4

5

6

7

0 1 2

3

4

5 6 7

0

1

2

3

4

5

6

7

Fig. 13 Eigenvalues λk and corresponding eigenvectors uk(n) for Laplacian of the graph
presented in Fig. 7.

24 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

with eigenvalues (0, 1.134, 3.054, 3.317, 4, 5.679, 6.342, 6.473). In this case
all eigenvalues are of multiplicity one so the minimal polynomial is equal
to characteristic polynomial Pmin(λ) = P (λ).
The characteristic polynomial of the Laplacian for the graph from Fig. 7 is

P (λ) = λ8 − 20λ7 + 163λ6 − 692λ5 + 1611λ4 − 1944λ3 + 945λ2.

with eigenvalues (0, 0, 3 −
√

2, 3, 3, 3, 3 +
√

2, 5). Eigenvalue 0 is of multi-
plicity 2 and eigenvalue 3 is of multiplicity 3, so the minimal polynomial
is

Pmin(λ) = λ5 − 14λ4 + 70λ3 − 146λ2 + 105λ

– Graphs with the same spectrum are called isospectral or cospectral graphs.
Construction of isospectral graphs that are not isomorph is an interesting
topic in graph theory. A complete graph is uniquely defined by its spectrum.

– For a K-regular graph the eigenvectors of the Laplacian and adjacency
matrix are the same, while for the eigenvalues the relation

λ
(L)
k = K − λ(A)

k .

holds. It follows from UTLU = UT (KI−A)U.

– Eigenvalues of the normalized Laplacian LN = I −D−1/2AD−1/2 satisfy
the relation

0 ≤ λ ≤ 2.

The upper bound equality holds if and only if the graph is a bipartite
graph.

– The eigenvalues and eigenvectors of the normalized Laplacian of a bipartite
graph with vertices E and H satisfy the relation (graph spectrum folding)

λk = 2− λN−k

uk =

[
uE
uH

]
and uN−k =

[
uE
−uH

]
, (12)

where uk is the eigenvector and uE is its part indexed on the first set of
vertices, while uH is the part of eigenvector uk indexed on the second set
of vertices.
In order to prove this property, we can write the adjacency and the nor-
malized Laplacian matrices of an undirected bipartite graph in block forms

A =

[
0 AEH

AT
EH 0

]
and LN =

[
I LEH

LTEH I

]
.

The eigenvalue relation is

LNuk =

[
uE + LEHuH
LTEHuE + uH

]
= λk

[
uE
uH

]
.

Introduction to Graph Signal Processing 25

From this relation we get LEHuH = (λk − 1)uE and LTEHuE = (λk − 1)uH,
resulting in

LN

[
uE
−uH

]
= (2− λk)

[
uE
−uH

]
.

It completes the proof of the property.

Fourier analysis as a special case of the Laplacian spectrum

For the undirected circular graph from Fig. 4(f) the eigenvalues of the Lapla-
cian are

λk =

{
2− 2 cos(π(k + 1)/N) for odd k

2− 2 cos(πk/N) for even k.

Note that for k = 0 we have λ0 = 0. Most of the eigenvalues are of algebraic
multiplicity 2, i.e., λ1 = λ2, λ3 = λ4, and so on. If N is odd then λN−2 = λN−1.
For an even N we have λN−1 = 2 of algebraic multiplicity 1.

The corresponding eigenvectors u0, u1, . . . , uN−1, are

uk(n) =

sin(π(k + 1)n/N) for odd k, k < N − 1

cos(πkn/N) for even k

cos(πn) for odd k, k = N − 1,

(13)

where k = 0, 1, . . . , N − 1 and n = 0, 1, . . . , N − 1.
Note that an arbitrary linear combination of eigenvectors u2k−1 and u2k,

1 ≤ k < N/2 is also an eigenvector since the corresponding eigenvalues are
equal. Having this fact in mind we can write an alternative set of the eigen-
vectors as

uk(n) =

1 for k = 0

cos(π(k + 1)n/N) + j sin(π(k + 1)n/N) for odd k, k < N − 1

cos(πkn/N)− j sin(πkn/N) for even k, k > 0

cos(πn) for odd k, k = N − 1,

where j2 = −1. It can be easily checked that this set of eigenvectors is or-
thonormal and the eigenvectors correspond to the DFT basis functions.

2.5 Vertex Ordering, Coloring, and Segmentation

The ordering of vertices of a graph can be arbitrary. This is an important
difference from classical signal processing where the ordering is assumed and
inherent. Any change or data ordering would produce significant changes in
the classical signal processing results, in general. In the previous section we
have seen (Fig. 10 and Fig. 11) that a reordering of the vertices will imply
corresponding indices reordering within each eigenvector.

26 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

However, the presentation of a graph signal, in any other form than the
presentation which uses the graph as the domain, would benefit from an ap-
propriate vertex ordering. This is of particular importance in vertex-frequency
graph signal representations.

Here we will describe a possible method of vertex ordering. It is based on
the Laplacian eigendecomposition. The aim of this vertex ordering is to get
the smoothest possible representation of the eigenvectors, corresponding to low
eigenvalues, if the vertices are represented sequentially. The smoothness of a
graph signal can be defined using the Laplacian quadratic form. The Laplacian
quadratic form of an eigenvector is equal to the corresponding eigenvalue

uTk (Luk) = uTk (λkuk) = λk.

This will be discussed in details in Section 3.6. The eigenvector corresponding
to λ0 = 0 is constant (maximally smooth for any vertex ordering) and it
is not appropriate for the vertex ordering. The next smoothest eigenvector
is u1 with eigenvalue λ1. The aim here is to order vertices in a such way
that the presentation of this vector, as a function of the vertex index, is also
maximally smooth. This can be achieved by sorting the values of u1 into a
nondecreasing order (the second eigenvalue λ1 is called the Fiedler value or
algebraic connectivity, while the corresponding eigenvector u1 is known as
the Fiedler vector). The order of vertices in the sorted u1 corresponds to its
smoothest presentation.

As an example, consider the vector u1 in Fig. 12. We see that there are big
changes of the subsequent values of u1(n) with the presented vertex ordering,
for example, the change from u1(6) to u1(7) is significant. The representation
of u1(n) would be smoother if we sort the values of u1(n) and appropriately
reorder the vertices. This kind of reordering for the graph presented in Fig.
12, would produce vertex order

[6, 5, 4, 3, 7, 1, 2, 0]

instead of the presented order [0, 1, 2, 3, 4, 5, 6, 7]. With this vertex ordering,
the presentation of u1(n) would be smoother.

In general, the spectral similarity of vertices can be defined using more
than one eigenvector. Coefficients uk(n), k = 0, 1, . . . , N − 1 are assigned to
the vertex n. We can assign an N dimensional spectral vector

qn = [u0(n), u1(n), . . . , uN−1(n)]T

to each vertex n. If u0 is omitted then qn = [u1(n), . . . , uN−1(n)]T .
The spectral similarity between vertices n and m is defined using norm-two

‖qn−qm‖2. We can restrict spectral similarity to a few lower-order (smooth)
spectral coefficients. If we restrict the spectral similarity to the two (or three)
smoothest coefficients then the spectral vector is qn = [u1(n), u2(n)]T in the
two-dimensional case (or qn = [u1(n), u2(n), u3(n)]T for the three dimensional
case).

From this point we can proceed in two ways:

Introduction to Graph Signal Processing 27

0

1

2
3

4

5

6
7

 0.54

 0.14

 0.04

 0.12

 0.63
 0.09

 0.08

 0.08

 0.08

 0.54

 0.43

 0.13

 0.54

 0.62
 0.54

 0.37

 0.47 0

1

2
3

4

5

6
7

Fig. 14 Vertex coloring in a graph with some weak connections using the Laplacian eigen-
vector u1 and corresponding intensities of red color

Fig. 15 Vertex three-dimensional coloring in the Minnesota road-map graph using the
Laplacian eigenvectors {u2,u3,u4} as the coordinates in the RGB coloring system

– The first one is to keep the original vertex positions and to color them ac-
cording to the spectral vector qn. Single color vertex coloring using values
of u1 for the vertex color intensity is presented in Fig. 14. Based on this
coloring we can clearly see three graph segments, {0, 1, 2}, {3, 4, 7}, and
{5, 6}. Three color vertex coloring, using u2, u3, and u4 for the Minnesota
graph is given in Fig. 15. Eigenvectors u0 and u1 are omitted in the Min-
nesota graph case, since corresponding eigenvalues are λ0 = λ1 = 0. The
graph segmentation can be done by grouping vertices with similar colors,
using appropriate thresholds, and assigning the vertices from each group
to segments (with constant colors).

– Another approach is to use the spectral vector qn as a position of a ver-
tex in a new space (Laplacian eigenmaps or LE). In the case of two or
three dimensional spectral vectors, this approach can be used to graphically
present vertex spectral similarity. For the Minnesota graph, the Lalplacian
eigenmap for the two-dimensional case is given in Fig. 16, and for the
three-dimensional case in Fig. 17.

28 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Fig. 16 The Minnesota road-map graph with new two-dimensional vertex positions de-
fined by the Laplacian eigenvectors {u2,u3} as the vertex coordinates (the 2D Laplacian
eigenmap).

3 Signals on Graphs

In classical signal processing, signal is sampled at successive, equally spaced,
time instants. The ordering of signal samples is then obvious with x(n) being
preceded by x(n − 1) and succeeded by x(n + 1). The time distance between
samples is considered as the basic parameter in various processing algorithms.
This relation between sampling instants can be represented in a graph form.
The vertices correspond to the instants when the signal is sampled and the
edges define sampling (vertex) ordering. The fact that sampling instants are
equally spaced can be represented with same weights for all edges (for example
normalized to 1). Graphical illustration of this signal is given in Fig. 18.

In digital signal processing algorithms, periodicity of the analyzed signals
is usually assumed, meaning that sample x(N − 1) is succeeded by x(0). This
case correspond to the circular graph, Fig. 19. This model is used in many
common transforms, like DFT, DCT, wavelets, and corresponding processing
algorithms based on these transforms.

Signal on a graph is defined by associating real (or complex) values x(n)
to each vertex, Fig. 20. Signal values can be arranged in a vector form

x = [x(0), x(1), . . . , x(N − 1)]T .

Introduction to Graph Signal Processing 29

Fig. 17 The Minnesota road-map graph with new thee-dimensional vertex positions de-
fined by the Laplacian eigenvectors {u2,u3,u4} as the vertex coordinates (the 3D Laplacian
eigenmap)

;

0 1 2 3 4 5 6 7

x(0)
x(1)

x(2) x(3)

x(4)

x(5)

x(6)
x(7)

Fig. 18 Graph representation of a classical time-domain signal.

The graph is considered as a generalized signal domain.
In general, any linear processing of a graph signal at a vertex n can be

defined as a linear combination of the signal value x(n) at this vertex and the
signal samples x(m) at vertices around this vertex

y(n) = x(n)h(n, n) +
∑
m∈Vn

x(m)h(n,m),

where Vn is the set of vertices in the neighborhood of vertex n. This form
is highly vertex-varying. Only in a specific case of regular graphs can it be
vertex invariant. Then Vn is a K-neighborhood of the vertex n with h(n,m) =
h(n−m).

30 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

0

1

2

3

4

5

6

7

(a)

0

1

2

3

4

5

6

7

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)
x(7)

(b)

Fig. 19 (a) A circular graph. (b) A periodic signal on a graph. Signal values are presented
as vertical lines starting from the corresponding vertex.

0

1

2

3

4

5

6

7

(a)

0

1

2 3

4

5

67

(b)

Fig. 20 (a) A signal on an undirected circular graph. (b) Undirected arbitrary graph. Signal
values are presented as vertical lines starting from the corresponding vertex.

For a general graph we can define a vertex-invariant filtering function, using
shifts on a graph. Various forms of signal shifts on a graph will be introduced in
the next sections. They are used to introduce efficient graph signal processing
methods [24–38].

3.1 Adjacency Matrix and Graph Signal Shift

Consider a graph signal x. Its sample at a vertex n is x(n). The signal shift on
a graph can be defined as the movement of the signal sample from the vertex
n along all walks, with the length equal to one. The movement is done for
all vertices. The signal shifted in this way is denoted by x1. Its values can be
defined using the graph adjacency matrix as

x1 = Ax (14)

As an illustration of a signal and its shifted version, consider classical signal
processing, where the adjacency matrix is defined by graph Fig. 19(a). The

Introduction to Graph Signal Processing 31

0

1

2

3

4

5

6

7

(b)

0

1

2

3

4

5

6

7

(a)

Fig. 21 (a) A signal on the directed circular graph. (b) A shifted version of the graph signal
from (a).

0

1

2
3

4

5

6

7

0

1

2
3

4

5

6

7

0

1

2
3

4

5

6

7

(a)

0

1

2
3

4

5

6

7

(b)

Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(A x) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m− 1

xm = Axm−1 = Am x.

32 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

3.2 Systems Based on a Graph Shifted Signals

A system on a graph can be implemented as a linear combination of a graph
signal and its graph shifted versions. The output signal from a system on a
graph can be written as

y = h0A
0 x + h1A

1 x + · · ·+ hM−1A
M−1 x =

M−1∑
m=0

hmAm x (15)

where A0 = I, by definition.
The system coefficients are h0, h1, . . . , hM−1. For a circular (classical signal

processing) graph this relation reduces to the well known FIR filter,

y(n) = h0x(n) + h1x(n− 1) + · · ·+ hM−1x(n−M + 1). (16)

Having in mind that the matrix Am describes walks of the length m in a
graph, the output graph signal y(n) is calculated as a linear combination of
the input graph signal values within M − 1 neighborhood of the considered
vertex n.

It is obvious that the system order M−1 should be lower than the number
of vertices N in the case when the minimal and characteristic polynomial are
of the same degree. In general, the system order M − 1 should be lower than
the degree Nm of the minimal polynomial of the adjacency matrix A.

Any system of order M − 1 ≥ Nm can be reduced to a system of order
Nm − 1.

If the system order is higher or equal to the degree of minimal polynomial
M−1 ≥ Nm then there exist more than one system producing the same output
signal for a given input signal. All of these systems are called equivalent. This
topic will be addressed in Section 3.4.4 dealing with the filter design in the
spectral domain.

As an example consider a graph signal Fig. 23(left) and a linear system
on this graph with coefficients h0 = 1, h1 = 0.5. The output graph signal is
presented in Fig. 23(right).

In general, a system on a graph is defined in the vertex domain by

y = H(A)x.

This system is linear since

H(A)(a1x1 + a2x2) = a1y1 + a2y2.

A system on a graph is shift invariant if

H(A)(Ax) = A(H(A)x).

A system on a graph defined by

H(A) = h0A
0 + h1A

1 + · · ·+ hM−1A
M−1 (17)

is linear and shift invariant since AAm = AmA.

Introduction to Graph Signal Processing 33

0

1

2
3

4

5

6

7

input signal x

0

1

2
3

4

5

6

7

output signal y

Fig. 23 A vertex domain signal filtering example. An input graph signal (left) and the
output signal obtained as y = 1.0 x + 0.5 Ax (right).

3.3 Graph Fourier transform based on the Adjacency matrix

In the classical signal analysis the signals are often analyzed and processed
in the spectral (Fourier) domain. The spectral domain approach to signal
processing has lead to many simple and efficient algorithms in classical signal
processing.

The spectral analysis and processing approach can be extended to the
graph signals as well. Spectral domain representations of the graph signals can
be based on the adjacency matrix or Laplacian spectral decomposition. Both
of these approaches will be described in this and the next section, respectively.

The graph Fourier transform of a signal x is defined as

X = U−1x (18)

where U is a matrix with eigenvectors of the adjacency matrix in its columns.
Denote elements of vector X as X(k), for k = 0, 1, . . . , N−1. If U−1 = UT the
element X(k) is a projection of the considered signal to the k-th eigenvector,
as a graph signal decomposition basis function,

X(k) =

N−1∑
n=0

x(n)uk(n). (19)

Therefore the graph Fourier transform can be understood as a signal decom-
position onto the set of eigenvectors as orthonormal basis functions.

The inverse graph Fourier transform is obtained as

x = U X (20)

or

x(n) =

N−1∑
k=0

X(k)uk(n). (21)

34 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

In the case of a circular graph from Fig. 19, this transform reduces to the
standard discrete Fourier transform (DFT), equation (11). It is the reason
why the transform (19) and its inverse (21) are referred to as the graph dis-
crete Fourier transform (GDFT) and inverse graph discrete Fourier transform
(IGDFT).

Consider a system on a graph (15). If we use the spectral representation
of the adjacency matrix A = UΛU−1 we will get

y = h0UΛ0U−1 x + h1UΛ1U−1 x + · · ·+ hM−1UΛM−1U−1 x (22)

or

y = U
(
h0Λ

0 + h1Λ
1 + · · ·+ hM−1Λ

M−1)U−1 x = UH(Λ)U−1 x. (23)

By left multiplying this relation with U−1 we get

U−1y = H(Λ)U−1 x (24)

If the GDFTs of the input and output graph signal

X = U−1x, Y = U−1y

are used, we will obtain the spectral domain system relation as

Y = H(Λ) X (25)

or
Y (k) = (h0 + h1λk + · · ·+ hM−1λ

M−1
k)X(k).

The transfer function of a system on a graph is defined by

H(λk) =
Y (k)

X(k)
= (h0 + h1λk + · · ·+ hM−1λ

M−1
k). (26)

The classical signal analysis system (16) is obtained with the adjacency
matrix whose eigenvalues are λk = e−j2πk/N , defined by (11). Note that any
classical system whose transfer function can be described using the DFT with
periodicity N can be written in this form with M = N .

Similar to the z transform in the classical signal processing, we can intro-
duce system transfer function in the z-domain for systems on graphs.

The z-domain transfer function of a system on a graph is defined as

H(z−1) = Z{hn} = h0 + h1z
−1 + · · ·+ hM−1z

−(M−1). (27)

Obviously
H(λk) = H(z−1)

∣∣
z−1=λk

and we can use results defined for the classical z-domain transfer function.
Definition of the z-transform for arbitrary graph signals x(n) and y(n) that

would satisfy the relation Y (z−1) = H(z−1)X(z−1) is not straightforward. It
will be discussed later in Section 3.9.

Introduction to Graph Signal Processing 35

3.4 Filtering in the Adjacency Matrix Spectral Domain

3.4.1 Normalization

The energy of a graph shifted signal is ‖x1‖22 = ‖Ax‖22 . The graph shift does
not satisfy isometry property. In general, the energy of shifted signal is not
the same as the energy of the original signal, ‖Ax‖22 6= ‖x‖

2
2 . In processing

graph signals it is commonly desirable that a graph shift does not increase the
signal energy.

Using the matrix norm-two it can be easily shown that the ratio of energies
of the graph shifted and the original signal satisfies the relation

max{
‖Ax‖22
‖x‖22

} = max{x
TATAx

‖x‖22
} = λ2max. (28)

where λmax = maxk |λk|.
If we do not want that the energy of a graph shifted signal ‖Ax‖22 exceeds

the energy of the original graph signal ‖x‖22 then we should use the normalized
adjacency matrix

Anorm =
1

λmax
A

in the graph shift operation and in any system on a graph. This normaliza-
tion does not make the shift on graph operation isometric. The energy of the
shifted signal is less than or equal to the energy of the original graph signal.
The equality is achieved only for a very specific signal proportional to the
eigenvector that corresponds to λmax.

The basic shift on a graph is then defined by using normalized adjacency
matrix as

x1 = Anormx. (29)

A system on a graph with the normalized adjacency matrix is of the form

y =

M−1∑
m=0

hmAm
norm x. (30)

3.4.2 Spectral Domain Filtering

The filtering relation, as a special kind of a system on a graph, can be written
as

y =

M−1∑
m=0

hmAm
norm x = H(Anorm)x.

