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Abstract—In this paper an analysis of sparse wideband sonar
images, obtained using compressive sensing reconstruction meth-
ods, for generally positioned off-grid targets, is presented. An
exact relation is derived for the expected squared error in
the resulting sonar image reconstructed from a reduced set
of measurements, assuming the sparsity constraint. The error
depends on the number of available data, as compared to the
complete set of data, and the assumed sparsity. Since the signal
is not on the grid, it looses the property of sparsity in the
transformation domain. The effects of random sampling and
noise will be illustrated and checked on examples as well.

Index Terms—Sonar, Imaging, Compressive sensing, Sparsity

I. INTRODUCTION

Sparse signals are signals that have a small number of
nonzero samples in one of its representation domains in
comparison to their total length. If a signal is considered
as sparse, it can be reconstructed with a reduced set of
measurements, which are represented as linear combinations
of the sparsity domain coefficients. The reduced set of samples
occurs for different reasons. Some of them are to reduce the
signal acquisition time, equipment load, energy consumption
or required memory. Sometimes the physical unavailability
of some measurements or mathematical formulation of the
problem results in a reduced set. Also, in many applications,
strong disturbances can significantly corrupt the signal and
its samples so that they should be omitted from the analysis.
Regardless of the reasons why the set of measurements is
smaller, under certain reasonable conditions, missing measure-
ments can be reconstructed using the theory of compressive
sensing (CS) and sparse signal processing [1]-[3]. Since the
introduction of CS, many methods and algorithms for the
reconstruction and analysis were developed. Also, CS has a
wide range of applications, such as in multimedia, telecom-
munications, remote sensing, etc.

The usage of CS analysis in radar and sonar signal pro-
cessing is a topic which was discussed in many ways, with
radar imaging being one of them. Radar and sonar imaging
systems are used in many everyday applications. Focusing on
the sparsity constraint of concerned signals, radar and sonar
systems can obtain high quality images with small amount
of data, using compressive sensing techniques. One of the
famous methods for reducing the number of measurements in
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radars assumes that the signals which are used in the process
of imaging are narrowband [4]. According to the Doppler
frequency shifts and delays, point targets can be processed
in the range-Doppler plane.

Although the radar and sonar system principles are similar,
they have differences which make changes in their configura-
tion. Since sonar systems work under water, the sound velocity
is much slower than the velocity of radar waves, which makes
the Doppler frequency shifts spreading over larger spectrum.
Wideband signal model is usually assumed, making it difficult
to transfer traditional radar CS imaging methods directly to the
sonar field. Besides frequency variation discussed in the radar
imaging with narrowband signals, the scaling effect should
always be taken into consideration, particularly for the Doppler
effect part. In [5], wideband sonar imaging using compressive
sensing was examined. A sampling scheme based on the
scaling and frequency shifts was proposed, together with a
modified ¢;-norm minimization algorithm for sonar imaging.
The disadvantage is that it works with the assumption that
sparse targets lie on the grid in the range-Doppler plane.

In practice, the targets are not on the grid. This fact increases
the sparsity and, in theory, makes the signal nonsparse even in
the case of a small number of targets [9]-[12]. In this paper, we
will analyze wideband sonar imaging when signal frequencies
are not on the grid (when they are only approximately sparse).
An exact relation for the expected squared error will be
derived, in the resulting sonar image that is reconstructed
from a reduced set of measurements, assuming the sparsity
constraint. In the literature, this kind of reconstruction error is
described by appropriate error bound relations [8]. The error
depends on the number of available data, as compared to the
complete set of data, and the assumed sparsity. The effects of
random sampling and noise will be illustrated and checked on
examples as well.

II. WIDEBAND SONAR IMAGE MODELLING

Consider a monostatic sonar platform model. Assume that
it transmits a signal of the Alltop sequence form [4]
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The transmitted signal is modulated on a carrier frequency
fe. In the continuous time domain, the modulated transmitted
signal is of the form [5]

VN

where A is the code width of the sequence, 0 < ¢t < NA, and
fe is the carrier frequency.

The echo signal from one point target, whose velocity is v,
is delayed for 7 and scaled in frequency due to the Doppler
effect for (¢ + v)/(c —v). It is presented as

#(t) = —= exp <j2w[2]3/1v> exp (j2nfet) (@)
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where ¢ is a complex scattering coefficient and c is the speed
of sound.