Its spectral domain form follows from the decomposition of H(Anorm) as

y = H(Anorm)x = UH(Λ)U−1x

with
U−1y = H(Λ)U−1x,

36 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

as
Y = H(Λ)X,

where X = U−1x and Y = U−1y are the graph Fourier transforms of the
input and output signal, respectively. The transfer function of a filter on a
graph is again

H(λk) =
Y (k)

X(k)
= h0 + h1λ

1
k + · · ·+ hM−1λ

M−1
k ,

where λk are the eigenvalues of the normalized adjacency matrix Anorm.

3.4.3 Spectral Ordering of the Adjacency Matrix Eigenvectors

For proper low-pass and high-pass filtering we have to establish the spectral
order. This means that we have to establish a criterion to classify the eigen-
vectors, corresponding to the basis functions, as slow varying or fast varying.
In classical Fourier analysis, the basis functions are ordered according to the
frequency. Low-pass (slow varying) basis functions are the functions with small
frequencies. The frequencies of the graph eigenvectors, as functions for signal
decomposition, are not defined. We have to find another criterion to classify
the eigenvectors. Again, an inspiration will be found in the classical Fourier
analysis. In that case, instead of the frequency, energy of the signal change
can be used as an indicator of the speed of a signal change in time.

The energy of a signal (a basis function) u(n) change in classical analysis
can be defined as the energy of the first difference

E∆u =

N−1∑
n=0

|u(n)− u(n− 1)|2.

Lower values of E∆u means that u(n) is slow-varying. Value E∆u = 0 indicates,
in classical signal analysis, that the signal is constant. Large values of E∆u are
associated with fast signal changes in time. This form is also called the norm-
two total variation of a signal. If the energy of a basis function u(n) change is
large it means that this eigenvector can be considered as the one belonging to
the higher spectral content of the signal.

In graph signals the first graph difference can be defined as a difference of
the graph signal and its graph shift. For an eigenvector u, its form is

∆u = u− u1 = u−Anormu.

The energy of signal change is the energy of the first graph difference of signal
u

E∆u = ‖u−Anormu‖22 (31)

=

∥∥∥∥u− 1

λmax
Au

∥∥∥∥2
2

=

∥∥∥∥u− 1

λmax
λu

∥∥∥∥2
2

= |1− λ

λmax
|2 (32)

Introduction to Graph Signal Processing 37

For eigenvectors Au = λu and ‖u‖22 = 1 hold.
The energy of signal change is minimal for λ = λmax and increases as λ

decreases, Fig. 10.
After we have established a criterion for the eigenvector ordering, based on

the corresponding eigenvalues, we will define an ideal low-pass filter. This filter
should pass unchanged all signal components (eigenvectors) whose changes are
slower than the one defined by the cut-off eigenvalue λc. It should stop all signal
components (eigenvectors) whose variations are faster than the one defined by
the cut-off eigenvalue. The ideal low-pass filter is defined as

f(λ) =

{
1 for λ > λc

0 for other λ.

As an example, consider a signal on a graph presented in Fig. 2(a). The
graph signal is obtained as a linear combination of two adjacency matrix eigen-
vectors x = 3.2u7 + 2u6 (adjacency matrix eigenvectors of the considered
graph are presented in Fig. 10). The signal is presented in Fig. 24(a). The
signal is corrupted by a white Gaussian noise with signal-to-noise (SNR) ratio
SNRin = 2.7dB. The noisy graph signal is presented in Fig. 24(b). The noisy
signal is filtered by using an ideal spectral domain graph filter with a cut-off
eigenvalue λc = 1. The output signal, presented in Fig. 24(c), is obtained. The
output SNR is SNRout = 18.8dB.

The energy of signal change criterion is consistent with the classical DFT
based filtering when λk = exp(−j2πk/N) and λmax = 1. In that case the
decision on the low-pass and high-pass basis functions is made based on E∆u
value and a given threshold.

3.4.4 Spectral Domain Filter Design

Let the desired graph transfer function be G(Λ). A system with this transfer
function can be implemented either in the spectral domain or in the vertex
domain.

In the spectral domain the implementation is straightforward. It can be
performed in the following three steps:

1. Calculate the GDFT of the input graph signal X = U−1x,
2. Multiply the GDFT of the input graph signal by G(Λ) to get Y = G(Λ)X,

and
3. Calculate the output graph signal as the inverse GDFT, y = UY.

This procedure may computationally be very demanding for large graphs.
In the case of a large graph it would be easier to implement the desired filter
(or its close approximation) in the vertex domain.

For the implementation in the vertex domain, we have to find the coef-
ficients h0, h1, . . . , hM−1 in (15) such that its spectral representation H(Λ)
is equal (or approximately equal) to G(Λ). This is done in the following
way. The transfer function of the vertex domain system is given by (26) as

38 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

0

1

2
3

4

5

6

7

0 1 2 3 4 5 6 7

(a) original signal

0

1

2
3

4

5

6

7

0

1 2 3 4 5 6 7

(b) noisy signal

0

1

2
3

4

5

6

7

0

1 2 3 4 5 6 7

(c) filtered signal

Fig. 24 Signal filtering example. Original signal (a), noisy signal (b) and filtered signal (c).
An ideal low-pass filtering with two highest eigenvalues in the pass-band is applied.

H(λk) = h0 +h1λ
1
k+ . . . hM−1λ

M−1
k . It should be equal to the desired transfer

function G(λk), for k = 0, 1, . . . , N − 1. This condition leads to a system of
linear equations

h0 + h1λ
1
0 + . . . hM−1λ

M−1
0 = G(λ0)

h0 + h1λ
1
1 + . . . hM−1λ

M−1
1 = G(λ1)

...

h0 + h1λ
1
N−1 + . . . hM−1λ

M−1
N−1 = G(λN−1). (33)

The matrix form of this system is

Vλ h = g, (34)

where Vλ is the Vandermonde matrix form of eigenvalues λk,

h = [h0, h1, . . . , hM−1]T

Introduction to Graph Signal Processing 39

is the vector of the system coefficients that we want to calculate, and

g = [G(λ0), G(λ1), . . . , G(λN−1)]T = diag(G(Λ)).

Now we will comment on the solution of system (33), (34).

Comments on the System of Equations Solution:

1. Consider the case when all eigenvalues are distinct (minimal polynomial is
equal to characteristic polynomial, Pmin(λ) = P (λ)).

(a) If the filter order is such that M = N , then the solution of (33) is
unique, since the Vandermonde determinant is always nonzero.

(b) If the filter order is such that M < N , then system (33) is overdeter-
mined. The solution of (33) is obatined in the mean squared sense only
(as it will be described later in this section).

2. If some of the eigenvalues are of a degree higher than one (minimal poly-
nomial order Nm is lower than N) system (33) reduces to a system of Nm
linear equations (by removing multiple equations for the repeated eigen-
values λ).

(a) If the filter order is such that Nm < M ≤ N the system is underdeter-
mined. In that case M − Nm filter coefficients are free variables. The
system has an infinite number of soulutions. All obtained filters are
equivalent.

(b) If the filter order is such that M = Nm the solution of system (33) is
unique.

(c) If the filter order is such that M < Nm the system (33) is overdeter-
mined and the solution is obtained in the mean squared sense.

3. Any filter of an order M > Nm has a unique equivalent filter whose order
is Nm. It can be obtained by setting free variables to zero, hi = 0 for
i = Nm, Nm + 1, . . . , N − 1.

Solution of the System

For M = N = Nm the solution of system (33) or (34) is

h = V−1λ g.

For the overdetermined case (when M < Nm) the mean-square approxi-
mation of h = [h0, h1, . . . , hM]T is obtained by minimizing the squared error

e = ‖Vλh− g‖22 .

40 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

-2 0 2 4

0

0.5

1

1.5

-2 0 2 4

0

0.5

1

1.5

-2 0 2 4

0

0.5

1

1.5

-2 0 2 4

0

0.5

1

1.5

Fig. 25 Designing a filter with the specified transfer function in the spectral domain. The
desired spectral response G(λk) is presented with blue circles. The designed graph system

response Ĝ(λk), obtained with M+1 filter coefficients h0, h1, . . . , hM in the vertex domain,
is presented with red asterisks.

From ∂e/∂hT = 0 we get

ĥ = (VT
λ Vλ)−1VT

λ g = pinv(Vλ)g.

In the cases when M < Nm the obtained solution ĥ is the mean square solution
for Vλh = g. Since this solution may not satisfy Vλh = g then the designed
coefficients ĝ (its spectrum Ĝ(Λ))

Vλĥ = ĝ

in general differs from the desired system coefficients g (its spectrum G(Λ)).
As an example consider the graph from Fig. 2(a) and the synthesis of a

desired filter whose frequency response would be

g = [1, 1, 0.5, 0.4, 0.1, 0, 0, 0]T .

Consider the following cases: M = 0, 1, 2, 3. The filter is designed for various
M using (33). The solution is obtained according the presented procedure.
The results are shown in Fig. 25. The vertex domain realization of the filter
with M = 3 is

y = 0.4456A0 x + 0.2298A1 x− 0.0188A2 x. (35)

For M = N = 8 the exact frequency response ĝ = g is obtained.

Introduction to Graph Signal Processing 41

Inverse System

An inverse filter H(Λ) to G(Λ) is obtained from

H(Λ)G(Λ)X = X.

It means that H(λk) = 1/G(λk) for each k if all G(λk) 6= 0 and P (λ) =
Pmin(λ).

3.5 Graph Fourier Transform Based on the Laplacian

Like in the case of an adjacency matrix, the spectral decomposition of a
graph signal can be done using the eigenvalue decomposition of the Lapla-
cian L = UΛU−1 or LU = UΛ. Although the analysis can be done in a
unified way for both the adjacency matrix and the Laplacian based spectral
decomposition, due to their different behavior and importance they will be
considered separately.

The graph Fourier transform of a signal x, using the Laplacian eigenvalue
decomposition, is defined as

X = U−1x, (36)

where U is a matrix with the Laplacian eigenvectors. The inverse graph Fourier
transform is

x = U X. (37)

In the case of circular unweighted graph this spectral analysis also reduces
to the standard Fourier transform, but with real-valued basis functions (13).

3.6 Ordering and Filtering in the Laplacian Spectral Domain

The graph shift and adjacency matrix are related to the first finite difference
in the vertex domain. The eigenvectors (basis functions) variations are related
to the energy of the graph signal change, Section 3.4.3. A similar approach
can be used for the Laplacian based decomposition.

In the case of classical time domain signals, the Laplacian on a circle graph
represents the second order finite difference y(n) = −u(n−1)+2u(n)−u(n+1).
This difference can be written in a matrix form as y = Lu. It is obvious that the
eigenvectors u(n) with small changes should have small cumulative energy of
the second order difference Eu =

∑
n((u(n)−u(n−1))2+(u(n)−u(n+1))2)/2.

This value corresponds to the quadratic form of eigenvector u defined by Eu =
uTLu. This reasoning can be used in the graph signals as well. As a default
case for the Laplacian analysis we will use weighted undirected graphs.

By definition
Lu = λu

or
uTLu = λuTu = λ = Eu,

42 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

since uTu = 1 by definition. It means that the quadratic form of an eigenvector
is equal to the corresponding eigenvalue. Next we will show that it can be used
as a measure of the signal smoothness. By definition

uTLu =

N−1∑
n=0

u(n)

N−1∑
m=0

Wnm(u(n)− u(m)) =

N−1∑
n=0

N−1∑
m=0

Wnm(u2(n)− u(n)u(m)).

In full summations over n and m we can replace the summation of u2(n)
by a half of the summations of both u2(n) and u2(m) over n and m, since
Wnm = Wmn. The same can be done for u(n)u(m). Then we can write

uTLu =
1

2

N−1∑
n=0

N−1∑
m=0

Wnm(u2(n)− u(n)u(m) + u2(m)− u(m)u(n)) =

1

2

N−1∑
n=0

N−1∑
m=0

Wnm(u(n)− u(m))2 ≥ 0. (38)

Obviously small uTLu = λ means small variations Wnm(u(n) − u(m))2 in
the eigenvector for each vertex n. The eigenvectors corresponding to small λ
belong to the low-pass part of a graph signal.

From the previous analysis we may also conclude that the eigenvalues of a
Laplacian are nonnegative (positive semi-definite matrix). At least one Lapla-
cian eigenvalue is equal to 0. According to the Laplacian definition we have
that the sum of each row (column) is equal to 0. It means that for x = 1 we
have Lx = 0 = 0 · x. We can conclude that there is eigenvalue λ0 = 0 with
corresponding eigenvector u0 = 1/

√
N . A vector with all values equal to 1 is

denoted by 1.
In general, the smoothness of a graph signal x is defined by the quadratic

form
Ex = xTLx.

An ideal low-pass filter in the Laplacian spectrum domain, with a cut-off
eigenvalue λc, will be defined as

f(λ) =

{
1 for λ < λc

0 for other λ.

As an example consider a signal on the graph presented in Fig. 3. The
graph signal is obtained as a linear combination of two Laplacian eigenvectors
x = 2u0 +1.5u1 (Laplacian eigenvectors of the considered graph are presented
in Fig. 12). This signal is presented in Fig. 26(a). The signal is corrupted by a
white Gaussian noise. The noisy graph signal is described by a signal-to-noise
(SNR) ratio SNRin = −1.76dB. Noisy graph signal is presented in Fig. 26(b).
Using an ideal spectral domain graph filter, with a cut-off eigenvalue λc = 2,

Introduction to Graph Signal Processing 43

0

1

2
3

4

5

6

7

0 1 2 3 4 5 6 7

(a) original signal

0

1

2
3

4

5

6

7

0 1 2

3 4 5

6 7

(b) noisy signal

0

1

2
3

4

5

6

7

0 1 2 3 4 5 6 7

(c) filtered signal

Fig. 26 Signal filtering example. Original signal (a), noisy signal (b) and filtered signal (c).
Low pass filtering with two largest eigenvalues is applied.

the noisy graph signal is filtered. The output signal, presented in Fig. 26(c),
is obtained. The output SNR, for this signal, is SNRout = 21.29dB.

A direct relation between the adjacency and Laplacian spectral decompo-
sition can be established for K-regular unweighted graphs. For these graphs
holds

L = KI−A

resulting in

λA = K − λL,

where the adjacency matrix and the Laplacian eigenvalues are denoted by λA
and λL, respectively. The eigenvectors are the same. Ordering with respect to
λ from the low-pass to the high-pass part is just opposite for these two graph
spectral decompositions.

44 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

3.7 Systems on a Graph Defined Using the Laplacian

A system on a graph can be defined using the Laplacian as well

y = h0L
0 x + h1L

1 x + · · ·+ hM−1L
M−1 x =

M−1∑
m=0

hmLm x. (39)

For an unweighted graph this system form can be related to the adjacency
matrix form using L = D−A.

The spectral domain description of a graph system is obtained using the
Laplacian eigenvalue decomposition,

y =

M−1∑
m=0

hmLm x = H(L)x = UH(Λ)UTx = UH(Λ)X = UY, (40)

where

Y = H(Λ)X

or

Y (k) = H(λk)X(k), k = 0, 1, . . . , N − 1.

In the vertex domain the n-th element of y = UH(Λ)UTx is

y(n) =

N−1∑
k=0

N−1∑
i=0

x(i)uk(i)H(λk)uk(n) =

N−1∑
i=0

x(i)hn(i), (41)

where

H(λk) = h0 + h1λk + · · ·+ hM−1λ
M−1
k (42)

and

hn(i) =

N−1∑
k=0

H(λk)uk(n)uk(i) = Tn{h(i)}.

The value of y(n) can be interpreted as a generalized convolution, using a
generalized shift of impulse response in the vertex domain. It can be described
by using responses to the unite delta pulses. Let us consider the delta function
located at a graph vertex m and its spectrum. The delta function at the vertex
m is defined as

δm(n) =

{
1 for n = m

0 for n 6= m,
(43)

and the corresponding spectrum is given by

∆(λk) =

N−1∑
n=0

δm(n)uk(n) = uk(m). (44)

Introduction to Graph Signal Processing 45

Any graph signal can be written as

x(n) =

N−1∑
i=0

x(i)δn(i)

or in a vector form

x =

N−1∑
i=0

x(i)δi,

where δi is a vector with elements δ(n− i). Then

y =

M−1∑
m=0

hmLm x = UH(Λ)UTx =

N−1∑
i=0

x(i)UH(Λ)UT δi

with elements

y(n) =

N−1∑
i=0

x(i)

N−1∑
k=0

uk(n)H(λk)uk(i) =

N−1∑
i=0

x(i)hn(i).

Calculation of this form of convolution for a vertex n, given by (41), is
localized to the (M − 1) neighborhood of vertex n, according to (40). This
is an important property for large graphs. A generalized convolution for two
arbitrary graph signals will be explained next.

3.8 Convolution of Signals on a Graph

Consider two graph signals x(n) and h(n). A generalized convolution oper-
ator of these two signals on a graph is defined using their spectra [39]. The
assumption is that the spectrum of a convolution

y(n) = x(n) ∗ h(n)

on a graph is equal to the product of the graph signal spectra

Y (k) = X(k)H(k). (45)

The result of the generalized graph convolution operation x(n) ∗ h(n) is equal
to the inverse GDFT of Y (k),

y(n) = x(n) ∗ h(n) =

N−1∑
k=0

Y (k)uk(n) =

N−1∑
k=0

X(k)H(k)uk(n).

In this case

H(k) =

N−1∑
n=0

h(n)uk(n).

A shift on the graph can be defined within the framework of the generalized
convolution. Consider the graph signal h(n) and the delta function located at

46 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

the vertex m. Here, we will use hm(n) to denote the shifted version of the
graph signal h(n). The signal corresponding to a shift to a vertex m is equal
to

hm(n) = h(n) ∗ δm(n) =

N−1∑
k=0

H(k)uk(m)uk(n). (46)

The same relation follows from the inverse GDFT of X(k)H(λk),

y(n) =

N−1∑
k=0

X(k)H(k)uk(n) =

N−1∑
k=0

N−1∑
m=0

x(m)uk(m)H(k)uk(n) =

N−1∑
m=0

x(m)hm(n) = x(n) ∗ h(n), (47)

where

hm(n) =

N−1∑
k=0

H(k)uk(m)uk(n) = Tm{h(n)}

plays the role of a shifted signal. Since the definition of H(k) as a GDFT of
a signal h(n) differs from (42) it produces different shift operation. These two
shift operations are denoted by Tm{h(n)} and Tm{h(n)}, respectively.

Consider, for example, the signal with Laplacian GDFT

H(k) = exp(−k/4).

Shifted signals h(n) obtained using hm(n) = Tm{h(n)} are presented in Fig.
27.

3.9 Graph z-transform of a Signal

The relation between Tm{h(n)} and Tm{h(n)} can be established based on the
definitions of H(λk) and H(k). For H(λk) defined by (42) the corresponding
IGDFT coefficients h(n)

h(n) =

N−1∑
k=0

H(λk)uk(n)

and the coefficients hn in

H(λk) = h0 + h1λk + · · ·+ hM−1λ
M−1
k

are not the same, h(n) 6= hn.
Vector form of the last two relations is

[h(0) h(1) . . . h(N − 1)]T = UH(Λ)

H(Λ) = Vλ[h0 h1 . . . hN−1]T .

Introduction to Graph Signal Processing 47

0 1 2 3 4

5

6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

7

0

1

2

3

4

5

6

7

0 1 2 3 4 5

6

7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Fig. 27 Graph signal shifts based on the Laplacian eigendecomposition.

48 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

The signal h(n) and the coefficients hn can easily be related via

[h0 h1 . . . hN−1]T = V−1λ UT [h(0) h(1) . . . h(N − 1)]T .

These coefficients would be the same in the classical DFT (with directed ad-
jacency matrix) when λk = exp(−j2πk/N) and uk(n) = exp(j2πnk/N)/

√
N =

λ−nk /
√
N , with hn = h(n) and H(λk) =

∑N−1
n=0 h(n)u∗k(n).

The previous relation will be used to define the z-transform of a graph
signal. For given signal x = [x(0) x(1) . . . x(N − 1)]T the signal corresponding
to a system transfer function that would have the same GDFT is

[x0 x1 . . . xN−1]T = V−1λ UT [x(0) x(1) . . . x(N − 1)]T .

The z-transform of these coefficients is

X(z−1) = Z{xn} = x0 + x1z
−1 + · · ·+ xN−1z

−(N−1). (48)

For this z-transform holds

Y (z−1) = H(z−1)X(z−1).

The output signal y(n) can be obtained as

[y(0) y(1) . . . y(N − 1)]T = UVλ[y0 y1 . . . yN−1]T ,

where the output graph signal y(n) is obtained from the inverse z-transform
of the coefficients yn of Y (z−1) = H(z−1)X(z−1)

Y (z−1) = Z{yn} = y0 + y1z
−1 + · · ·+ yN−1z

−(N−1).

The z-transform representation may be of interest when the eigenvalues are
complex-valued. They may appear in decomposition of adjacency matrices of
undirected graphs. For example, for the graph from Fig. 2(b) and its adjacency
matrix the eigenvalues are presented in Fig. 28.

The analytic signal and Hilbert transform are defined as

Xa(k) = (1 + sign(Imag(λk))X(k)

Xh(k) = j sign(Imag(λk))X(k)

X(k) = Xa(k) + jXh(k)

If these relations are applied to the standard DFT with λk = exp(−j2πk/N)
we would get the classical signal processing definitions.

Introduction to Graph Signal Processing 49

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

λ
0

λ
1

λ
2

λ
3

λ
4

λ
5

λ
6
λ

7

z
-1

 complex plane

Fig. 28 Eigenvalues of the directed graph adjacency matrix.

3.10 Shift in the Spectral Domain

We can define a shift in the spectral domain in the same way as the shift in the
vertex domain has been defined. Consider a product of two signals x(n)y(n)
on an undirected graph. Its GDFT is

GDFT{x(n)y(n)} =

N−1∑
n=0

x(n)y(n)uk(n) =

N−1∑
n=0

N−1∑
i=0

X(i)ui(n)y(n)uk(n) =

N−1∑
i=0

X(i)Yi(k),

where

Yi(k) =

N−1∑
n=0

y(n)ui(n)uk(n)

can be considered as a shift of Y (k) for i. Obviously Y0(k) = Y (k) up to a
constant factor. This relation does not hold for the shift in the vertex domain.

3.11 Parseval’s Theorem on a Graph

For two signals x(n) and y(n) on an undirected graph and their spectra X(k)
and Y (k), Parseval’s theorem holds

N−1∑
n=0

x(n)y(n) =

N−1∑
k=0

X(k)Y (k). (49)

50 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

To prove Parseval’s theorem on graphs we can write

N−1∑
n=0

x(n)y(n) =

N−1∑
n=0

[N−1∑
k=0

X(k)uk(n)

]
y(n) =

N−1∑
k=0

X(k)

N−1∑
n=0

y(n)uk(n), (50)

producing Parseval’s theorem. It has been assumed that U−1 = UT for undi-
rected graphs. This theorem holds for both the Laplacian and the adjacency
matrix based decompositions on undirected graphs.

3.12 Optimal Denoising

Consider a signal composed of a slow-varying signal s and a fast changing
disturbance ε

x = s + ε.

The aim is to design a filter for disturbance suppression (denoising). The
output of this filter is denoted by y.

The optimal denoising task could be defined as a minimization of

J =
1

2
‖y − x‖22 + αyTLy.

Before we solve this problem we will explain the meaning of terms in the cost
function J . Minimization of the first term 1

2‖y − x‖22 forces that the output
signal y is as close to the available observations x as possible. The second term
is a measure of signal y smoothness. It promotes the solution smoothness (see
Section 3.6). Parameter α is a balance between output closeness to x and
smoothness of y criterion.

The solution of the minimization problem is

∂J

∂yT
= y − x + 2αLy = 0

resulting in
y = (I + 2αL)−1x.

The Laplacian spectral domain form of this relation follows with L = UTΛU,
Y = UTy, and X = UTx as

Y = (I + 2αΛ)−1X.

The transfer function of this filter is

H(λk) =
1

1 + 2αλk
.

For a small α, H(λk) ≈ 1 and y ≈ x. For a large α, H(λk) ≈ δ(k) and
y ≈ const. is maximally smooth (a constant, without any variation).

Here we will state two more cost function forms used for graph signal
denoising.

Introduction to Graph Signal Processing 51

Instead of the resulting signal smoothness, we may add the condition that
its deviation from a linear form is as small as possible. Then the cost function
is

J =
1

2
‖y − x‖22 + α‖Ly‖22 =

1

2
‖y − x‖22 + αyTL2y

resulting in a closed form solution

y = (I + 2αL2)−1x

with the corresponding spectral domain relation H(λk) = 1/(1 + 2αλ2k).
A combination of the previous two cost function forms may provide addi-

tional flexibility in the transfer function design. If we use

J =
1

2
‖y − x‖22 + αyTLy + βyTL2y

we would get the transfer function

H(λk) =
1

1 + 2αλk + 2βλ2k
.

We can change the transfer function form by choosing appropriate values of
the parameters α and β. For example, if we want the component corresponding
to λ1 6= 0 to be unattenuated we would use α+βλ1 = 0. This cost function can
be extended to produce a transfer function for M unattenuated components.

In some applications we would like to promote the sparsity of the result-
ing signal change, instead of its smoothness. Then the compressive sensing
theory requires that the quadratic form or the norm-two in the previous equa-
tions is replaced with the forms that promote sparsity. Two possible such cost
functions are:

J =
1

2
‖y − x‖22 + α‖Ly‖pp

and

J =
1

2

N−1∑
n=0

(y(n)− x(n))2 + α

N−1∑
n=0

(
N−1∑
m=0

Wnm(y(n)− y(m))2

)p/2

with 0 ≤ p ≤ 1. Minimization of these functions can not be done in an analytic
way, like in the case of p = 2. The norm-zero, with p = 0, is the best in promot-
ing sparsity. For p = 0, the second term in minimization counts and minimizes
the number of nonzero elements in Ly. In the second minimization form the
norm-zero promotes the smallest possible number of nonzero elements of the
form

∑N−1
m=0Wnm(y(n)− y(m))2. This is the total variations (TV) approach.

The norm-one with p = 1 in previous relations is convex, allowing the
gradient descend methods in the solution, while producing the same solution
as with p = 0, under some conditions.

52 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

4 Subsampling, Compressed Sensing, and Reconstruction

Graphs may have a large number of vertices. This number can be of the order of
millions or even higher. The fact that the number of vertices and corresponding
graph signal values can be extremely large makes the problem of subsampling
and compressive sensing crucially important in graph signal processing. The
problems of subsampling and compressive sensing are closely related to the
reconstruction possibility from a reduced set of measurements (signal samples
or their linear combinations). Here we will present several basic approaches
to the subsampling, along with their relations to classical signal processing
[40–58].

4.1 Subsampling of the Low-Pass Graph Signals

We will start with the simplest case where we can assume that the considered
graph signal is of low-pass type. This signal can be written as a linear combi-
nation of K < N eigenvectors with the slowest changes. For example, for the
Laplacian spectrum of a signal with K nonzero values

X = [X(0), X(1), . . . , X(K − 1), 0, 0, . . . , 0]T

the signal is of form

x(n) =

K−1∑
k=0

X(k)uk(n).

The smallest number of graph signal samples needed to recover this signal is
M = K < N . Assume that M signal samples are available, K ≤M < N . The
vector of available graph signal samples will be referred to as the measurement
vector. It will be denoted by y. The set of vertices where the graph signal
samples are available is

M = {n1, n2, . . . , nM}.

The measurement matrix can be defined using the IGDFT x = U X or

x(n) =

N−1∑
k=0

uk(n)X(k), n = 0, 1, . . . , N.

Keeping the equations corresponding to the available graph signal samples at
n ∈M = {n1, n2, . . . , nM} we get

x(n1)
x(n2)

...
x(nM)

 =

u0(n1) u1(n1) . . . uN−1(n1)
u0(n2) u1(n2) . . . uN−1(n2)

...
u0(nM) u1(nM) . . . uN−1(nM)

X(0)
X(1)

...
X(N − 1)

 .

Introduction to Graph Signal Processing 53

The matrix form of this system of equations is

y = AMNX,

where AMN is the measurement matrix and y = [x(n1), x(n2), . . . , x(nM)]T

are the available samples. This system is underdetermined for M < N . It
cannot be solved uniquely for X without additional constraints. Since we
have assumed that the signal contains a linear combination of only K ≤
M the slowest varying eigenvectors, we can exclude the GDFT coefficients
X(K), X(K + 1), . . . , X(N − 1), since they are zero-valued and do not con-
tribute to the graph signal samples. Then we can write

x(n1)
x(n2)

...
x(nK)

 =

u0(n1) u1(n1) . . . uK−1(n1)
u0(n2) u1(n2) . . . uK−1(n2)

...
u0(nM) u1(nM) . . . uK−1(nM)

X(0)
X(1)

...
X(K − 1)

 .
This system in a matrix form reads

y = AMKXK ,

where the definition of the reduced measurement matrix AMK and the reduced
GDFT vector XK is obvious. For K = M this system can be solved. If M > K
the system is overdetermined and the solution is found in the mean squared
error (MSE) sense. This solution is

XK = (AT
MKAMK)−1AT

MKy = pinv(AMK)y,

where pinv(AMK) = (AT
MKAMK)−1AT

MK is a matrix pseudo-inverse.
After XK is calculated all GDFT values directly follow by adding the

assumed zero values as X = [X(0), X(1), . . . , X(K − 1), 0, 0, . . . , 0]T . The
graph signal is then recovered at all vertices using x = U X.

The recovery condition is that the inverse (AT
MKAMK)−1 exists. It means

that
rank(AT

MKAMK) = K. (51)

In terms of the matrix condition number, the requirement is

cond(AT
MKAMK) <∞.

In the case of noisy measurements, the noise in the reconstructed GDFT coeffi-
cients is directly related to the input noise and the matrix condition number. If
we are able to choose the signal sample positions (vertices), then the sampling
strategy should be to find the set of measurements producing the condition
number as close to one as possible.

As an example of the reconstruction from a reduced set of signal samples,
consider a graph’s signal values at M = 3 vertices

y = [x(0) x(2) x(6)]T = [0.299 0.345 1.361]T .

54 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

0

1

2
3

4

5

6

7

×

×

×
×

× 0

1

2
3

4

5

6

7

Fig. 29 Subsampling of a lowpass graph signal example.

Assume that the graph signal is of low-pass type with K = 2 lowest nonzero
GDFT coefficients X(0) and X(1). The signal GDFT coefficients can be re-
constructed from x(0)

x(2)
x(6)

 =

u0(0) u1(0)
u0(2) u1(2)
u0(6) u1(6)

[X(0)
X(1)

]
.

since the rank of matrix AMK is 2. The matrix condition number value is
cond(AT

MKAMK) = 1.97. The reconstructed nonzero values of the GDFT are
X(0) = 2 and X(1) = 1. The reconstructed graph signal x = U X is presented
in Fig. 29.

The classical signal processing downsampling and interpolation relations
are obtained with uk(n) = exp(j2πnk/N)/

√
N .

4.2 Subsampling of the Sparse Graph Signals

4.2.1 Known Coefficient Positions

The previous analysis holds not only for a low-pass type of X, but for a general
X with K nonzero values at arbitrary, known, spectral positions,

X(k) = 0 for k /∈ K = {k1, k2, . . . , kK}

as well. Then the system of equations
x(n1)
x(n2)

...
x(nM)

 =

uk1(n1) uk2(n1) . . . ukK (n1)
uk1(n2) uk2(n2) . . . ukK (n2)

...
uk1(nM) uk2(nM) . . . ukK (nM)

X(k1)
X(k2)

...
X(kK)

 , (52)

whose matrix form reads y = AMKXK , is solved for the nonzero spectral
values X(k), k ∈ K, in the same way as in the case of low-pass signal presented
in Section 4.1.

Introduction to Graph Signal Processing 55

4.2.2 Support Matrices, Subsampling-Upsampling

In graph signal processing literature, the subsampling problem is often defined
using the so called support matrices. Assume that a graph signal, x, is sub-
sampled in such way that it is available on a subset of vertices n ∈ M =
{n1, n2, . . . , nM}, rather than on the full set of vertices. For this subsampled
signal, we can define its upsampled version, xs, by adding zeros at the ver-
tices where the signal is not available. Using a mathematical formalism, the
subsampled and upsampled version, xs, of the original signal, x, is then

xs = Bx, (53)

where the support matrix B is an N × N diagonal matrix with ones at the
diagonal positions which correspond to M = {n1, n2, . . . , nM} and zeros else-
where. The subsampled and upsampled version, xs, of the signal x is obtained
is such a way that the signal x is subsampled on a reduced set of vertices,
and then upsampled by adding zeros at the original signal positions where the
subsampled signal is not defined.

Recall that in general a signal, x, with N independent values cannot be
reconstructed from its M < N nonzero values in xs, without additional con-
straints. However, for graph signals which are also sparse in the GDFT domain,
the additional constraint is that the signal, x, has only K ≤M nonzero coef-
ficients in the GDFT domain, X = UTx, at k ∈ K = {k1, k2, . . . , kK}, so that
the relation

X = CX

holds, where the support matrix C is an N × N diagonal matrix with ones
at the diagonal positions which correspond to K = {k1, k2, . . . , kK} and zeros
elsewhere. Note the presence of the GDFT, X, is on both sides of this equation,
contrary to xs = Bx in (53). The reconstruction formula then follows from

xs = Bx = BUX = BUCX.

as X = pinv
(
BUC

)
xs. The inversion

X = CX = pinv
(
BUC

)
xs

is possible for K nonzero coefficients of CX if the rank of BUC is K (if there
are K linearly independent equations), that is

rank(C) = K = rank
(
BUC

)
.

This condition is equivalent to (51) since the nonzero part of matrix BUC is
equal to AMK in (52).

56 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

4.2.3 Unknown Coefficient Positions

The problem is more complex if the positions of nonzero spectral coefficients
K = {k1, k2, . . . , kK} are not known. This problem has been formulated and
solved within compressive sensing theory. The reconstruction problem formu-
lation is

min ‖X‖0 subject to y = AMNX,

where ‖X‖0 denotes the number of nonzero elements in X (`0 pseudo-norm).

The minimization problem can be solved in many ways. Here we will
present a simple, two step solution:

1. Using M � K signal samples, the positions K of nonzero coefficients are
estimated.

2. The nonzero coefficients of X at the estimated positions K are recon-
structed, along with the signal x at all vertices.

For the estimation of nonzero positions in Step 1 we can use the projection
of measurements to the measurement matrix

AMN =

u0(n1) u1(n1) . . . uN−1(n1)
u0(n2) u1(n2) . . . uN−1(n2)

...
u0(nM) u1(nM) . . . uN−1(nM)

defined as

X0 = AT
MNy. (54)

Positions of K largest values in X0 are used as an estimate of the nonzero
positions K. This procedure can also be implemented in an iterative way. In
the first iteration we assume K = 1 and the largest component is estimated
and removed. The position of the second component is then estimated. The
first and the second component are then reconstructed and removed. The
procedure is iteratively repeated K times.

As an example consider a sparse graph signal with sparsityK = 2 measured
at vertices 2, 3, 4, 5, and 7

y = [0.224 1.206 1.067 1.285 1.116]T .

Measurements (available signal samples) are illustrated in Fig. 30 (upper left
subplot). The estimate X0 is calculated according to (54). The positions of
two non-zero coefficients are estimated as positions of two largest values in
X0. In the considered case K = {0, 2}, Fig. 30 (lower left subplot). The GDFT
coefficients are then reconstructed for sparsity K = 2, resulting in X(0) = 2,
X(2) = 1.5, Fig. 30 (lower right). The reconstructed graph signal at all vertices
is presented in Fig. 30 (upper right subplot).

Introduction to Graph Signal Processing 57

0

1

2
3

4

5

6

7

×

×

× 0

1

2
3

4

5

6

7

Fig. 30 Compressive sensing on graphs

4.2.4 On the Unique Reconstruction Conditions

It is easy to show that the initial estimate X0 will produce correct positions
of the nonzero elements X(k) and the reconstruction will be unique if

K <
1

2

(
1 +

1

µ

)
,

where µ is equal to the maximal value of the inner product of two columns of
the measurement matrix AMN (the coherence index).

A K-sparse signal can be written as x(n) =
∑K
i=1X(ki)uki(n). Its initial

estimate values are

X0(k) =

K∑
i=1

X(ki)
∑
n∈M

uk(n)uki(n) =

K∑
i=1

X(ki)µ(k, ki)

where M = {n1, n2, . . . , nM} and µ(k, ki) =
∑
n∈M uk(n)uki(n). If the maxi-

mal possible absolute value of µ(k, ki) is denoted by µ = max |µ(k, ki)| then,
in the worst case, the amplitude of the strongest component X(ki) (assumed
with the normalized amplitude 1), reduced for the maximal possible influ-
ence of other equally strong (unity) components 1 − (K − 1)µ, should be
greater than the maximal possible disturbance at k 6= ki, being Kµ. From
1− (K − 1)µ > Kµ, the unique reconstruction condition follows.

In order to define other unique reconstruction conditions we will consider
again the solution of y = AMNX with a minimal number of nonzero coeffi-
cients in X. Assume that the sparsity K is known. Then a set of K measure-
ments would produce a possible solution for any combination of K nonzero
coefficients in X. If we assume that we have another set of K measurements,
we would get another set of possible solutions. A common solution in these

58 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

two sets of solutions would be the solution of our problem. There are no two

different K sparse solutions X
(1)
K and X

(2)
K (the solution is unique) if all possi-

ble AT
M2KAM2K matrices are nonsingular. The requirement that all reduced

measurement matrices corresponding to a 2K sparse X are nonsingular can
be written in several forms,

det{AT
M2KAM2K} = d1d2 . . . d2K 6= 0

cond{AT
M2KAM2K} =

dmax

dmin
≤ 1 + δ2K

1− δ2K
<∞

1− δ2K ≤ dmin ≤ {
‖AM2KX2K‖22
‖X2K‖22

} ≤ dmax ≤ 1 + δ2K

where di are the eigenvalues of AT
M2KAM2K , dmin is the minimal eigenvalue,

dmax is the maximal eigenvalue, and δ2K is the restricted isometry constant.
All these conditions are satisfied if dmin > 0 or 0 ≤ δ2K < 1.
In noisy cases robustness is required, and therefore more strict bounds for

dmin and δ2K are required. For example, it has been shown, that 0 ≤ δ2K <
0.41 will guarantee stable inversion and robust reconstruction of the noisy sig-
nals. In addition, this bound will allow convex relaxation of the reconstruction
problem.

Namely, the previous problem can be solved using the convex relation of
the norm-zero to a norm-one formulation

min ‖X‖1 subject to y = AMX.

The solution of these two problem formulation are the same if the measure-
ment matrix satisfies the previous conditions with δ2K < 0.41. The signal
reconstruction problem can now be solved using gradient-based approaches or
linear programming methods.