For a K scattering points, the received discrete echo signal
can be written as a sum of K echoes (3) [4]-[7]

S ( , ) ‘
r(n) = ——exp | 2mj(n — di,)3 /N | exp (jwr,n
;gk 7 P | 2mi(n = d p ()

where dj, corresponds to the range (time delay) and wy, to the
cross-range (Doppler shift). Assume that the range and cross-
range coordinates are on the grid and may assume one of the
values from the set

(dp,wq) S {dl,dg, . dN} X {wl,wg,. . .wN},
where
di € {dhdg,...d]v}
wi € {w1,ws, ... wN}. )

Note that there are N2 possible positions in total.
In this case, the received echo can be written as

K
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where ¢y (n) are the basis functions defined by

or(n) = ﬁ exp <2ﬂ'j(n - dk)S/N> exp (jwkn).
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The basis function for a given pair (d,,w,) = (p—1, =%
corresponding to the scatterer k, can be written as
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and
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III. COMPRESSIVE SENSING BACKGROUND

The samples of received signal (5) can be written in a matrix
from as

r = dg, @)

where r = [r(0),7(1),...,7(N? — 1)]T is the column vector
of the echo signal, ® is the matrix with basis functions and
g = [9(0),9(1),...,9(N? —1)]T is the column vector of the
scattering coefficients g(k) = g.

Note that the vector g of scattering coefficients can be sparse
since we may assume that the echo is produced by only a
few of the possible reflecting points. The number of reflecting
points K is assumed to be much smaller than the total number
of possible scattering points N x N.

Since the sparsity of the vector g may be assumed then its
values can be reconstructed from a reduced set of observations.
The reduced set of received signal samples is

y = [r(n1),r(n2), ..., r(na)]". (8)
The measurements equation is then
y = Ag ©))

where the measurement matrix A is obtained from the full
matrix ® by keeping the rows corresponding to the available
samples at n; € M = {ny,na,...,na}. The elements of
matrix A are

1 ) 3 )
= —=exp | 2mj(n; — dp)°/N | exp (jw nl>
T ( (i~ dy)?/ :
where d,, and w, correspond to the vector rearranged coeffi-
cients for a given scattering position k.

A general compressive sensing formulation is

a1

min ||g||, subject to y = Ag. (10)

That is, we try to reconstruct the sparsiest possible reflection
coefficients vector g, by minimizing the number of its nonzero
elements |/g||, subject to the available samples y. The recon-
struction procedure used in this paper is presented next.

IV. RECONSTRUCTION PROCEDURE

For the reconstruction of sparse g, we will use its initial
estimate as a projection of the available measurements/samples
of the received echo on the measurement matrix. The initial
estimate is calculated by using only the available measure-
ments

go = Ally. an
or
go(k) = Y r(n)ag - (12)
n;eM
If we replace the echo signal we get
K
90k) = > gk, bpr, ar, (M), (13)
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Note that, with a random set of available samples, the initial
estimate is a random variable. This relation may be used to
derive the coherence index based reconstruction relation for
the considered signal (see Appendix).

The mean and the variance of gy are calculated using the
randomly sampled available signal measurements [10]. For
K =1 the initial estimate is
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Its mean for k = ki is E{go(k)} = g, M/N. Since M
is a random set, for £ # k; the initial estimate behaves as
random variable with zero-mean and variance var{go(k)} =
lgr, M /N?. Now the results can easily be generalized for
any sparsity K

2\2

E{go z) (14)
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where §(k) =1 only for £ = 0 and 6(k) = 0, elsewhere.

A. Reconstruction Algorithm

A variant of the orthogonal matching pursuit (OMP) algo-
rithm will be used for the reconstruction. The signal is recon-
structed by estimating the positions of the nonzero components
and calculating the unknown signal amplitudes g based on the
known y(n;) [13]. In the first step, the position of the largest
component is found as

k1 = argmax{go}.
and the first estimate of g with sparsity K =1 is
g1 = (A{A) ATy,

The matrix A; is partial matrix from matrix A keeping only
the column corresponding to the found position k;.

The received echo signal r; = ®g; is reconstructed and
subtracted from the original signal at the available positions
n; € {ny1,na,...,np}t. Then, the new initial estimate of g
is calculated using the difference of y and r; at n;. The
maximum of the initial estimate, with this new measurement
vector, is at k3. A new set of positions of nonzero coefficients
in g is formed as K = {ky,k2} and a new matrix Ay is
formed from A using columns {k1,k2}. The new estimate
go and the signal ro = Pgy are calculated. The procedure
is repeated K times (i.e. the assumed sparsity), for positions

keK={kyks,...
the pseudo code
K=0, y.=y
for i=1: K
go = A"y,
k= arg{m]?x\go\}
K = {K, k}
Ax =A(K,:)
gr(n) = (AgAx) ALy
gr (k) =gk (k), ke K
gr(k) =0, k¢K

,kx}. The method can be explained by

sr = Pgk

yr=y—8, for né&Na
end
gRrR = 8K-

V. OFF-GRID ERROR ANALYSIS

For a sparse reflection coefficient vector g, all K reflecting
points should be at the assumed grid in the range and cross-
range domain dj and wyg. A real scenario is that the reflecting
points are off-grid. Then even one reflecting point causes
nonzero values at all grid points in the range and cross-range
domain (leakage effect in standard spectral analysis). Since
the reflecting points are not on the assumed grid, the reflection
coefficient vector g looses the property of strict sparsity [6],
[71, [10]. Loosing the sparsity property, the signal becomes
nonsparse in this domain.