4.3 Linear Combinations of Samples and Aggregated Sampling

If some spectrum coefficients are strongly related to only a few of the signal
samples, then the signal samples may not be good candidates for the measure-
ments. In that case linear combinations of all signal samples

y = BMNx = BMNUX = AMNX

should be used. The weighting coefficients BMN for the measurements could
be, for example, the Gaussian random numbers. The reconstruction is obtained
as the solution of

min ‖X‖0 subject to y = (BMNU)X

or the solution of the corresponding convex minimization problem.
A specific form of linear combinations of the graph signals are described as

aggregate sampling. Sampling in classical signal processing can be interpreted

Introduction to Graph Signal Processing 59

on a directed circular graph (Fig. 19) in the following way. Consider the signal
at an instant n. If we sense this signal at this vertex/instant only, we get
its value y0(n) = x(n). If we apply the shift operator we get y1 = Ax. If
this signal is sampled at the same vertex n we get y1(n) = x(n − 1). If we
continue this shift and sample operation N times we will get all signal values
x(n), x(n− 1), . . . , x(n−N + 1). If we stop the shifts after M < N steps the
signal can still be recovered using the compressive sensing based reconstruction
methods, if the reconstruction conditions are met.

The same procedure can be used on a signal on an arbitrary graph. Assume
that we sample the graph signal at a vertex n and get

y0(n) = x(n).

If the signal is now graph shifted y1 = Ax we will get a new measurement as
a shifted signal value at the considered vertex,

y1(n) =
∑
m

Anmx(m).

If we continue with one more shift we will get

y2(n) =
∑
m

A(2)
nmx(m),

where A
(2)
nm are the elements of matrix A2 = AA. If we continue M = N times

we would get a system of N linear equations y = BMNx. From these equations
we can calculate all signal values x(n). If we stop at M < N the signal can
still be recovered using the compressive sensing based reconstruction methods
if the signal is sparse and the reconstruction conditions are met.

Instead of M signal samples (instants) at one vertex, we may use, for
example, P samples at vertex n and other M − P samples from a vertex
m. Other combinations of vertices and samples can be used to obtain M
measurements and to fully reconstruct a signal.

4.4 On the Sampling Strategies

Signal sampling strategy is a process that will result in an optimal set of sig-
nal samples which will guarantee a unique reconstruction of a sparse signal.
In classical signal processing, the sampling strategies are based on the min-
imization of parameters defining the solution uniqueness. In the case when
the positions of nonzero GDFT coefficients are known (including the low-pass
filtering as a special case) the requirement is that the rank of the measure-
ment matrix is equal to the signal sparsity. In more general cases when the
nonzero coefficient positions are not known, the restricted isometry property
is the most commonly used uniqueness criterion. However, its application in
practice is almost impossible, since it is an NP hard combinatorial problem (re-
quiring 2K class combinations of N elements). A sampling strategy that will

60 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

minimize the coherence index will guarantee the maximal number of nonzero
coefficients reconstruction with a given set of signal samples. This process is
less computationally intensive. However, the coherence index based criterion
for signal sampling strategy is quite pessimistic.

In graph signals, the application of these sampling strategy criteria is even
more difficult. The number of vertices may be extremely large. Large dimen-
sionality of the graphs makes these approaches almost unsuitable for graph
signal processing.

Subsampling of graphs is of crucial importance in the cases of extremely
large graphs. Several approaches are possible in the graph analysis and graph
signal processing.

We have already described a possible graph signal orineted subsampling
strategy under the assumption that the GDFT is sparse, with a few nonzero
coefficients. Then the graph signal can be reconstructed with a very reduced
number of signal samples or their linear combinations.

Another class of approaches is graph oriented. The problem is defined as
follows. Given a large, in general directed, graph G with N vertices, the goal is
to find a much simpler graph with similar properties. In this so called down-
scale method, the goal is to define a smaller size graph S with a very reduced
number of vertices M � N that will behave in a similar way as the original
large graph. Similarity is defined with respect to the parameters of interest,
like for example, the connectivity or distribution on graph. The criteria may
be related to the spectral behavior of graphs as well.

Several methods are used for graph down-scaling. Some of them will be
listed next:

– The simplest method for graph down-sampling is a random vertex or ran-
dom node (RN) selection method. In this method, a random subset of
vertices is used for analysis and representation of large graphs and signals
on them. Vertices are selected with equal probabilities. This method will
produce good results in many applications. Random selection has been
preferred in classical compressive signal analysis as well.

– Different from the RN method, where the vertices are selected with a uni-
form probability, is the random degree vertex/node (RDN) selection, in
which the probability that a vertex is selected is proportional to the vertex
degree. Vertices with more connections, having larger dn =

∑
mWnm, are

selected with a higher probability. This approach is biased with respect to
highly connected vertices.

– A similar method to the RDN is based on the vertex rank (PageRank).
The PageRank is defined by the importance of the vertices connected to the
considered vertex n (see Section 7.8.5). Then the probability that a vertex n
will be used in a down-scaled graph is proportional to the PageRank of this
vertex. This method is called random PageRank vertex (RPN) selection.
It is also biased with respect to the highly connected vertices with a high
PageRank.

Introduction to Graph Signal Processing 61

2

2 2

Fig. 31 Principle of a signal, x(n), downsampling and upsampling in the classical time
domain.

– A method based on the random selection of edges, that will be left in the
simpler graph, is called the random edge (RE) method. This method may
lead to graphs that are not well connected, with large diameters.

– The RE method may be combined with the random vertex selection to get
a combined RNE method. It consists in a random vertex selection followed
by a random selection of one of the edges corresponding to the selected
vertex.

– In addition to these methods, more sophisticated methods based on the
random vertex selection and the random walks (RW) analysis may be de-
fined. For example, we can randomly select small subset of vertices and
form several random walks starting from each selected vertex. In this way
Random Walk (RW), Random Jump (RJ) and Forest Fire graph down-
scaling strategies are defined.

4.5 Filter Bank on a Graph

Subsampling and upsampling are the two standard operators used to alter the
scale at which the signal is processed. Subsampling of a signal by a factor of 2,
followed by the corresponding upsampling, can be described in classical signal
processing by

f(n) =
1

2

(
x(n) + (−1)nx(n)

)
=

1

2

(
(1 + (−1)n)x(n)

)
,

as illustrated in Fig. 31.

62 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

This is the basic operation used in multiresolution approaches based on
filter banks and can be extended to signals on graphs in the following way.
Consider a graph with the set of vertices V. Any set of vertices can be con-
sidered as a union of two disjoint subsets E and H, such that V = E ∪ H and
E ∩H = ∅. The subsampling-upsampling procedure can then be performed in
the following two steps:

1. Subsample the signal on a graph by keeping only signal values on the
vertices n ∈ E , while not altering the original graph topology,

2. Upsample the graph signal by setting the signal values for the vertices
n /∈ E to zero.

This combined subsampling-upsampling operation produces a graph signal

f(n) =
1

2

(
1 + (−1)βE(n)

)
x(n),

where

βE(n) =

{
0, if n ∈ E
1, if n ∈ H.

The values of the resulting graph signal, f(n), are therefore f(n) = x(n) if
n ∈ E and f(n) = 0 elsewhere.

The vector form of the subsamped-upsampled graph signal, f(n), which
comprises all n ∈ V, is given by

f =
1

2
(x + JEx) =

1

2
(I + JE)x, (55)

where JE = diag((−1)βE(n)), n ∈ V.
The focus of our analysis will be on the two-channel wavelet filter bank on

a graph, shown in Fig. 32. As in the classical wavelet analysis framework for
temporary signals, such a filter bank provides decomposition of a graph signal
into the corresponding low-pass (smooth) and high-pass (fast-varying) con-
stituents. The analysis side (left part of the system in Fig. 32) consists of two
channels with filters characterized by the vertex domain operators HL(L) and
HH(L), with the corresponding spectral domain operators HL(Λ) and HH(Λ).
The operator HL(L) acts as a low-pass filter, transferring the low-pass compo-
nents of the graph signal, while the operator HH(L) does the opposite, acting
as a high-pass filter. The low-pass filter, HL(H), is followed by a downsampling
operator which keeps only the graph signal values, x, at the vertices n ∈ E .
Similarly, the high-pass filtering with the operator HH(L), is subsequently fol-
lowed by a downsampling to the vertices n ∈ H. These operations are crucial
to alter the scale at which the graph signal is processed.

The synthesis side (right part in Fig. 32), comprises the complementary
upsampling and filtering operations, aiming to perform the graph signal re-
construction based on the upsampled versions, 1

2 (I + JE)HL(L)x and 1
2 (I +

JH)HH(L)x, of signals obtained on the filter bank analysis side. Therefore,

Introduction to Graph Signal Processing 63

upon performing the upsampling of these signals onto the original set of ver-
tices, V, by adding zeros to the complementary sets of vertices, filtering is per-
formed by adequate low-pass, GL(L), and high-pass, GH(L), filters, to replace
the zeros with meaningful values, as required for a successful reconstruction of
the original signal. As in the classical wavelet analysis, to achieve the perfect
(distortion-free) reconstruction it is necessary to conveniently design the anal-
ysis filters, HL(L) and HH(L), and the synthesis filters, GL(L) and GH(L),
as well as to determine adequate downsampling and upsampling operators.

It will be shown that the spectral folding phenomenon, characterized by
the specific spectral symmetry in the case of bipartite graphs, can be used
to form the basis for the two-channel filter bank framework discussed in this
Section.

The eigenvalues and eigenvectors of the normalized Laplacian of a bipartite
graph, with the disjoint sets of vertices E and H, satisfy the relation, referred
to as the graph spectrum folding, given by

λk = 2− λN−k (56)

uk =

[
uE
uH

]
and uN−k =

[
uE
−uH

]
, (57)

where uk designates the k-th eigenvector of a bipartite graph, uE is its part
indexed on the first set of vertices, E , while uH is the part of the eigenvector
uk indexed on the second set of vertices, H.

In order to prove this property, we shall write the adjacency and the nor-
malized Laplacian matrices of an undirected bipartite graph in their block
forms

A =

[
0 AEH

AT
EH 0

]
and LN =

[
I LEH

LTEH I

]
.

The eigenvalue relation, LNuk = λkuk, can now be evaluated as

LNuk =

[
uE + LEHuH
LTEHuE + uH

]
= λk

[
uE
uH

]
.

From there, we have uE+LEHuH = λkuE and LTEHuE+uH = λkuH, resulting
in LEHuH = (λk − 1)uE and LTEHuE = (λk − 1)uH, to finally yield

LN

[
uE
−uH

]
= (2− λk)

[
uE
−uH

]
.

This completes the proof.
Since for the graph Laplacian λ0 = 0 always holds (see the property L1),

from λk = 2 − λN−k in (56), it then follows that the largest eigenvalue is
λN = 2, which also proves the property L7 for a bipartite graph.

Consider a graph signal, x, and the filter-bank as in Fig. 32. If the graph
signal, x, passes through a low-pass analysis filter, HL(L), the output signal is
HL(L)x. According to (55), the downsampled-upsampled form of the output

64 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

H L(Λ)

2

↓

x

X

HH(Λ)

2

↓

G L(Λ)

2

↑

G H(Λ)

2

↑

y

Y
+

Fig. 32 Principle of a filter bank for a graph signal.

signal, HL(L)x, is given by 1
2 (I+JE)HL(L)x. After the syntheses filter, GL(L),

the graph signal output becomes

fL =
1

2
GL(L)(I + JE)HL(L)x. (58)

The same holds for the high-pass part

fH =
1

2
GH(L)(I + JH)HH(L)x, (59)

where JH = −JE = diag((−1)1−βE(n)) and

JH + JE = 0. (60)

The overall output is a sum of these two signals, as illustrated in Fig. 32, which
after rearranging of terms gives

y = fL + fH =
1

2
(GL(L)HL(L) +GH(L)HH(L))x+

1

2
(GL(L)JEHL(L) +GH(L)JHHH(L))x. (61)

The perfect reconstruction condition, y = x, is then achieved if

GL(L)HL(L) +GH(L)HH(L) = 2I, (62)

GL(L)JEHL(L)−GH(L)JEHH(L) = 0. (63)

Spectral solution. For the spectral representation of the filter-bank signals
in the domain of Laplacian basis functions, we will use the decomposition of
the graph Laplacian in the form

F = UT f =
1

2
(UTx + UTJEx) =

1

2
(X + X(alias)), (64)

where X(alias) = UTJEx is the aliasing spectral component.

Introduction to Graph Signal Processing 65

In the case of bipartite graphs, the matrix operator UTJE produces the
transformation matrix UT with reversed (left-right flipped) order of eigenvec-
tors. This is obvious from (57), since

UTJE =
[
u0 u1 . . . uN−1

]T
JE

=

[
u0E u1E uN−1E
−u0H −u1H · · · −uN−1H

]T
=
[
uN−1 uN−2 . . . u0

]T
= UT

LR

where

uk =

[
ukE
ukH

]
, uN−1−k =

[
ukE
−ukH

]
, k = 0, 1, . . . N − 1,

and
ULR =

[
uN−1 uN−2 . . . u0

]
is a left-right flipped version of the eigenvector matrix

U =
[
u0 u1 . . . uN−1

]
.

The element-wise form of equation (64) is given by

F (k) =
1

2
(X(k) +X(N − 1− k)).

For bipartite graphs and the normalized graph Laplacian, we can write

F (λk) =
1

2
(X(λk) +X(2− λk)).

The second term in F (λk) represents an aliasing component of the GDFT of
the original signal.

The spectral representation of (62) is obtained with a left-multiplication
by UT and a right-multiplication by U,

UTGL(L)UUTHL(L)U + UTGH(L)UUTHH(L)U = 2I,

having in mind that we can add UTU = UUT = I between GL(L) and HL(L),
and between GH(L) and HH(L). Using the spectral domain definition of the
transfer functions, UTHL(L)U = HL(Λ), we get the spectral domain form of
the reconstruction condition (62) as

GL(Λ)HL(Λ) +GH(Λ)HH(Λ) = 2I. (65)

For the aliasing part in equation (63), the left-multiplication is performed by
UT , while the right-multiplication is done by UT

LR. The first term in (63) is
then of the form

UTGL(L)UUTJEHL(L)ULR = UTGL(L)UUT
LRHL(L)ULR

= GL(Λ)H
(R)
L (Λ), (66)

66 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

since UTJE = UT
LR and UT

LRULR = I. The term

H
(R)
L (Λ) = UT

LRHL(L)ULR = HL(2I−Λ)

is just a reversed order version of the diagonal matrix HL(Λ), with diagonal
elements HL(λN−1−k) = HL(2− λk) instead of HL(λk).

The same holds for the second term in (63) which is equal toGH(L)JHHH(L),
yielding the final spectral form of the aliasing condition in (63) as

GL(Λ)HL(2I−Λ)−GH(Λ)HH(2I−Λ) = 0. (67)

An element-wise solution to the system in (62)-(63), for bipartite graphs and
the normalized graph Laplacian, according to (65) and (67), reduces to

GL(λk)HL(λk) +GH(λk)HH(λk) = 2, (68)

GL(λk)HL(2− λk)−GH(λk)HH(2− λk) = 0. (69)

A quadratic mirror filter solution would be such that for the designed
transfer function of the low-pass analysis filter, HL(λ), the other filters are

GL(λ) = HL(λ),

HH(λ) = HL(2− λ),

GH(λ) = HH(λ) = HL(2− λ). (70)

For this solution, the design equation is given by

H2
L(λ) +H2

L(2− λ) = 2, (71)

while the aliasing cancellation condition, (69), is always satisfied.
An example of such a system would be an ideal low-pass filter, defined by

HL(λ) =
√

2 for λ < 1 and HL(λ) = 0 elsewhere. Since HH(λ) = HL(2 − λ)
holds for systems on bipartite graphs, this satisfies the reconstruction condi-
tion. For the vertex domain realization, an approximation of the ideal filter
with a finite neighborhood filtering relation would be required.

Consider a simple form of the low-pass system

H2
L(λ) = 2− λ,

which satisfies the design equation, H2
L(λ) + H2

L(2 − λ) = 2. It also satisfies
the condition that its form is of low-pass type for the normalized Laplacian
of bipartite graphs, H2

L(λ0) = 2 − λ0 = 2, since λ0 = 0, and H2
L(λmax) =

2− λmax = 0, as λmax = 2. The vertex domain system operators which satisfy
all four quadratic mirror analysis and synthesis filters in (70), are

HL(Λ) =
√

2I−Λ, GL(Λ) = HL(Λ) =
√

2I−Λ,

HH(Λ) = HL(2I−Λ) =
√

Λ, GH(Λ) = HH(Λ) =
√

Λ.

Introduction to Graph Signal Processing 67

(a) (b)

Fig. 33 Bipartite graph for the Haar wavelet transform with N = 16 vertices. (a) Vertices
in yellow are used for the low-pass part of the signal and correspond to the set E, while the
vertices in gray belong to the set H. This is the highest two-vertex resolution level for the
Haar wavelet. (b) Graph for a four-vertex resolution level in the Haar wavelet.

The spectral domain filtering form for the low-pass part of graph signal is then
obtained from (58), as

FL = UT fL =
1

2
UTGL(L)(I + JE)HL(L)x

=
1

2
UTGL(L)UUT (I + JE)HL(L)ULRUT

LRUX

=
1

2
GL(Λ)HL(Λ)X +

1

2
GL(Λ)HL(2I−Λ)XUD

since UTU = I, UT
LRULR = I, UTJE = UT

LR, UT
LRU = ILR, and ILRX =

XUD, where ILR is an anti-diagonal (backward) identity matrix, and XUD is
the GDFT vector, X, with elements flipped upside-down.

The same holds for the high-pass part in (59), to yield

FH =
1

2
UTGH(L)(I + JH)HH(L)x

=
1

2
GH(Λ)HH(Λ)X− 1

2
GH(Λ)HH(2I−Λ)XUD

and

FL + FH = X.

Therefore, after the one-step filter-bank based decomposition on a bipartite
graph, we have a new low-pass signal, fL, for which the nonzero values are at
the vertices in E , and a high-pass signal, fH , with nonzero values only on H.
Note that the high-pass operator on the graph signal is the graph Laplacian,
L, while the low-pass operator is 2I− L, which easily reduces to |L|, for the
normalized graph Laplacian used here.

Another simple transfer function that satisfies the design equation (71) is
HL(λ) =

√
2 cos(πλ/4). A similar analysis can also be done for this transfer

function and other functions defined by (70).

68 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

The considered transfer functionsHL(λ) =
√

2− λ andHL(λ) =
√

2 cos(πλ/4)
have several disadvantages, the most important being that they are not suf-
ficiently smooth in the spectral domain at the boundary interval points [47].
In addition, although the graph Laplacian, L, is commonly sparse (with a
small number of nonzero elements in large graphs), the transfer function form
HL(L) =

√
2I− L is not sparse. This is the reason to use other forms which

are sufficiently smooth toward the boundary points, along with their poly-
nomial approximations, HL(Λ) = c0Λ + c1Λ

2 + · · · + cM−1Λ
M−1, with the

coefficients c0, c1, . . . , cM−1, that approximate HL(λ) and HH(λ) = HL(2−λ)
for each λ = λk, k = 0, 1, . . . , N − 1.

5 Time-Varying Signals on Graphs

If we assume that the signal on graph changes in time at each vertex, then
we have a signal xp(n) where n indicates the vertex index and p corresponds
to the discrete-time index. If the signal sampling in time is uniform then the
index p corresponds to p∆t time instant.

In general, this kind of data can be considered within the Cartesian product
framework, as shown in Fig. 9. The resulting graph G = (V,B) follows as a
Cartesian product of the given graph G1 = (V1,B1) and a simple line (or
circular) graph G2 = (V2,B2) that corresponds to the classical time-domain
signal processing.

The adjacency matrix of a Cartesian product of two graphs is

A = A1 ⊗ IN2
+ IN1

⊗A2,

where A1 is the adjacency matrix of the given graph G1 and A2 is the adjacency
matrix for the line or circle graph. The numbers of vertices in G1 and G2 are
denoted by N1 and N2.

Next we will consider a simple and important example of a time-varying
signal defined in an iterative way.

5.1 Diffusion on Graph and Low Pass Filtering

Consider the diffusion equation ∂x/∂t = −Lx. Its discrete-time form obtained
by using the backward difference approximation of the partial derivative is

xp+1 − xp = −αLxp+1

or xp+1(I + αL) = xp producing

xp+1 = (I + αL)−1xp.

The forward difference approximation of the diffusion equation results in

xp+1 − xp = −αLxp

Introduction to Graph Signal Processing 69

or

xp+1 = (I− αL)xp.

It is interesting to note that these iterative forms lead to the quadratic
form of graph signal minimization. The signal quadratic form on a graph is
Ex = xLxT , (see Section 3.6). If we want to find its minimum we can use the
steepest descent method. Then the signal value at an instant p is changed in
the opposite direction of the gradient, toward the energy minimum position.
The gradient of quadratic form is ∂Ex/∂xT = 2xL, resulting in the iterative
procedure

xp+1 = xp − αLxp = (I− αL)xp.

This relation can be used for simple and efficient filtering of graph signals
(with the aim to minimize Ex as the measure of the signal smoothness). If we
assume that in one iteration the input graph signal is xp and the output graph
signal is xp+1, then the spectral domain relation of this system is

Xp+1 = (I− αΛ)Xp

or

Xp+1(k) = (1− αλk)Xp(k).

Obviously, the low varying components pass through this system since
(1 − αλk) is close to 1 for small λk, while the high varying components with
larger λk are attenuated. Iterative procedure will converge if |1− αλmax| < 1.
In the stationary case, when

lim
p→∞

Xp+1(k) = lim
p→∞

(1− αλk)p+1X0(k)

all components Xp+1(k) tend to 0 except the constant component Xp+1(0),
since λ0 = 0. This component defines the stationary state (maximally smooth)
solution. In order to avoid this effect, the iteration process can be used in
alternation with

xp+2 = (I + βL)xp+1.

When these two iterative processes are used in a successive order the resulting
system (Taubin’s α− β algorithm) is

xp+2 = (I + βL)(I− αL)xp. (72)

The resulting transfer function in the spectral domain in these two iteration
steps is

H(λk) = (1 + βλk)(1− αλk).

After K iterations the transfer function is

HK(λk) = ((1 + βλk)(1− αλk))K . (73)

For some values of α < β, this system can be a good and very simple approx-
imation of a graph low-pass filter.

70 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

λk

0 2 4 6

0

0.5

1

1.5

H(λk) K = 5

λk

0 2 4 6

0

0.5

1

1.5

H(λk) K = 1

λk

0 2 4 6

0

0.5

1

1.5

H(λk) K = 10

λk

0 2 4 6

0

0.5

1

1.5

H(λk) K = 20

Fig. 34 Filter approximation in the spectral domain for various number of iterations K.
The Graph from Fig. 3 and its Laplacian are considered.

The Graph from Fig. 3 and its Laplacian are considered in this example.
For the parameters α = 0.1545, β = 0.1875, the spectral transfer function
(73) is presented in Fig. 34 for the considered graph filter. The results for the
following numbers of iterations K = 1, 5, 10, 20 are shown. We have filtered
the noisy signal from Fig. 26(b). The initial noisy signal is denoted as x0.
Then x1 = (I − 0.1545L)x0 is calculated with the Laplacian defined by (6).
Next x2 = (I + 0.1875L)x1 is obtained. In the third and fourth iteration, the
signal values x3 = (I − 0.1545L)x2 and x4 = (I + 0.1875L)x3 are calculated.
This two-step iteration cycle is repeated K = 20 times. The resulting signal
is almost the same as an output of the ideal low-pass filter presented in Fig.
26(c).

6 Random Graph Signals

In this section we will present basic definitions of the random signals on graphs
[59–64]. The conditions for wide-sense stationarity (WSS) will be considered.
The stationarity is related to the signal shift on a graph. We have presented
two approaches to define the shift on a graph (using the adjacency matrix or
Laplacian and their spectral decompositions). The main problem is that the

shift on a graph does not preserve energy (isometry property) ‖Ax‖22 6= ‖x‖
2
2 .

In order to define an equivalent of the WSS on graphs (GWSS) other properties
of the WSS signals in the classical time domain processing are used. This is
the reason for providing a short review of the classic signal processing WSS
definitions and properties first.

Introduction to Graph Signal Processing 71

A real-valued random signal x(n) is WSS if its mean value is time invariant,
µx(n) = E{x(n)} = µx and its autocorrelation function is shift invariant
rx(n, n−m) = E{x(n)x(n−m)} = rx(m).

A WSS random time-domain signal x(n) can be considered as an output
of a liner shift invariant system with impulse response h(n) to a white noise
input ε(n) with rε(n,m) = δ(n−m).

In the time domain, the eigenvectors uk of the shift operator y(n) = x(n−1)
are the DFT basis functions, A = UΛUH . For a random signal, its DFT
X = UHx is a random signal with the autocorrelation matrix Px = E{XXH},
where UH is the DFT transformation matrix. For WSS signals, the matrix Px

is diagonal with the power spectral density (PSD) values

px(k) = DFT{rx(n)} = E{|X(k)|2}

on diagonal.
For WSS random signals Rx = E{xxH} is diagonalizable with the same

transform matrix U as in X = UHx,

Rx = E{xxH} = E{UX(UX)H} = UE{XXH}UH = UPxU
H (74)

since Px is a diagonal matrix for WSS signals.
These properties of the WSS signals in classical analysis will be used for

the graph signals next.

6.1 Adjacency Matrix Based Definition

Consider a white noise signal ε on a graph with samples ε(n). A signal x on
the graph is graph wide sense stationary (GWSS) if it can be considered an

output of a linear and shift invariant graph system H(A) =
∑M−1
m=0 hmAm to

the white noise input ε,

x = H(A)ε.

The autocorrelation matrix Rx = E{xxH} of a GWSS signal is diagonal-
izable with the matrix of the adjacency matrix A eigenvectors

A = UΛUH (75)

E{xxH} = UPxU
H , (76)

where Px is a diagonal matrix. The values on the diagonal of matrix Px

denoted by px represent the PSD of a graph signal px(k) = E{|X(k)|2}.
In order to prove this property for a signal x = H(A)ε, consider

Rx = E{xxH} = E{H(A)ε(H(A)ε)H} = H(A)HH(A).

Using H(A) = UTH(Λ)U we get

Rx = UT |H(Λ)|2U,

72 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

what concludes the proof. The diagonal matrix is

Px = |H(Λ)|2,

with the PSD of this signal

px(k) = |H(λk)|2.

Periodogram on the graph can be estimated using K realizations of the
random signal denoted by xi. It is equal to the diagonal elements of matrix

P̂x =
1

K

K∑
i=1

XiX
T
i = UT 1

K

K∑
i=1

(xix
T
i)U.

Consider a system on a graph with spectral domain transfer function H(Λ).
Assume that the input signal to this system is GWSS with PSD px(k). The
PSD of the output graph signal y(n) is

py(k) = |H(λk)|2px(k).

Wienner filter on a graph

Consider a real-valued signal s as an input to a linear shift-invariant system
on a graph, whose noisy output is

x =

M−1∑
m=0

hmAms + ε.

In the spectral domain the system is described by

X = H(Λ)S + E.

Assume that the signal and the noise are statistically independent. The noise
is a zero-mean random signal. The aim is to find a filter G(Λ) such that
Y = G(Λ)X estimates S in the mean squared sense. We will minimize

e2 = E{‖S−Y‖22} = E{‖S−G(Λ)X‖22}.

The zero value of the derivative with respect to the elements of G(Λ) produces

2E{(S−G(Λ)X)XT } = 0.

Since all matrices are diagonal we may use symbolic matrix division resulting
in

G(Λ) =
E{SXT }
E{XXT }

=
E{S(H(Λ)S + E)T }

E{(H(Λ)S + E)(H(Λ)S + E)T }
=

H(Λ)Ps

H2(Λ)Ps + Pε

or

G(λk) =
H(λk)ps(k)

H2(λk)ps(k) + E(k)
.

In a non-noisy case, E(k) = 0 for all k, the inverse filter follows, as expected.

Introduction to Graph Signal Processing 73

6.2 Spectral Domain Shift Based Definition of GWSS

This approach is based on the shift on a graph defined using the graph filter
response

Tm{h(n)} = hm(n) =

N−1∑
k=0

H(λk)uk(m)uk(n). (77)

The matrix form of this relation is

Th = H(L) =

M−1∑
m=0

hmLm = UH(Λ)UH , (78)

where Tm{h(n)} are the elements of Th.

Note that the filter response function is well localized on a graph. If we
use, for example, the M − 1 neighborhood of the vertex n in filtering defined
by H(Λ), then only the region within this neighborhood is used in the cal-
culation. The localization operator acts in the spectral domain and associates
the corresponding shift to the vertex domain.

The definition of the GWSS within this framework reads: The signal is
GWSS if its autocorrelation function is invariant with respect to the shift
Tm{rx(n)}

rx(m) = Tm{rx(n)}.

For a GWSS signal the autocorrelation matrix Rx is diagonalizable with
the matrix of eigenvectors of the Laplacian L

L = UΛUT . (79)

For the basic autocorrelation we can assume that

Rx = UPx(Λ)UH

Tm{rx(n)} =

N−1∑
k=0

px(λk)uk(m)uk(n)

where

Px(Λ) = URxU
H

is a diagonal matrix.

Finally, we will mention one more approach based on the shift operator
defined as Tm = exp(jπ

√
L/ρ). It maps the eigenvalues of the Laplacian L on

a unit circle, preserving the isometry.

74 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

7 Examples of Graphs Topologies

In the previous section, we have assumed that the graph is defined and the
signal processing on the given graph topology is considered. However, the
graph topology is very often a part of the processing problem rather than it
being given within the problem definition. In this case, we may assume that
the vertices are given, while the edges and their weights are part of the problem
solution [65–82].

In general, we will consider three possible scenarios for the graph edges:

– The first group of problems is related to the geometry of the vertex posi-
tions. In the cases of various sensing setups (temperature, pressure, trans-
portation,...) the locations of the sensing positions (vertices) are known
and the vertex distances play a crucial role in data relations.

– The second group consists of problems where the relation among the sens-
ing positions are physically well defined. Examples of such problems are
electric circuit networks, linear heat transfer, social and computer net-
works, spring-mass systems, In these cases the edge weights are well
defined based on the physics of the considered problem.

– In the third group we will include the problems where the data similarity
plays a crucial role for the underlying graph topology. Various approaches
are used to define the data similarity.

7.1 Geometric Graph Topologies

For a graph corresponding to a geometric network, the edge weights are related
to the vertices distance. Consider vertices n and m whose positions in space
are defined by position vectors rn and rm. The Euclidean distance between
these two vertices is

rnm = distance(m,n) = ‖rn − rm‖2 .

A common way to define the graph weights in such networks is

Wnm =

{
e−r

2
nm/τ

2

for rnm ≤ κ
0 for rnm > κ,

(80)

where rnm is the Euclidian distance between the vertices n and m, and τ and
κ are constants. The weights tend to 1 for close vertices. The weights are 0 or
close to 0 for distant vertices.

The basic idea behind this definition of the edge weights is the assumption
that the signal value measured at vertex n is similar to signal values measured
at the neighboring vertices. According to this definition, the processing of a
signal at vertex n should include close vertices with higher weights (close to 1)
while the signal values sensed at farther vertices would be less relevant. They
are included with smaller weighting coefficients or not included at all.

Introduction to Graph Signal Processing 75

(a) (b)

(c) (d)

Fig. 35 Minnesota roadmap graph: (a) simulated signal, (b) noisy signal, (c) low-pass
filtering, and (d) iterative filtering example.

While the Gaussian function, used in (80), is the most appropriate in many
applications, other forms to penalize signal values at the vertices far from the
considered vertex can be used. Examples of such functions are

Wnm =

{
e−rnm/τ for rnm ≤ κ
0 for rnm > κ

(81)

or

Wnm =

{
1/rnm for rnm ≤ κ
0 for rnm > κ.

(82)

The simplest form of the weighting coefficients would be

Wnm =

{
1 for rnm ≤ κ
0 for rnm > κ.

(83)

This form would correspond to an unweighted graph with W = A.
As an example, consider the Minnesota roadmap graph. The edges of the

given adjacency matrix are weighted according to distances using (81) with
τ = 25km and κ is not used since the connectivity is already determined by
the given adjacency matrix.

A simulated signal and its noisy version are given in Fig. 35 (a) and (b).
The noisy signal is filtered by low-pass filter in the Laplacian spectral domain

76 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

using the 50 lowest changing spectral components. Filtering is also done using
the two-step iterative procedure (72) with 200 iterations using α = 0.1 and
β = 0.15. Filtered signals are presented in Fig. 35 (c) and (d). The input SNR
is 8.7dB and the output SNR of 23.0dB and 23.3dB is achieved.

A more general form of smoothing would be obtained using weights with
appropriate low-pass filter coefficients in the adjacency or Laplacian spectrum,
like for example the one presented by (15).

In classical signal analysis, using

distance(m,n) = rnm = ‖n−m‖2 = |n−m|,

and Wnm = e−r
2
nm/τ

2

for rnm ≤ κ and Wnm = 0 for rnm > κ, the value

y = A0x + A1x

produces a Gaussian weighted mean, localized around the vertex (time instant)
n (moving average). For example, for τ = 4 and κ = 8 it would produce the
time domain wighted moving average

y(n) = x(n) +
∑
m

Wnmx(n−m) =

8∑
m=−8

e−
(n−(n−m))2

16 x(n−m).

Unweighted moving average within −κ ≤ m ≤ κ would be obtained with a
large τ . If the Euclidean distance between pixels is used in an image, we would
get a moving average filtered image with a radial Gaussian window.

7.2 Topology Based on the Signal Similarity

In the previous section the graph weights are defined assuming that the geo-
metric distance of vertices, where the signal is sensed, is a good and reliable
indicator of the data similarity. That may be the case in some applications
like, for example, the measurements of atmospheric temperature and pressure
when the terrain configuration has no influence to the similarity of measured
data. However, in general the geometric distance of vertices may not be a good
indicator of data similarity.

In some applications like, for example, image processing, the signal value
by themselves can be used as an indicator of the signal similarity, often in
combination with the pixel/vertex distances. If the image intensity values at
pixels indexed by n and m are denoted by x(n) and x(m) then the difference
of intensities is defined by

Intensity distance(m,n) = snm = |x(n)− x(m)|.

Then the weights can be defined as

Wnm =

{
e−(x(n)−x(m))2/τ2

for rnm ≤ κ
0 for rnm > κ

Introduction to Graph Signal Processing 77

Fig. 36 Original and noisy images (left) and filtered images (right) using frequency domain
low-pass filter and iterative vertex domain filtering. The image is 8bit grayscale. Edge weights
are calculated with κ =

√
2 and τ = 20. Low-pass filter in frequency domain is done using an

ideal low-pass filter with 10 lowest spectral components. Iterative filtering (72) is performed
with 200 iterations using α = 0.1 and β = 0.15.

where rnm is a geometric distance of the considered pixels/vertices.

An example with these kinds of weights applied to simple image graph
filtering is presented in Fig. 36.

In some applications we are able to collect more than one data set for a
given set of sensing points/vertices. In that case a more reliable measure of
data similarity can be defined. Assume that at each vertex n = 0, 1, . . . , N − 1
we have acquired P signal values denoted by xp(n). This data set may be a
set of multivariate data or signal measurements in a sequence. Then a good
similarity measure function for real-valued signal at vertices n and m is

s2nm =

∑P
p=1

(
xp(n)− xp(m)

)2√∑P
p=1 x

2
p(n)

∑P
p=1 x

2
p(m)

.

The graph weights can again be defined using any of the previous penalty
functions, for example,

Wnm =

{
e−s

2
nm/τ

2

for rnm ≤ κ
0 for rnm > κ.

The function of the form

Wnm =

{
e−snm/τ for rnm ≤ κ
0 for rnm > κ.

is also used quite often.

As an example assume that xp(n) in P observations, p = 1, 2, . . . , P at N
vertices n = 0, 1, . . . , N − 1 are zero-mean random noises with equal variances
σ2
x = 1. Then

s2n,m =

∑P
p=1

(
xp(n)− xp(m)

)2√∑P
p=1 x

2
p(n)

∑P
p=1 x

2
p(m)

= 2(1−Rx(n,m))

78 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

where

Rx(n,m) =
1

P

P∑
p=1

xp(n)xp(m)

is the normalized autocorrelation function.
The same structure can be used for image classification, handwriting recog-

nition or in establishing block similarity in large images. In these cases the
distance between image/block n and image/block m is equal to

snm = Image/Block distance(m,n) = ‖xn − xm‖F ,

where ‖x‖F is the Frobenius norm of an image or block matrix x (that is, the
square root of the sum of all its squared elements).

7.3 Correlation Based Graph Laplacian learning

Consider a graph signal with P independent observations. Denote the observed
signal at vertex n and observation p as xp(n). The column vector with graph
signal samples from the p-th observation is denoted by xp. All observations of
this graph signal can be arranged into an N × P matrix

XP =
[

x1 x2 . . . xP
]
.

Denote the n-th row of this matrix as a row vector yn

yn =
[
x1(n− 1) x2(n− 1) . . . xP (n− 1)

]
Then the matrix of observations can also be written as

XP =

y1

y2

...
yN

 .
The correlation coefficients estimated by averaging over the observations

are

Rx(n,m) =
1

P

P∑
p=1

xp(n)xp(m) =
1

P
ynyTm

or in a matrix form

Rx =
1

P
XPXT

P .

Since the correlation includes signal from all vertices, this matrix accumulates
all correlations obtained through all possible walks from the current vertex to
any other vertex. It means that the correlation coefficient for two vertices will
produce misleading results if there exit one or more other vertices where the
signal is strongly related to both of the considered vertices. That is the rea-
son why the correlation overestimates the direct connections. It is not a good

Introduction to Graph Signal Processing 79

parameter for establishing direct links (edges) between vertices. Additional
conditions should be imposed on the correlation matrix or other statistical pa-
rameters should be be used for edge weights estimation. Next we will present
a method for the connectivity (edge weights) estimation based on the correla-
tions, imposing the sparsity constraint on the weight coefficients.

Consider the vertex 0 with n = 1, eq. (7.3). We can estimate the edge
weights from this vertex to all other vertices β1m, m = 2, 3, . . . , N by mini-
mizing

J1 = ‖y1 −
N∑
m=2

β1mym‖22 + λ

N∑
m=2

|β1m|

The first term promotes the correlation between the observations y1 at the
considered vertex with n = 1 and the observations ym at all other vertices,m =
2, 3, . . . , N . The second term promotes sparsity in coefficients β1m (number of
nonzero coefficients β1m). Parameter λ balances these two conditions. Full
matrix form of the previous cost function is

J1 = ‖yT1 −YT
1 β1‖22 + λ‖β1‖1

where Y1 is obtained from the matrix XP with the first row being removed
and

β1 =
[
β12 β13 . . . β1N

]T
.

This problem can be solved using commonly defined LASSO minimization as
β1 = lasso(YT

1 ,y
T
1 , λ), see the Appendix.

The minimization is repeated for all vertices with n = 1, 2, . . . , N

Jn = ‖yTn −YT
nβn‖22 + λ‖βn‖1.