From the compressive sensing theory, we know that a signal
is K -sparse if it has K nonzero coefficients in a transformation
domain (in this case reflection coefficients domain) at k € K,
and other coefficients are equal to zero. A signal is considred
as nonsparse if there exist nonzero coefficients not only at
k € K, but also at the positions k& ¢ K [11].

Let consider a reflected echo signal r that is not strictly
sparse in the coefficients g domain. In order to use the theory
of compressive sensing, the sparsity assumption has to be
made. The error which is produced by the reconstruction of
nonsparse signal with a sparsity constraint is calculated in this
paper. We assume that the CS conditions for the reconstruction
are satisfied with assumed sparsity K and the number of
available samples M. Then we can detect and reconstruct
K components of vector g using the OMP algorithm and
available samples of received echo signal r given by y.

The reconstructed coefficients vector has K (nonzero) re-
constructed components, meaning that N2 — K coefficients re-
mained unreconstructed. Following (15), one unreconstructed
coefficients produces noise in the reconstructed components
with variance |g;|> M/N2. The noise variance in the recon-
structed coefficients will have a scaling factor of (N/M)?2,
since the signal amplitudes in the initial estimate are pro-
portional to M and the amplitudes are recovered to their



original values as if all samples were available, proportional

to its size. Therefore, the variance of noise which causes a

single reflection coefficients which is not reconstructed to the
reconstructed one is

o M s N\2 1 2

|9:] ﬁ(ﬂ) = M|gi| :

For a signal reflected from K points, the white noise energy

in the reconstructed coefficients will be K times larger than

the energy (variance) in one reconstructed coefficient. Then,

the total noise caused by the unreconstructed coefficients can

be written as

(16)
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Energy corresponding to the unreconstructed N — K coeffi-
cients is obviously

N2

2 2
lg—gxlz= > lail*

i=K+1

(18)

Finally, combining (17) and (18), we can conclude that the
error in the reconstructed coefficients with respect to the K
corresponding coefficients if the original signal were used is

K
2 2
ler—gxllz = 57 lle—8xll. (19)

where:

o |lgll3 = E{>, |g(k)|?} is the expected value of squared
norm-two

e gy is the K-sparse version of g. The elements of vector
gi are gx (k) = g(k) for k € K, and gk (k) = 0 for
k¢ K.

o The reconstructed gr = ggr(k) is formed in the same
way. The coefficients at k£ € K are the results from the
reconstruction procedure and g = 0 at k& ¢ K.

Assume now that the available measurements have additive
noise

Yn +&n = Ag. (20)

The variance of additive noise ¢ is 2. Noisy measurements
will result in a noisy initial estimate go(k)

go(k) = Y (r(ns) +e(ni))aj, ..

n; EM

Additive noise caused variance in each term is o2/N. Then
the total initial estimate variance JZO( w =M o2/N. Since the
initial estimate is multiplied by N/M in the reconstruction,
the noise variance in the reconstructed component is

M N\2 N
var{gr(k)} = o2 (17) = 7707
The noise is the same in each reconstructed coefficient. Then
the total error in K reconstructed coefficients is [10]

N
lgn—gils = K370 @1
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Fig. 1. Sparse case: original image (top); reconstructed image (bottom)

The error will then be calculated as

lansul2 = o el + Koot @)

Note that the cases when the reconstruction is ideal, or when
original signal is exactly of sparsity K produce no error. If any
of the coefficients remains unreconstructed, it will behave as
noise in the reconstructed coefficients. Analysis of this error
on examples is presented next.

VI. NUMERICAL RESULTS

We will show an example with a strictly sparse signal to
show the reconstruction using the OMP algorithm. In Example
2 and 3 we will do the analysis on a nonsparse signal without
and with noise, using various sparsity levels and number of
available samples.