Since this procedure does not guarantee symmetry βnm = βmn the edge
weights could be calculated as Wnm =

√
βnmβmn.

As an example, consider the graph from Fig. 3 and P = 10000 observations.
Observations are simulated by assuming white Gaussian external sources with
zero-mean and variance 1 located at two randomly chosen vertices (see Ap-
pendix 8.1 and Fig. 47). An N × P matrix of signal XP is formed. Using its
rows the vector yn and matrix Yn are obtained. The matrix of coefficients
βnm follows from lasso(YT

n ,y
T
n , λ) with n = 1, 2, ..., 8 and λ = 1.7 as

β =

0 0.24 0 0 0 0 0 0.36
0.55 0 0.86 0.22 0 0 0 0.18

0 0.31 0 0.13 0 0 0 0
0 0.19 0 0 0.28 0.18 0 0
0 0.01 0 0.39 0 0.42 0.43 0.36
0 0 0 0.18 0.19 0 0.44 0
0 0 0 0 0.23 0.30 0 0

0.32 0.16 0 0 0.21 0 0 0

.

The groundtruth and estimated weights are presented in Fig. 37.
The same experiment is repeated for the unweighted graph from Fig. 2(a).

The result is presented in Fig. 38. In this case the obtained values of β are
used to decide weather Amn = 1 or Amn = 0.

80 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Fig. 37 Groundtruth (left) and estimated weighting matrix (right). The axis index n cor-
responds to the vertex n− 1.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Fig. 38 Groundtruth (left) and estimated adjacency matrix (right) for unweighted graph.

7.4 Graph Laplacian Learning with the Smoothness Constraint

Consider a set of noisy signal values xp(n) in P observations, p = 1, 2, . . . , P
on N vertices n = 0, 1 . . . , N − 1 of an undirected graph. The goal is to get
the graph connectivity (its Laplacian). To this aim we will calculate a signal
yp(n) that is close to the observations xp(n) under the condition that yp(n)
is also as smooth as possible on a graph. This formulation is similar to the
one described and explained in Section 3.12. The signal yp(n) can be found by
minimizing the cost function

Jp =
1

2
‖yp − xp‖22 + αyTp Lyp, for p = 1, 2, . . . , P.

The difference here is that the Laplacian (graph edges and their weights) is
unknown as well. It has to be determined along with the output signal yp.

Since we have P observations we can form N × P matrices

XP =
[

x1 x2 . . . xP
]

and YP =
[

y1 y2 . . . yP
]
.

The cost function for the whole set of observations is

J =

P∑
p=1

Jp =
1

2
‖YP −XP ‖2F + αTrace{YT

PLYP }+ β‖L‖2F ,

Introduction to Graph Signal Processing 81

where Trace{YT
PLYP } is the matrix form of the term yTp Lyp and the con-

straint about the energy of Laplacian ‖L‖2F =
∑
n

∑
m L

2
mn is added in order

to keep its values as low as possible.
It has been assumed that the the Laplacian is normalized. In order to avoid

trivial solutions, the condition

Trace{L} = N

is used as well, along with

Lmn = Lnm ≤ 0 for n 6= m, and

N−1∑
m=0

Lnm = 0.

The problem is jointly convex with respect to the signal and Laplacian. It
is solved in an iterative two-step procedure:

(1) Assume that
YP = XP .

(2) Estimate Laplacian L by minimizing

J1 = αTrace{YT
PLYP }+ ‖L‖2F

with given conditions for the Laplacian form.
(3) For the obtained Laplacian in Step (2), the signal YP is calculated

minimizing

J2 =
1

2
‖YP −XP ‖2F + αTrace{YT

PLYP }.

Steps (2) and (3) are iteratively repeated. Step (3) has a closed form solu-
tion as presented in Section 3.12.

7.5 Generalized Laplacian Learning

The generalized Laplacian Q is defined as

Q = αI−N,

where N is a nonnegative symmetric matrix and Q is a symetric positive
semidefinite matrix. Any generalized Laplacian can be written as a sum of a
standard Laplacian L and a diagonal matrix P

Q = L + P.

The generalized Laplacian allows self-loops on the vertices. They are defined
by P.

Consider a set of noisy signals xp(n) and their P observations, p = 1, 2, . . . , P
on N vertices n = 0, 1 . . . , N−1 of an undirected graph. The main goal is again
to get the graph connectivity (its Laplacian) from the condition that the ob-
served signal is as smooth as possible on the graph defined by a generalized

82 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

Laplacian Q. The cost function to achieve this goal is defined by the signal
smoothness function

Jp = xTp Qxp, for p = 1, 2, . . . , P.

The correlation matrix of the considered observations is Rx = E{xxT } ≈
1
P

∑P
p=1 xpx

T
p . The smoothness promoting cost function for all data is

J =

P∑
p=1

xTp Qxp = Trace{XPQXT
P } = Trace{RxQ}.

Next the conditions for the generalized Laplacian should be added (otherwise
a trivial solution would be obtained). For symmetric positive definite matrices,
all eigenvalues must be positive. Since the product of the eigenvalues is equal
to det(Q), this condition is included by adding the term log(det(Q)) to the
cost function. Then the cost function is of the form

J = log(det(Q)) + Trace{RxQ}.

The interpretation of this cost function within the Gaussian random signal
and maximum likelihood estimate is given in Section 7.9. This cost function
minimizes the logarithm of the joint probability density function of a graph
signal xp under the Gaussianity assumption,

P (xp) ∼ det(Q) exp (−1

2
xpQxp).

Minimization of the cost function J with respect to Q, with ∂J/∂Q = 0,
produces

Q = R−1x .

Here we have used the relation between the trace of a positive semidefinite
matrix and the trace of its eigenvalue matrix

log(det(Q)) =

N∑
i=k

log(λk) = Trace(log(Λ)) = Trace(log(Q)).

The solution of the previous equation Q = R−1x , can be used as the gener-
alized Laplacian estimate and the graph is obtained.

The weighting matrix corresponding to the inverse correlation matrix Rx,
with positive and small off diagonal values set to zero is shown in Fig. 39
(right). Here we consider the graph from Fig. 3 and P = 10000 observations.
The observations are simulated by assuming white Gaussian external sources
with zero-mean and variance 1 located at two randomly chosen vertices (as
described in more details in Section 7.3).

The correlation function matrix Rx may be singular. It is always singular
when N > P . Also, this form will not produce a matrix satisfying the condi-
tions to be a generalized Laplacian. The inverse correlation function may have

Introduction to Graph Signal Processing 83

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Fig. 39 Groundtruth (left) and weighting matrix estimated using inverse correlation (right).
The axis index n corresponds to the vertex n− 1.

positive off-diagonal values. Therefore the previous cost function should have
additional constraints. Here we will present two of them.

In the first approach, a term corresponding to the Lagrange multipliers B
is added so that these values do not change the diagonal elements of Q and
provide that all

Qmn = Qnm ≤ 0

for n 6= m, with Bnm = Bmn ≥ 0. The diagonal elements of matrix B are
Bnn = 0. Finally, BnmQnm = 0 for all n and m. In this case the minimization
solution for the generalized Laplacian is obtained as

Q = (Rx + B)−1

using the cost function

J = log(det(Q)) + Trace{RxQ}+ Trace{BQ}.

Another possible approach corresponds to the classical reconstruction for-
mulation of a sparse signal. In this case the sparsity constraint on the gener-
alized Laplacian is added. The cost function is defined as

J = log(det(Q)) + Trace{RxQ}+ β‖Q‖1.

This minimization problem can be solved using various methods. One of them
is the graphical LASSO algorithm, an extension of the standard LASSO al-
gorithm to the graph problems (see Appendix). For the same signal as in the
previous examples, the weighting matrix obtained using the graphical LASSO,
with positive and small values set to zero, is shown in Fig. 40 (right).

7.6 Graph Topology with some a Priori Knowledge

Consider a random signal x(n) and its P realizations on a graph. Assume that
a random graph signal is a result of white noise signals ε as external sources

84 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Fig. 40 Groundtruth (left) and weighting matrix estimated using graphical LASSO (right).
The axis index n corresponds to the vertex n− 1.

in each vertex (in the sense as presented in Fig. 42). Then the external source
to the vertex signal relation is

Lx = ε

or E{εεT } = L E{xxT }LT resulting in I = LRxL
T . The solution is

L2 = R−1x or L = R−1/2x .

Assume now that the graph signal is considered with a reference vertex. For
the notation simplicity assume, without loss of generality, that the reference
vertex is denoted by N −1 (the last vertex). Assume also that the value of the
graph signal at this reference vertex is xp(N − 1) = 0 for any p. If this is not
the case then we can achieve this by subtracting xp(N − 1) from each xp(n).
This operation will not change the properties of the graph signal. In this case
the correlation matrix is singular and assumes the form

Rx =

[
RN−1 0

0 0

]
,

where RN−1 is the correlation of the vertices n = 0, 1, . . . , N − 2. Assuming
nonsingular RN−1 the Laplacian can be calculated as

L = R−1/2x =

[√
R−1N−1 a

aT −
∑N−2
m=0 am

]
,

where the column vector a = [a0 a1 . . . aN−2]T elements are added so that

N−2∑
m=0

Lnm + an = 0

holds for each row and column. The matrix square root operation is used.

Introduction to Graph Signal Processing 85

For the graph from Fig. 7 and random graph signal generated using random
white external sources the Laplacian is obtained from

Rx =

2.92 2.91 3.53 2.98 2.50 3.08 3.05 0
2.91 3.78 4.61 4.14 3.55 4.43 4.42 0
3.53 4.61 6.27 5.13 4.27 5.33 5.26 0
2.98 4.14 5.13 5.43 4.71 6.05 6.05 0
2.50 3.55 4.27 4.71 4.52 5.73 6.01 0
3.08 4.43 5.33 6.05 5.73 7.76 7.77 0
3.05 4.42 5.26 6.05 6.01 7.77 8.81 0

0 0 0 0 0 0 0 0

.

This approach can be generalized to any known

H(L)x = ε

or H(L)ε = x. In this case a matrix polynomial equation has to be solved for
the Laplacian.

7.7 Graph Topology Based on the Eigenvectors

Assume that the available observations of a graph signal xp(n) are graph wide
sense stationary (GWSS). A graph signal’s observations xp are GWSS if they
can be considered as the outputs of a linear and shift invariant system H(A)
to the white noise inputs εp, with x = H(A)ε, see Section 6.1. The correlation
matrix of the observed signal can be written as

Rx = UT |H(Λ)|2U,

where U is the matrix of graph eigenvectors L = UTΛU. The autocorrelation
matrix estimation is done using all available observations Rx = E{xxT } ≈
1
P

∑P
p=1 xpx

T
p . From the autocorrelation matrix decomposition we can learn

about the graph eigenvectors. The same holds for the precision matrix Θ =
R−1x since the inverse matrix has the same eigenvectors as the original matrix.

In order to estimate the graph connectivity (estimate its Laplacian or adj-
cency matrix) we can use the autocorrelation matrix eigenvectors. Since we do
not know H(Λ), it will be assumed that the graph is defined by the eigenvalues
that produces the smallest number of edges. This can be done by minimizing
the number of nonzero values in L with the given eigenvectors.

The minimization problem is

min
λk

‖L‖0 subject to L =

N−1∑
k=0

λkuku
T
k .

The convex form of this minimization problem is

min
λk

‖L‖1 subject to L =

N−1∑
k=0

λkuku
T
k .

86 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

0.125

0.25

0.5

0.125

0.25

0.5

1

Fig. 41 Graph whose eigenvectors are the Hadamard transform baisis functions for N = 8
and N = 16.

The convex norm-one based form can produce the same solution as the original
norm-zero form if the Laplacian sparsity is low and satisfies some conditions
(in the sense discussed within Section 4.2).

Since the eigenvectors are obtained from the correlation matrix decompo-
sition, the spectral analysis obtained in this way is related to the principal
value decomposition (PVD), where the signal is decomposed onto the set of
correlation matrix eigenvectors.

For the examples with classical signal processing, we have used the Fourier
analysis. The problem formulation presented in this section can be used to
define a graph such that the spectral analysis on this graph leads to some
other well known transforms. We will illustrate this method on the Hadamard
transform with N = 8 with eigenvectors

U =
1√
8

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

.

If the eigenvalues are found to minimize the number of nonzero elements in
the Laplacian, we get the graphs for N = 8 and N = 16 as shown in Fig. 41.

7.8 Physically Well Defined Graphs

7.8.1 Resistive Electrical Circuits

One of the oldest applications of graph theory in engineering was in electrical
circuits theory. Graph theory based methods for analysis and transformations

Introduction to Graph Signal Processing 87

0

1

2
3

4

5

6
7

i0

i1

i7
i6

i2

i4

i5

i3

0.54

0.14

0.47

0.63 0.35

0.30

0.31

0.31

0.54

0.43

0.13

0.54

0.62

0.54

0.37

Fig. 42 Electric potential x(n) as a signal on an electric circuit graph

of electrical circuits are already part of the classical electrical circuits courses
and textbooks. This approach can directly be applied to other engineering
fields, like heat transfer or mechanical mass strings. It is interesting that some
general information theory problems can be interpreted and solved within
the graph approach to the basic electrical circuits framework. In these cases
the underlying graph topology is well defined and is a part of the problem
statement.

The Laplacian can also be considered within the basic electric circuit the-
ory. Since it can be derived based on the Kirchhoff’s laws, the Laplacian is
also known as the Kirchhoff matrix in electric circuit theory.

Consider a resistive electric circuit. Denote the electric potential in the cir-
cuit vertices (nodes) by x(n). The vertices in an electrical circuit are connected
with edges. The weight of an edge connecting the vertices n and m is defined
by the edge conductance Wnm. The conductances are the reciprocal values to
the edge resistances Wnm = 1/Rnm. The current in the edge from vertex n to
vertex m is equal to

inm =
x(n)− x(m)

Rnm
= Wnm(x(n)− x(m)).

In addition to the edge currents, an external current generator is attached
to each vertex. It can be considered as a source of the signal change in the
vertices. The external current at a vertex n is denoted by in.

The sum of all currents going from a a vertex n, n = 0, 1, . . . , N − 1, must
be 0,

−in +
∑
m

inm = 0.

The current of the external generator in vertex n must be equal to the sum of
all edge currents going from this vertex,

in =
∑
m

Wnm(x(n)− x(m)) = dnx(n)−
∑
m

Wnmx(m),

n = 0, 1, . . . , N − 1,

88 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

where

dn =
∑
m

Wnm =

N−1∑
m=0

Wnm

is the degree of vertex n. The summation over m can be extended to all vertices
m = 0, 1, . . . , N − 1 since Wnm = 0 if there is not an edge between vertices n
and m.

The previous equations can be written in a matrix form as

i = Dx−Wx

or
Lx = i

where L = D−W is the Laplacian of graph.
If the Laplacian matrix is decomposed as L = UΛUT we get ΛUTx =UT i

or
ΛX = I

where X = UTx and I = UT i are GDFT of graph signals x and i.
Components of the spectral transform vector X are such that

λkX(k) = I(k)

for each k.
Signal on an electrical circuit graph can be related to the presented theory

in several ways. For example, potentials on all vertices could be measured with
some measurement noise. In that case, filtering on a graph should be applied.
Another possible case is when the external conditions are imposed, for example
sources are applied to some vertices. We are then interested in potential values
at all vertices. This problem corresponds to the graph signal reconstruction.

7.8.2 Heat Transfer

The same model as in the resistive electrical circuit case can be used for a heat
transfer network. In this case the signal values are the measured temperatures
x(n) = T (n). The heat flux is defined as

qnm = (T (n)− T (m))Cnm = Wnm(x(n)− x(m)),

where Cnm are the heat transfer constants, representing edge weights in the
underlying graph. Then the input heat flux in the vertex n is

qn =
∑
m

Wnm(x(n)− x(m)) = dnx(n)−
N−1∑
m=0

Wnmx(m),

with
q = Lx

Active vertices are those where there is an external heat flux, while the passive
vertices are those where all heat flux coming to a vertex is forwarded to other
vertices through the edges. An example of a heat transfer graph is given in
Fig. 43.

Introduction to Graph Signal Processing 89

0

1

2
3

4

5

6
7q0

q1

q7
q6

q2

q4

q5

q3
0.
54

0
.1
4

0.47

0
.6
3

0.3
5

0.30

0.31

0.31

0
.5
4

0.43

0.
13

0.5
4

0.62
0.5

4

0.
37

Fig. 43 Temperature x(n) = T (n) as a signal on a heat transfer graph

m1 m2 m3 m4

k1 k2 k3

F1 F2 F3 F4

Fig. 44 Spring-mass system

7.8.3 Spring-Mass Systems

A spring mass system is used as a model of a graph and graph signal simu-
lations. Consider a system of N = 4 masses corresponding to the line graph,
Fig. 44. Assume that all displacements and forces are in the direction of the
system line. The displacements x(n) and the forces Fn, according to Hook’s
law in a steady state, are related as

k1(x(1)− x(2)) = F1

k1(x(2)− x(1)) + k2(x(2)− x(3)) = F2

k2(x(3)− x(2)) + k3(x(3)− x(4)) = F3

k3(x(4)− x(3)) = F4

In matrix form
k1 −k1 0 0
−k1 k1 + k2 −k2

0 −k2 k2 + k3 −k3
0 0 −k3 k3

x1
x2
x3
x4

 =

F1

F2

F3

F4

Lx = F

These equations define a weighted graph and its corresponding Laplacian.

The Laplacian is singular matrix. In order to solve this system for unknown
displacements (graph signal) we should introduce a reference vertex with a
fixed position (zero displacement). Then the system Lx = F can be solved.

90 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

BP

Fig. 45 Social network graph example

Fig. 46 Linked pages graph example

7.8.4 Social Networks and Linked Pages

Social networks are also examples of well defined graphs. The vertices are
network members and the edges define their relationships in a network. If two
members are related, corresponding edge weight is 1. In this case weight matrix
is equal to the adjacency matrix. An example of a simple social network with
N = 8 members is shown in Fig. 45.

Pages with hyper-links can also be considered as a well defined directed
graph. An example of links between N = 8 pages is given in Fig. 46. An
interesting parameter for this kind of graphs is the PageRank.

Introduction to Graph Signal Processing 91

7.8.5 PageRank

For a directed graph, PageRank of vertex n is defined as a graph signal satis-
fying the relation

x(n) =
∑
m

1

dm
Wmnx(m),

where Wmn are weights of the directed edges connecting the vertex m to
vertex n and dm is the outgoing degree of the vertex m. This means that the
PageRank of each vertex is related to the PageRank of connected vertices.

The PageRank is commonly calculated using an iterative procedure defined
by

xk+1(n) =
∑
m

1

dm
Wmnxk(m),

starting from arbitrary page ranks, for example x0(n) = 1.
The PageRank was defined by Google to rank the web pages. In the original

definition a scaling factor was added,

xk+1(n) = 0.15 + 0.85
∑
m

1

dm
Wmnxk(m),

As an example, consider the graph from Fig. 46 (it is the same graph as
in Fig. 2(b)). We will calculate the PageRank for all vertices in this graph.
The weight/adjacency matrix of this graph W = A is given by (1), right.
The outgoing vertex degrees are calculated as the sum of the matrix columns,
dm =

∑7
n=0Anm. Their values are d = [2 3 1 3 1 2 1 2]. Now the

PageRank values for vertices can be obtained through the iterative procedure
starting with initial page ranks x0 = [1 1 1 1 1 1 1 1]. The results for
PageRank in a few iterations are

xT0
xT1
xT2
...

xT5
...

xT11

=

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.83 1.83 0.50 1.33 0.50 1.50 0.50 1.00
0.58 1.42 0.67 2.00 0.75 1.67 0.25 1.67

...
0.73 1.60 0.82 1.71 0.61 1.11 0.31 1.10

...
0.79 1.57 0.86 1.71 0.57 1.14 0.29 1.07

.