Example 1: We consider a wideband sonar image of size
N x N = 37 x37. The original image is shown in Fig. 1 (top).
The number of available samples is M = [2.5N] = 93 (a ceil
integer close to 2.5\ as in [5]). The measurement matrix A is
of size M x N2. We consider that the sparsity level is K = 5.
The signal is reconstructed using the OMP algorithm. The
reconstructed image is shown in Fig. 1 (bottom). Since the
signal is exactly sparse, the reconstruction produces no error.

Example 2: Assume a signal which has K = 5 targets
and another N2 — K components which are not targets. The
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Fig. 2. Nonsparse case: original image (top); reconstructed image (bottom)

nonsparse signal is formed in the following way

g(k) = {

where 0 < v, < 1, are random numbers.

The image is shown in Fig. 2 (top). The signal is recon-
structed with the presented iterative OMP and the assumption
that it is strictly K -sparse. The reconstructed image is shown
in Fig. 2 (bottom).

We will compare our results with the results obtained by
using the standard statistical calculation

for k e K
for k¢ K’

1+Vk7

0.5 exp(—k/K/2), (23)

E, = 101og (||g—gxll3)- 24)
The total theoretical error, derived in Section IV, is
K
B = 101og (5 + 1) lg—gx3 ). (25)

We calculated the error using various sparsity levels K =
1,2,3,4,5,6,7 in 100 realizations with two numbers of the
available samples M = 2.5N and M = 959 (M = [O.?NZ] ).
The results are shown in Table 1.

Example 3: Assume a nonsparse signal of the form (23)
with additive noise variance o2 = 1/N. The signal is recon-
structed under the assumption that it is K = 5 sparse. The
original and reconstructed images are shown in Fig. 3.

The statistical and theoretical error, presented in Table II
for various assumed sparsity levels, are calculated as
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Fig. 3. Noisy nonsparse case: original image (top); reconstructed image
(bottom)
E, =10log (llg—gxrl>), (26)
K N
B = 101og (57 +1) lg—gxl + K1702). @D

VII. CONCLUSIONS

The analysis of off-grid wideband sonar images, obtained
using compressive sensing reconstruction method, is pre-
sented. The off-grid effect makes the signal nonsparse in the
transformation domain. The resulting sonar image is recon-
structed from a reduced set of measurements, assuming the
sparsity constraint. An exact relation for the expected squared
error in the reconstruction is presented. The effects of random
sampling and noise are checked on examples and compared
to the statistical error calculation.

VIII. APPENDIX
The initial estimate
go(k) = > r(ni)ai .,
n;EM

for a K sparse signal

K
n) = Z Ik Ppi.ai (n)
k=1

can be written as

K
Z Z 9k Ppran (ni)a;;,m :
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go(k) =



TABLE I
ERROR IN NONSPARSE IMAGE WITH N = 37, VARIOUS SPARSITY LEVELS AND M = 2.5N AND M = 0.7N?

M=25N| K=1 2 3 4 5 6 7
Statistics -126 -83 —61 —45 -—31 -—22 -12
Theory -12.7 -84 -62 —47 -35 -25 —19

M=07N2|] K=1 2 3 4 5 6 7
Statistics —126 -84 —-62 —47 -34 —26 -138
Theory -12.7 -85 —63 —49 38 -—29 -22

TABLE II

ERROR IN NONSPARSE IMAGE WITH N = 37, NOISE 02 = 1/N, VARIOUS SPARSITY LEVELS AND M = 2.5N AND M = 0.7N?2

M=25N| K=1 2 3 4 5 6 7
Statistics -121 -79 -56 —40 -29 -21 -10
Theory -122 -81 -59 —44 -33 -24 -16

M=07N2| K=1 2 3 4 5 6 7
Statistics —125 —83 —-62 -46 -34 —25 -138
Theory -126 -84 —63 —48 3.7 -29 -21

The maximal absolute value of > v &y, g (ni)aj . is

defined as the coherence index

n= maX| Z ¢pk,Qk (ni)a’z,ni

n; EM

Assume that the maximal reflection coefficient g, is normal-
ized max |gx| = 1. The strongest influence of other K — 1
coefficients to this coefficient will be if they are almost the
same and equal to 1. The reconstruction of the strongest
coefficient is always possible if its value 1 being maximally
reduced with other coefficients to 1 — (K — 1)u is greater
than the maximal possible value of all K coefficients at a
noise position being K u. It means that the reconstruction of
strongest component is guaranteed if

1— (K —1)p> Kpu

or
1
K< -
2
This the famous coherence based reconstruction relation. It is
extremely pessimistic, as can easily be concluded from this
simple derivation, since we considered the worst case several
times in its derivation. For the Alltop sequence the coherence

index can be approximated by p = \/#ﬁ for M = N? and

K < 3(V/N +1) follows as a very strict bound.

1
(1+;).
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