The matrix form of the iterations is

xk+1 = WNxk,

where WN is obtained from W by dividing all elements of the mth column,
m = 0, 1, . . . , N − 1, by dm. The mean-values of matrix WN columns are
normalized.

92 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

In the considered example, the normalized adjacency/weighing matrix is

WN =

0 1
3 0 0 0 0 0 0

0 0 0 1
3 0 0 0 1

2
1
2

1
3 0 0 0 0 0 0

0 0 1 0 0 1
2 0 0

0 0 0 0 0 0 1 1
2

0 0 0 1
3 1 0 0 0

0 0 0 0 0 1
2 0 0

1
2

1
3 0 1

3 0 0 0 0

.

The final, stationary state, page rank can be obtained from

x = WNx.

The final PageRank x is the eigenvector of matrix WN corresponding to the
eigenvalue equal to 1.

For the considered example, the eigenvalue decomposition of the matrix
WN results in the eigenvector, corresponding to eigenvalue 1,

xT = [0.79 1.57 0.86 1.71 0.57 1.14 0.29 1.07].

The eigenvector is normalized with its mean value. It corresponds to the iter-
ative solution obtained after 11 iterations.

7.8.6 Random Walk

Assume that the signal x(n) represents probalities that a random walker is
present in vertex n. The random walker will transit from vertex n to one of
its neigbouring vertices m with probabilities

pnm =
Wnm∑
mWnm

,

where Wnm are affinities of the walker to transit from vertex n to vertex m.
The signal x(n) calculation can be considered within the graph framework

where Wnm are edge weights.
The probabilities in the stage (p + 1) are calculated starting from proba-

bilities in the previous stage as

xp+1 = D−1Wxp

or Dxp+1 = Wxp. Matrix W is a matrix of weighting coefficients and D is
the degree matrix.

In stationary state, when xp+1 = xp = x we have Dx = Wx or

Lx = 0.

Various problem formulations and solutions are now possible within the
presented graph theory framework. For example, if we want to find probabili-
ties that the walker reaches vertex 5 before he reaches vertex 7 from any vertex
n we have to solve the system Lx = 0 with x(5) = 1 and x(7) = 0.

Introduction to Graph Signal Processing 93

7.9 Gaussian Random Signal

Consider a random graph signal x(n) and assume that each sample is Gaussian
distributed with mean µn and standard deviation σn. Assuming that the signal
values are correlated, the pdf function of the signal x is

P (x) =
1√

(2π)N
det(Σ−1x) exp (−1

2
(x− µ)TΣ−1x (x− µ)).

The inverse value of the autocovariance matrix is the precision matrix Θ =
Σ−1x . The name precision comes from the one-dimensional case in which the
precision is inversely proportional to the variance Θ = 1/σ2.

The maximum likelihood estimate of x is obtained by minimizing

Ex =
1

2
(x− µ)TΣ−1x (x− µ).

Its solution is
Σ−1x (x− µ) = 0.

For zero mean random signal, µ = 0 and Σ−1x x = 0. This corresponds to the
energy of change minimization (maximal smoothness) in the graph.

The Laplacian corresponding to the information matrix is defined by

Σ−1x = L + P

where P is a diagonal matrix such that sum of the Laplacian columns is zero.
Note that some of non-diagonal elements of Σ−1x can be positive. In that
case, additional conditions should be added to find the best solution avoiding
positive coefficients on the Laplacian diagonal.

The edge weights can be extracted from the Laplacian matrix. Since the
Laplacian is defined using signal values, this is a point when the presented
analysis meets the discussion from the previous section.

8 Appendix

8.1 Graph Signal Calculation Using Laplacian

The graph signal x can be calculated using this system of linear equations with
the vector of external sources. Since the Laplacian is a singular matrix, one
graph signal value (potential) should be considered as a free/referent variable.

In the case when there is no external generator, the graph signal x satisfies
the following equation

Lx = 0.

This equation corresponds to the minimum of the energy of change in x defined
by the quadratic form

Ex = xTLx =
1

2

N−1∑
n=0

N−1∑
m=0

Wnm(x(n)− x(m))2 =
1

2

N−1∑
n=0

N−1∑
m=0

Pnm.

94 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

0

1

2
3

4

5

6
7i7

i2
i5

0.54

0.14

0.47

0.63 0.35

0.30

0.31

0.31

0.54

0.43

0.13

0.54

0.62

0.54

0.37

Fig. 47 Electric potential x(n) as a signal on an electric circuit graph at three vertices with
nonzero external sources

where Pnm can be considered as a power dissipated in the edge between vertices
n and m. It follows from ∂Ex/∂xT = 2Lx = 0 and (38). The solution of this
equation x(n) is a constant defined by the signal value at the reference vertex.

For nontrivial solutions, there should be an external source in at least two
vertices. Assume that one of them is chosen as the referent vertex. Signal or
external source values at these vertices are sufficient to find signal values at
all other vertices.

As an example, consider the graph and signal sensed on the graph presented
in Fig. 42. The signal values are

x = [0.57, 0.67, 1.03, 0.86, 0.90, 1.68, 1.29, 0]T

and the Laplacian of the signal is

Lx = [0, 0, 1, 0, 0, 2, 0,−3]T .

This means that the vertices denoted by 0, 1, 3, 4, 6 are not active in this case.
Their values can be obtained as linear combinations of the signal at neighbor-
ing active vertices:

−0.47x(7)− 0.14x(2)− 0.54x(1) + 1.15x(0) = 0

−0.31x(7)− 0.30x(4)− 0.35x(3)− 0.63x(2) + 2.13x(1)− 0.54x(0) = 0

−0.43x(5)− 0.54x(4) + 1.82x(3)− 0.31x(2)− 0.54x(1) = 0

−0.62x(6)− 0.54x(5) + 2.00x(4)− 0.54x(3)− 0.30x(1) = 0

0.99x(6)− 0.37x(5)− 0.62x(4) = 0

Solving this system with known signal values x(2) = 1.03, x(5) = 1.68, and
x(7) = 0 at the active vertices, Fig. 47 we get the remaining signal values

xp = [x(0), x(1), x(3), x(4), x(6)]T = [0.57, 0.67, 0.86, 0.90, 1.29]T .

Introduction to Graph Signal Processing 95

Assume that only some of the vertices are active, with external sources.
Denote the set of these M active vertices by E . Then the vertices without
external sources are H, such that V = E ∪ H and E ∩ H = ∅. For a full
reconstruction of this signal we have to know only M signal values x(n) at
vertices n ∈ E or any other linearly independent M graph signal samples.
The remaining N −M graph signal samples are obtained from the equations
following from the fact that the Laplacian at n ∈ H is zero-valued.

From the circuit theory, it is well known that this kind of graph can be
downscaled without any influence to the signal at vertices where Laplacian is
nonzero. The vertices with zero Laplacian can be omitted by using so called
Y-∆ (star-mesh) transformation. The resulting graph has a reduced number
of vertices, while the number of edges may be increased.

This kind of interpolation can be applied to classic, time-domain signals as
well. The Laplacian of a time-domain signal at instant (vertex) n is calculated
as 2x(n) − x(n − 1) − x(n + 1). Its zero value will indicate that this vertex
(instant) is not active (there is no external source). Therefore, this value can
be omitted since it can be obtained from the condition that Laplacian is zero
from other signal values at instants n− 1 and n+ 1. An illustration of such a
signal and reconstruction based on the signal values at the Laplacian nonzero
positions is presented in Fig. 48.

In this way, vertices where the signal behavior is changed are detected using
the Laplacian. Note that the two-dimensional Laplacian is a classical tool in
the image edge detection.

This kind of subsampling can be considered as a signal processing and
graph signal processing equivalence of the Laplace differential equation:

L{V (x, y)} = ∇2V (x, y) =
∂2V (x, y)

∂x2
+
∂2V (x, y)

∂y2
= 0

with given boundary conditions (Dirichlet problem):

V (x, y) = f(x, y) on boundary D(x, y) = 0.

In graph signal processing, vertices with a nonzero Laplacian define the bound-
ary set and the signal values on these vertices are the boundary conditions.

In general, when the Laplacian of a graph signal is nonzero at all vertices
we can apply hard thresholding, keeping large Laplacian values and neglecting
the small ones in a linear approximation of the graph signal. In this way we
can keep just the signal values on the vertices

n ∈ E if |Lx| ≥ τ at vertex n.

The correction (high pass part) of the signal is equal to the Laplacian of signal
on n /∈ E . It can be used to adjust the values of linear approximation to the
full signal reconstruction. If a graph signal is noisy then the Laplacian can be
used for the detection of the active (bounday condition) vertices. The signal
values can be obtained by a mean squared linear approximation of the noisy
data with the detected positions of the discontinuity of linear behavior.

96 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

0 20 40 60 80 100 120

−1

0

1

2

Signal

0 20 40 60 80 100 120

−1

0

1

2

Laplacian of the signal

0 20 40 60 80 100 120

−1

0

1

2

Signal at nonzero Laplacian positions

0 20 40 60 80 100 120

−1

0

1

2

Reconstructed signal at zero Laplacian positions using signal at nonzero Laplacian positions

Fig. 48 Reconstructed signal at zero Laplacian positions using signal at nonzero Laplacian
positions. Signals are presented as functions of the vertex index n.

Some vertices may be active for some signal realizations and not active
for other signal realizations. Some vertices may not be active for the whole
set of realizations, meaning that the graph can be downscaled not only for
one considered signal x(n) but for a class of signals by omitting some of the
vertices using star-mesh conversions.

8.2 Random Signal Simulation on a Graph

The presentation of a graph and graph signal within the circuit theory can be
used to simulate random signals on graphs. Several approaches are possible.
Here we will present few of them.

1) Assume that the graph is initiated by external sources that are random
variables. In that case the pth observation of a random signal on the graph is
simulated as a solution of the system of equations

Lxp = εp

Introduction to Graph Signal Processing 97

0 20 40 60 80 100 120

-1

0

1

2

Signal

0 20 40 60 80 100 120

-2

0

2

Laplacian of the signal

0 20 40 60 80 100 120

-1

0

1

2

Signal at nonzero Laplacian positions

0 20 40 60 80 100 120

-1

0

1

2

Reconstructed signal at zero Laplacian positions using signal at nonzero Laplacian positions

Fig. 49 Reconstructed signal at small Laplacian positions using signal at nonzero Laplacian
positions and linear approximation

using ip = εp. One of the external sources (randomly chosen for each observa-

tion p) should compensate all other sources, to ensure
∑N−1
n=0 εp(n) = 0.

2) Assume that the graph is initiated at only one of its vertices (and the
reference vertex) with random white external zero-mean white source. The
position of these vertices is randomly selected for each p. Then the random
signal observation on a graph is obtaied as a solution of

Lxp = ip

where ip(n) = εpδ(n − ni) − εpδ(n − nj) and ni and nj are two randomly
selected vertices in each observation.

3) A simple random graph signal can be simulated using its values at two
randomly positioned vertices and Lxp = 0. Assuming that xp(n) = εpδ(n −
ni) + εpδ(n − nj) and ni and nj are two randomly selected vertices in each
observation, we may solve the system for all other signal samples using

Lxp = 0.

98 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

With two assumed values xp(n) at n = ni and n = nj we can solve this system
for all other signal values. In the case of external sources the values should be
compensated. In this case there is no need for compensation, meaning that εp
and εp could be independent random variables.

4) Assume that the signal on a graph is formed using a linear combination

of a white noise x
(0)
p = εp and its graph shifted versions. The first iteration is

x(1)
p = α1Lx(0)

p + x(0)
p .

After M iterations we get

x(M)
p = αMLx(M−1)

p + x(0)
p = (hMLM + hM−1L

M−1 + · · ·+ h1L
1 + 1)εp,

where hm = αmαm−1 . . . α1. The final signal

xp = x(M)
p = H(L)εp,

is a GWSS signal.
5) In graph signal simulation we may also use the adjacency matrix and

graph shifts. Assume that an undirected graph with adjacency matrix A is
initiated at Na randomly chosen vertices n1, n2, . . . , nNa

, η = Na/N , with
spikes δ(n− ni), i = 1, 2, . . . , Na. If we shift these spikes K times we get

x = AK
Na∑
i=1

δ(n− ni).

Parameters K and Na define the resulting signal smoothness. An example
of one realization of such a signal is presented in Fig. 22 for η = 1/8, K = 1
(upper subplots) and η = 2/8, K = 1 (lower subplots) using spikes aiδ(n−ni),
where ai are the spike amplitudes.

6) In classical Fourier analysis, the signals are commonly simulated as sums
of the harmonic basis functions. This kind of simulation may be used in graph
signal processing as well. A signal on a graph can be written as

x =

K∑
i=1

akiuki

where uk are the Laplacian or adjacency matrix eigenvectors, and ak are ran-
dom constants. This kind of graph signal simulation, with or without an ad-
ditive noise, is often used in this chapter.

8.3 From the Newton Minimization to the Graphical LASSO

8.3.1 Newton Method

Fist we will shortly review the Newton iterative algorithm for finding the
minimum of a convex function. Consider a function f(x) and assume that it is

Introduction to Graph Signal Processing 99

differentiable. Denote the minimum position of f(x) by x∗. The first derivative
of f(x) at x∗ = x + ∆x can be expanded into a Taylor series around a point
x, using the linear approximation, as

f ′(x∗) = f ′(x) + f ′′(x)∆x. (84)

Since f ′(x∗) = 0 by definition, with ∆x = x∗−x, relation (84) can be rewritten
as

x∗ − x = − f
′(x)

f ′′(x)
.

This form is used to define an iterative procedure (Newton’s iterative method)
for finding x∗ starting from an x = x0 as

xk+1 = xk − αf ′(xk).

Parameter α is commonly used instead of 1/f ′′(x) to control the iteration
step. Its value should be 0 < α ≤ max(|1/f ′′(x)|), for the considered interval
of x. This is the form of the well-known steepest descend method for convex
function minimization.

The value x∗ = x− αf ′(x), with α = 1/f ′′(x) would be obtained as result
of the minimization of a cost function defined by the quadratic form

x∗ = arg min
z
G(z) = arg min

z
(f(x) + f ′(x)(z − x) +

1

2α
(z − x)2).

From d(f(x) + f ′(x)(z − x) + 1
2α (z − x)2)/dz = 0 we would get x∗ = z.

Next assume that we want to minimize the cost function

J(x) =
1

2α
(x− y)2 + λ|x|,

where λ is a parameter. From dJ(x)/dx = (x− y)/α+ λsign(x) = 0 we get

x+ λαsign(x) = y.

The soft-thresholding is used as a solution of this equation. It is denoted as
soft(y, αλ) and defined by

x = soft(y, αλ) =

 y + αλ for y < −αλ
0 for |y| ≤ αλ

y − αλ for y > αλ.

100 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

8.3.2 LASSO

For the lasso minimization we will consider the cost function

J(X) = ‖y −AX‖22 + λ‖X‖1 = ‖y‖22 − 2XTATy + XTATAX + λ‖X‖1,

where y is a M × 1 column vector, X is a N × 1 column vector, and A is an
M ×N matrix.

Minimization of this cost function with respect to X will produce its value
such that AX is as close to y as possible, promoting the sparsity of X at
the same time. Balance between these two requirements is defined by the
parameter λ.

Consider first the differentiable part of the cost function J(X) denoted by
JD(X) = ‖y −AX‖22 = (y −AX)T (y −AX). Its derivatives are

∂JD(X)

∂XT
= −2ATy + 2XTATA

and
∂2JD(X)

(∂XT)2
= 2ATA.

The linear model for the first derivative of JD(X) around its minimum is

∂JD(X∗)

∂XT
=
∂JD(X)

∂XT
+ (∆X)

∂2JD(X)

(∂XT)2
.

By replacing the inverse of the second order derivative by a constant diagonal
matrix αI we get

∆X = X∗ −X = −α∂JD(X)

∂XT

or

X∗ = X− α∂JD(X)

∂XT
(85)

with 0 < α < 1/max ‖2ATA‖ = 1/(2λmax), where λmax is the maximal
eigenvalue of matrix ATA.

In order to find Z = X∗ that minimizes the complete cost function J(X),

we can minimize the squared difference Z− (X−αI∂JD(X)
∂XT) and the norm-one

of Z, by forming the cost function G(Z) as

X∗ = arg min
Z
G(Z) = arg min

Z
(

1

2α
‖Z− (X− αI

∂JD(X)

∂XT
)‖2 + λ‖Z‖1).

This minimization will produce Z as close as possible to the desired solution
(85), minimizing its norm-one at the same time. The balance parameter is λ.

The solution of

X∗ = arg min
Z
G(Z) =

1

2α
‖Z−Y‖2 + λ‖Z‖1

Introduction to Graph Signal Processing 101

is obtained from
1

α
(X∗ −Y) + λsign(X∗) = 0.

Using the soft function we can write

X∗ = soft(Y, αλ).

Next we will replace the value of Y by

Y = (X− αI
∂JD(X)

∂XT
) = X− αI(−2ATy + 2XTATA)

= 2αATy + (I− 2αATA)X.

The iterative formula for the solution of the defined minimization problem is
obtained by replacing X∗ = Xk+1 and X = Xk as

Xk+1 = soft(2αAT (y −AXk) + Xk, αλ).

This formula can easily be written for each element of Xk. This is the LASSO
(Least Absolute Shrinkage and Selection Operator) iterative algorithm. As the
initial estimate X0 = ATy is commonly used.

8.3.3 Graphical LASSO

In graph model learning, the cost function in the form

J(Q) = − log det Q + Trace(QRx) + ‖Q‖1

may be obtained. Here Q is the generalized Laplacian N × N matrix, while
Rx is the available N ×N correlation matrix. The meaning of these terms is
explained within the main part of this chapter.

The derivative of the cost function with respect to the elements of Q can
be written as

−Q−1 + Rx + sign(Q) = 0 (86)

at ∂J(Q)/∂Q = 0.

Note that log det Q =
∑N−1
i=0 log λi = Trace(log Λ) = Trace(log Q), where

λi are the eigenvalues of Q.
Introducing the notation W = Q−1 or

WQ = I

we can write [
W11 w12

wT
12 w22

] [
Q11 q12

qT12 q22

]
=

[
I 0

0T 1

]
. (87)

Multiplying the first row block of W with the last column block of Q we get

W11q12 + w12q22 = 0

102 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

This means that

w12 = −W11q12/q22 = W11β

where

β = −q12/q22

is normalized with q22 > 0.

Now, from the derivative equation (86) we may write

−
[
W11 w12

wT
12 w22

]
+

[
R11 r12
rT12 r22

]
+ sign(

[
Q11 q12

qT12 q22

]
) = 0.

For the upper right block we can write

−w12 + r12 + sign(q12) = 0

or after replacing w12 = W11β and q12 = −β/q22 we get

−W11β + r12 − sign(β) = 0.

The solution of this equation for β is already defined within LASSO consid-
eration. It is

βi = soft(r12(i)−
∑
k 6=i

W11(k, i)βk, λ)/W11(i). (88)

Now we may summarize the graphical LASSO (GLASSO) iterative algo-
rithm as:

– In the initial step,

W = Rx + λI

is used. For each coordinate j = 1, 2, . . . , N , the matrix equation of form
(87) is written. For each j the reduced matrix W11 is formed by omit-
ting the jth row and the jth column. Then the matrix Rx is rearranged
appropriately.

– Equation (88) is solved.
– The matrix W is updated for each j with

w12 = W11β.

– In the final iteration, for each j, the value of matrix Q is updated as

q12 = −β/q22

with 1/q22 = w22 −wT
12 − β.

Introduction to Graph Signal Processing 103

9 Conclusion

An introduction to graph signal processing is presented. This chapter consists
of three main parts. In the first part, a review of graphs is given. Next, the
signal on graph definitions, basic properties, and systems for processing signals
on graphs are reviewed. Finally, the graph topologies are discussed. The ap-
pendix provides some supplementary material for better understanding of the
principles presented in the main part of the chapters. The topic of this book is
the spectral localization through vertex-frequency analysis [39,83–100], which
will be presented in the next chapters.

References

1. L. J. Grady and J. R. Polimeni, Discrete calculus: Applied analysis on graphs for
computational science. Springer Science & Business Media, 2010.

2. S. S. Ray, Graph theory with algorithms and its applications: in applied science and
technology. Springer Science & Business Media, 2012.

3. A. Marques, A. Ribeiro, and S. Segarra, “Graph signal processing: Fundamentals and
applications to diffusion processes,” in Int. Conf. Accoustic, Speech and Signal Pro-
cessing, (ICASSP), 2017, IEEE, 2017.

4. H. Krim and A. B. Hamza, Geometric methods in signal and image analysis. Cam-
bridge University Press, 2015.

5. A. Bunse-Gerstner and W. B. Gragg, “Singular value decompositions of complex sym-
metric matrices,” Journal of Computational and Applied Mathematics, vol. 21, no. 1,
pp. 41–54, 1988.

6. D. S. Grebenkov and B.-T. Nguyen, “Geometrical structure of laplacian eigenfunc-
tions,” SIAM Review, vol. 55, no. 4, pp. 601–667, 2013.

7. R. Bapat, “The laplacian matrix of a graph,” Mathematics Student-India, vol. 65,
no. 1, pp. 214–223, 1996.

8. S. O’Rourke, V. Vu, and K. Wang, “Eigenvectors of random matrices: a survey,” Jour-
nal of Combinatorial Theory, Series A, vol. 144, pp. 361–442, 2016.

9. K. Fujiwara, “Eigenvalues of laplacians on a closed riemannian manifold and its nets,”
Proceedings of the American Mathematical Society, vol. 123, no. 8, pp. 2585–2594,
1995.

10. S. U. Maheswari and B. Maheswari, “Some properties of cartesian product graphs of
cayley graphs with arithmetic graphs,” International Journal of Computer Applica-
tions, vol. 138, no. 3, 2016.

11. D. M. Cvetković, M. Doob, and H. Sachs, Spectra of graphs: theory and application,
vol. 87. Academic Pr, 1980.

12. D. M. Cvetković and M. Doob, “Developments in the theory of graph spectra,” Linear
and Multilinear Algebra, vol. 18, no. 2, pp. 153–181, 1985.

13. D. M. Cvetković and I. Gutman, Selected topics on applications of graph spectra.
Matematicki Institut SANU, 2011.

14. A. E. Brouwer and W. H. Haemers, Spectra of graphs. Springer Science & Business
Media, 2011.

15. F. Chung, Spectral graph theory. Providence, RI: AMS, 1997.
16. O. Jones, “Spectra of simple graphs,” Whitman college, May, vol. 13, 2013.
17. D. Mejia, O. Ruiz-Salguero, and C. A. Cadavid, “Spectral-based mesh segmentation,”

International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 11,
no. 3, pp. 503–514, 2017.

18. H. Lu, Z. Fu, and X. Shu, “Non-negative and sparse spectral clustering,” Pattern
Recognition, vol. 47, no. 1, pp. 418–426, 2014.

19. X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov, “Clustering with multi-layer
graphs: A spectral perspective,” IEEE Transactions on Signal Processing, vol. 60,
no. 11, pp. 5820–5831, 2012.

104 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

20. R. Horaud, “A short tutorial on graph laplacians, laplacian embedding, and spectral
clustering,” 2009.

21. R. Hamon, P. Borgnat, P. Flandrin, and C. Robardet, “Relabelling vertices according
to the network structure by minimizing the cyclic bandwidth sum,” Journal of Complex
Networks, vol. 4, no. 4, pp. 534–560, 2016.

22. M. Masoumi and A. B. Hamza, “Spectral shape classification: A deep learning
approach,” Journal of Visual Communication and Image Representation, vol. 43,
pp. 198–211, 2017.

23. M. Masoumi, C. Li, and A. B. Hamza, “A spectral graph wavelet approach for nonrigid
3d shape retrieval,” Pattern Recognition Letters, vol. 83, pp. 339–348, 2016.

24. J. M. Mouraaa, “Graph signal processing,” in Cooperative and Graph Signal Process-
ing, pp. 239–259, Elsevier, 2018.

25. M. Vetterli, J. Kovačević, and V. Goyal, Foundations of signal processing. Cambridge
University Press., 2014.

26. A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,” IEEE Trans-
actions on Signal Processing, vol. 61, no. 7, pp. 1644–1656, 2013.

27. V. N. Ekambaram, Graph-Structured Data Viewed Through a Fourier Lens. University
of California, Berkeley, 2014.

28. A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs: Frequency
analysis.,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3042–3054,
2014.

29. A. Sandryhaila and J. M. Moura, “Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irregular structure,” IEEE
Signal Processing Magazine, vol. 31, no. 5, pp. 80–90, 2014.

30. D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains,” IEEE Signal Processing Magazine, vol. 30,
no. 3, pp. 83–98, 2013.

31. R. Hamon, P. Borgnat, P. Flandrin, and C. Robardet, “Extraction of temporal network
structures from graph-based signals,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 2, no. 2, pp. 215–226, 2016.

32. S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovačević, “Signal denoising on graphs
via graph filtering,” in Signal and Information Processing (GlobalSIP), 2014 IEEE
Global Conference on, pp. 872–876, IEEE, 2014.

33. A. Gavili and X.-P. Zhang, “On the shift operator, graph frequency, and optimal
filtering in graph signal processing,” IEEE Transactions on Signal Processing, vol. 65,
no. 23, pp. 6303–6318, 2017.

34. A. Venkitaraman, S. Chatterjee, and P. Händel, “Hilbert transform, analytic
signal, and modulation analysis for graph signal processing,” arXiv preprint
arXiv:1611.05269, 2016.

35. A. Agaskar and Y. M. Lu, “A spectral graph uncertainty principle,” IEEE Trans. Inf.
Theory, vol. 59, no. 7, pp. 4338–4356, 2013.

36. X. Yan, B. M. Sadler, R. J. Drost, P. L. Yu, and K. Lerman, “Graph filters and the z-
laplacian,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, pp. 774–784,
Sept 2017.

37. X. Wang, J. Chen, and Y. Gu, “Local measurement and reconstruction for noisy ban-
dlimited graph signals,” Signal Processing, vol. 129, pp. 119–129, 2016.

38. S. Segarra and A. Ribeiro, “Stability and continuity of centrality measures in weighted
graphs,” IEEE Transactions on Signal Processing, vol. 64, no. 3, pp. 543–555, 2016.

39. D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency analysis on
graphs,” Applied and Computational Harmonic Analysis, vol. 40, no. 2, pp. 260–291,
2016.

40. S. Chen, A. Sandryhaila, and J. Kovačević, “Sampling theory for graph signals,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Confer-
ence on, pp. 3392–3396, IEEE, 2015.

41. S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal processing on
graphs: Sampling theory,” IEEE Transactions on Signal Processing, vol. 63, no. 24,
pp. 6510–6523, 2015.

Introduction to Graph Signal Processing 105

42. S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovačević, “Signal recovery on graphs:
Variation minimization,” IEEE Transactions on Signal Processing, vol. 63, no. 17,
pp. 4609–4624, 2015.

43. S. Chen, R. Varma, A. Singh, and J. Kovačević, “Signal recovery on graphs: Funda-
mental limits of sampling strategies,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 2, no. 4, pp. 539–554, 2016.

44. M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: uncer-
tainty principle and sampling,” IEEE Trans. Signal Process., 2016. DOI
10.1109/TSP.2016.2573748.

45. X. Wang, P. Liu, and Y. Gu, “Local-set-based graph signal reconstruction,” IEEE
Transactions on Signal Processing, vol. 63, no. 9, pp. 2432–2444, 2015.

46. L. Stanković, E. Sejdić, S. Stanković, M. Daković, and I. Orović, “A tutorial on sparse
signal reconstruction and its applications in signal processing,” Circuits, Systems, and
Signal Processing, pp. 1–58, 2018.

47. L. Stanković, “Digital signal processing with selected topics,” 2015.
48. S. K. Narang and A. Ortega, “Downsampling graphs using spectral theory,” in Acous-

tics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference
on, pp. 4208–4211, IEEE, 2011.

49. H. Q. Nguyen and M. N. Do, “Downsampling of signals on graphs via maximum
spanning trees.,” IEEE Trans. Signal Processing, vol. 63, no. 1, pp. 182–191, 2015.

50. S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks
for graph structured data,” IEEE Transactions on Signal Processing, vol. 60, no. 6,
pp. 2786–2799, 2012.

51. S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, “Interpolation of graph signals
using shift-invariant graph filters.,” in EUSIPCO, pp. 210–214, 2015.

52. A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph signals with
successive local aggregations.,” IEEE Trans. Signal Processing, vol. 64, no. 7, pp. 1832–
1843, 2016.

53. A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited
graph signals using graph spectral proxies,” IEEE Transactions on Signal Processing,
vol. 64, no. 14, pp. 3775–3789, 2016.

54. H. Behjat, U. Richter, D. Van De Ville, and L. Sörnmo, “Signal-adapted tight frames
on graphs.,” IEEE Trans. Signal Process., vol. 64, no. 22, pp. 6017–6029, 2016.

55. Y. Tanaka and A. Sakiyama, “M-channel oversampled graph filter banks,” IEEE Trans.
Signal Process., vol. 62, no. 14, pp. 3578–3590, 2014.

56. A. Sakiyama and Y. Tanaka, “Oversampled graph laplacian matrix for graph filter
banks,” IEEE Transactions on Signal Processing, vol. 62, no. 24, pp. 6425–6437, 2014.

57. N. Tremblay and P. Borgnat, “Subgraph-based filterbanks for graph signals,” IEEE
Trans. Signal Process., vol. 64, no. 15, pp. 3827–3840, 2016.

58. J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 631–636, ACM, 2006.

59. N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,” IEEE
Transactions on Signal Processing, vol. 65, no. 13, pp. 3462–3477, 2017.

60. A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph processes
and spectral estimation,” IEEE Transactions on Signal Processing, vol. 65, no. 22,
pp. 5911–5926, 2017.

61. A. Loukas and N. Perraudin, “Stationary time-vertex signal processing,” arXiv preprint
arXiv:1611.00255, 2016.

62. S. P. Chepuri and G. Leus, “Subsampling for graph power spectrum estimation,”
in Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016 IEEE,
pp. 1–5, IEEE, 2016.

63. G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random sampling of
bandlimited signals on graphs,” Applied and Computational Harmonic Analysis, 2016.

64. C. Zhang, D. Florêncio, and P. A. Chou, “Graph signal processing-a probabilistic
framework,” Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-TR-2015-31, 2015.

65. J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with
the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.

106 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

66. N. Meinshausen, P. Bühlmann, et al., “High-dimensional graphs and variable selection
with the lasso,” The annals of statistics, vol. 34, no. 3, pp. 1436–1462, 2006.

67. E. Pavez and A. Ortega, “Generalized laplacian precision matrix estimation for graph
signal processing,” in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on, pp. 6350–6354, IEEE, 2016.

68. M. Pourahmadi, “Covariance estimation: The glm and regularization perspectives,”
Statistical Science, pp. 369–387, 2011.

69. S. Epskamp and E. I. Fried, “A tutorial on regularized partial correlation networks.,”
Psychological methods, 2018.

70. A. Das, A. L. Sampson, C. Lainscsek, L. Muller, W. Lin, J. C. Doyle, S. S. Cash, E. Hal-
gren, and T. J. Sejnowski, “Interpretation of the precision matrix and its application
in estimating sparse brain connectivity during sleep spindles from human electrocor-
ticography recordings,” Neural computation, vol. 29, no. 3, pp. 603–642, 2017.

71. X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning laplacian matrix
in smooth graph signal representations,” IEEE Transactions on Signal Processing,
vol. 64, no. 23, pp. 6160–6173, 2016.

72. C.-J. Hsieh, “Sparse inverse covariance estimation for a million variables,” 2014.
73. X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning graphs

from signal observations under smoothness prior.” June. 2015 [online]. Available:
http://arXiv.org/abs/1406.7842.

74. M. Slawski and M. Hein, “Estimation of positive definite m-matrices and structure
learning for attractive gaussian markov random fields,” Linear Algebra and its Appli-
cations, vol. 473, pp. 145–179, 2015.

75. S. Ubaru, J. Chen, and Y. Saad, “Fast estimation of tr(f(a)) via stochastic lanczos
quadrature,” SIAM Journal on Matrix Analysis and Applications, vol. 38, no. 4,
pp. 1075–1099, 2017.

76. T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola, “Learning graph
matching,” IEEE transactions on pattern analysis and machine intelligence, vol. 31,
no. 6, pp. 1048–1058, 2009.

77. D. Thanou, D. I. Shuman, and P. Frossard, “Learning parametric dictionaries for
signals on graphs,” IEEE Trans. Signal Process., vol. 62, no. 15, pp. 3849–3862, 2014.

78. E. Camponogara and L. F. Nazari, “Models and algorithms for optimal piecewise-linear
function approximation,” Mathematical Problems in Engineering, vol. 2015, 2015.

79. T. Zhao, H. Liu, K. Roeder, J. Lafferty, and L. Wasserman, “The huge package for high-
dimensional undirected graph estimation in r,” Journal of Machine Learning Research,
vol. 13, no. Apr, pp. 1059–1062, 2012.

80. Y. Yankelevsky and M. Elad, “Dual graph regularized dictionary learning,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 2, no. 4,
pp. 611–624, 2016.

81. M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai, “Graph regularized
sparse coding for image representation,” IEEE Trans. Image Process., vol. 20, no. 5,
pp. 1327–1336, 2011.

82. S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Blind identification of graph
filters with multiple sparse inputs.,” in ICASSP, pp. 4099–4103, 2016.

83. R. Rustamov and L. J. Guibas, “Wavelets on graphs via deep learning,” in Advances
in neural information processing systems, pp. 998–1006, 2013.

84. L. Stanković, M. Daković, and T. Thayaparan, Time-frequency signal analysis with
applications. Artech house, 2014.

85. I. Jestrović, J. L. Coyle, and E. Sejdić, “A fast algorithm for vertex-frequency repre-
sentations of signals on graphs,” Signal processing, vol. 131, pp. 483–491, 2017.

86. L. Stanković, M. Daković, and E. Sejdić, “Vertex-frequency analysis: A way to localize
graph spectral components [lecture notes],” IEEE Signal Processing Magazine, vol. 34,
no. 4, pp. 176–182, 2017.

87. L. Stanković, E. Sejdić, and M. Daković, “Vertex-frequency energy distributions,”
IEEE Signal Processing Letters, 2017.

88. L. Stanković, E. Sejdić, and M. Daković, “Reduced interference vertex-frequency dis-
tributions,” IEEE Signal Processing Letters, 2018.

Introduction to Graph Signal Processing 107

89. J. Lefèvre, D. Germanaud, J. Dubois, F. Rousseau, I. de Macedo Santos, H. Angleys,
J.-F. Mangin, P. S. Hüppi, N. Girard, and F. De Guio, “Are developmental trajectories
of cortical folding comparable between cross-sectional datasets of fetuses and preterm
newborns?,” Cerebral cortex, vol. 26, no. 7, pp. 3023–3035, 2015.

90. R. M. Rustamov, “Average interpolating wavelets on point clouds and graphs,” arXiv
preprint arXiv:1110.2227, 2011.

91. A. Golbabai and H. Rabiei, “Hybrid shape parameter strategy for the rbf approxima-
tion of vibrating systems,” International Journal of Computer Mathematics, vol. 89,
no. 17, pp. 2410–2427, 2012.

92. D. I. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst, “Spectrum-adapted
tight graph wavelet and vertex-frequency frames,” IEEE Transactions on Signal Pro-
cessing, vol. 63, no. 16, pp. 4223–4235, 2015.

93. D. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral
graph theory,” Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, 2011.

94. H. Behjat, N. Leonardi, L. Sörnmo, and D. Van De Ville, “Anatomically-adapted graph
wavelets for improved group-level fMRI activation mapping,” NeuroImage, vol. 123,
pp. 185–199, 2015.

95. I. Ram, M. Elad, and I. Cohen, “Redundant wavelets on graphs and high dimensional
data clouds,” IEEE Signal Process. Lett., vol. 19, no. 5, pp. 291–294, 2012.

96. A. Sakiyama, K. Watanabe, and Y. Tanaka, “Spectral graph wavelets and filter banks
with low approximation error,” IEEE Transactions on Signal and Information Pro-
cessing over Networks, vol. 2, no. 3, pp. 230–245, 2016.

97. T. Cioaca, B. Dumitrescu, and M.-S. Stupariu, “Graph-based wavelet representation
of multi-variate terrain data,” in Computer Graphics Forum, vol. 35, 1, pp. 44–58,
Wiley Online Library, 2016.

98. T. Cioaca, B. Dumitrescu, and M.-S. Stupariu, “Lazy wavelet simplification using scale-
dependent dense geometric variability descriptors,” Journal of Control Engineering
and Applied Informatics, vol. 19, no. 1, pp. 15–26, 2017.

99. A. Dal Col, P. Valdivia, F. Petronetto, F. Dias, C. T. Silva, and L. G. Nonato, “Wavelet-
based visual analysis of dynamic networks,” IEEE transactions on visualization and
computer graphics, 2017.

100. P. Valdivia, F. Dias, F. Petronetto, C. T. Silva, and L. G. Nonato, “Wavelet-based visu-
alization of time-varying data on graphs,” in Visual Analytics Science and Technology
(VAST), 2015 IEEE Conference on, pp. 1–8, IEEE, 2015.

108 Ljubǐsa Stanković, Miloš Daković, and Ervin Sejdić

More detailed consideration of the presented
topics may be found in:

L. Stankovic, D. Mandic, M. Dakovic, M. Brajovic, B. Scalzo-Dees, S. Li,
and Anthony G. Constantinides, “Data Analytics on Graphs - Part III: Ma-
chine Learning on Graphs, from Graph Topology to Applications,” Founda-
tions and Trends in Machine Learning, Vol. 13: No. 4, 2020, pp. 332-530.
http://dx.doi.org/10.1561/2200000078-3. (Artificial Intelligence Q1, SCImago
Journal Rank SJR 5.12)LJ.

L. Stankovic, D. Mandic, M. Dakovic, M. Brajovic, B. Scalzo-Dees, and
Anthony G. Constantinides, “Data Analytics on Graphs Part II: Signals on
Graphs,” Foundations and Trends in Machine Learning, Vol. 13: No. 2-3, 2020,
pp. 158-331. http://dx.doi.org/10.1561/2200000078-2 (Artificial Intelligence
Q1, SCImago Journal Rank SJR 5.12)

L. Stankovic, D. Mandic, M. Dakovic, M. Brajovic, B. Scalzo-Dees, and
Anthony G. Constantinides, “Data Analytics on Graphs – Part I: Graphs
and Spectra on Graphs,” Foundations and Trends in Machine Learning, Vol.
13: No. 1, 2020, pp 1-157. http://dx.doi.org/10.1561/2200000078-1. (Artificial
Intelligence Q1, SCImago Journal Rank SJR 5.12)

and downloaded from

http://www.tfsa.me/PapersByAuthor.php?id=1

or from

http://www.tfsa.ac.me/PapersByAuthor.php?id=1

