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Abstract —  One-bit (or binary) compressive sensing
(CS) is a relatively new idea in the theory of sparse signal
reconstruction. It is based on using only the sign of the avail-
able measurements for the signal recovery. In this paper, we
analyze the one-bit CS concepts on complex-valued random
Gaussian measurement matrices. The signal is reconstructed
using an iterative hard thresholding algorithm, modified for
the complex-valued binary measurements. The considered CS
approach is particularly suitable for hardware realizations.
The reconstruction performance is validated numerically, and
compared with the traditional CS reconstruction based on
quantized digital measurements.
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1. INTRODUCTION

Compressive sensing (CS) is a still growing field deal-
ing with sparse signals [1]-[7]. Comparing to the total
amount of samples in a signal, a sparse signal has a small
number of nonzero coefficients in one of its representation
domains. The theory of CS states that these signals can
be reconstructed from a reduced set of observations. The
advantages of CS are in the signal transmission and storage
efficiency, which is crucial in big data setups. Unavail-
able signal samples can occur as an intentional sampling
strategy or constraints of physical systems. In certain
applications, some samples could intentionally be thrown
away due to a high level of corruption, after application of
some particular signal processing techniques. Illustrative
example is the application of L-statistics to the removal of
highly corrupted noisy samples [4]. Since the introduction
of the theory, many reconstruction theorems and algorithms
were developed [8]-[13].

In real applications, many signals are sparse in a certain
domain. This makes the CS applicable in various fields of
signal processing, including the biomedicine, telecommu-
nications, media, etc [12]. Ideally, the measurements used
for the reconstruction should be taken accurately, assuming
a very large number of bits in their digital form. However,
this could be extremely demanding and expensive for
hardware implementation [14]. That is the reason why,
in practice, the measurements are quantized to a certain
level, using a limited number of bites. In this paper, we
consider the most extreme case — using only one bit to
represent the measurements. This kind of measurements
is very robust, memory efficient, and simple for sensors
design. In particular, we analyze complex-valued signals,
which appear in many signal processing applications.

In previous work [14]-[17], one-bit measurements are
initially treated as sign constraints, as opposed to the
values to be matched in the mean squared sense during the
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reconstruction process. As signs of measurements do not
provide amplitude information of the signal, the signal can
be recovered up to a constant scalar factor only. In the one-
bit CS framework, by imposing a unity energy constraint
on the reconstructed signal, the ambiguity is resolved and
the signal reconstruction is performed [14].

Quantization to one-bit measurements is particularly
suitable for hardware systems. The quantizer for the al-
gorithm presented in this paper takes the form of a com-
parator to zero, which is an inexpensive and fast hardware
device. Moreover, one-bit quantizers do not suffer from
dynamic range issues [14]-[17]. In [18], a complex form
has been used in direction-of-arrival estimation with a
partial Fourier transform matrix as a measurement matrix.
In this paper, a general Gaussian distributed measurement
complex matrix is considered. The results with a binary
complex algorithm are compared with a digital algorithm
using B bits with respect to number of iterations and
accuracy, extending the real case analysis from [15].

The paper is organized as follows. In Section II, the
traditional compressive sensing is briefly explained. The
idea of binary compressive sensing and the complex-
valued extension are shown in Section III. In Section
IV, the reconstruction algorithm is presented. Results and
comparison are shown in Section V and the conclusions
are presented in Section VI

II. TRADITIONAL COMPRESSIVE SENSING

Consider a discrete signal z(n) of length N, with 1 <

n < N. Its transform domain representation is denoted

by X (k). The signal and the corresponding transform are
related as

N-1 N—

X(Wge(n),  X(k) = Y w(n)du(b),

k=0 n=0

—

or in vector form

x=P¥X, X = &x. D

The matrices ¥ and @ are the direct and inverse transfor-
mation matrices, respectively. We assume that the signal
is K -sparse in the transformation domain, meaning that it
has K < N nonzero coefficients in that domain.

Following the compressive sensing framework, we can
use only M < N samples to reconstruct this signal. The
signal with the available M observations will be denoted
by y(m), m =1,2,..., M, written as

y =y(m) = [z(n1),z(n2),. .. ,a:(nM)]T. 2)

The general goal of compressive sensing is to minimize
the sparsity of X using only the available observations
y. This reconstruction problem can be formulated as an
optimization problem



min || X]|, subject to y = AX, 3)

where y are the samples/measurements and A is the corre-
sponding M x N measurement matrix. Its rows correspond
to the positions of the available samples. The measurement
matrix consist of i.i.d. standard normal distribution coeffi-
cients. In that case, there is no a direct/inverse transform
framework for the measurements and measurement matrix.

The ¢y-norm used in (3) counts the number of nonzero
coefficients in X. However, this norm is not convex
and is very sensitive (not applicable) to the noisy signal
cases. This the reason why, in practice and theory, more
robust norms are used to measure the sparsity. The most
frequently used one is the ¢;-norm

min ||X]|; subject to y = AX. (€))

To solve this problem, many algorithms were developed in
recent years.

III. BINARY COMPRESSIVE SENSING

In the CS theory, the number of measurement bits is
not commonly considered. Bit-limiting the measurements
could significantly affect the reconstruction performance
of the standard CS approaches. The measurement quan-
tization is particularly important in the hardware imple-
mentation context. One-bit measurements are the most ex-
treme case, promising simple, comparator-based hardware
devices. The one bit used represents the sign of the sample

y = sign{AX} 5)
which is
y(m) = {

Then, the CS reconstruction goal can be reformulated as

1, for the elelemnts of AX > 0

—1, for the elelemnts of AX < 0. ©)

min [|X]|; subject to y = sign{AX}. @)

Using this method, we try to reconstruct the coeffi-
cients X (k) by ignoring the amplitude of the available
measurements. Consequently, this method needs more
measurements, i.e. M > N, so the traditional idea of
CS is, in that sense, destructed. However, in the case
when the quantization accuracy is more important than the
number of measurements, we can afford having a bigger
number of samples [14]. The requirement for storage is
also significantly reduced for sign measurements since the
total number of bits is still low.

A. Complex-valued extension

Further, we assume a complex-valued signal z(n). Then
the measurements y = AX are also complex. We assume
the measurement matrix A to consist of random, complex-
valued coefficients, with identical, normal zero-mean dis-
tribution of real and imaginary parts, with a unity variance

Ui () ~ N(0,1) + N (0,1) ®

fork=0,1,...,N—1land m =1,2,..., M. In that case,
the measurements are formed as

y = sign{R{AX}} + jsign{S{AX}}, (9
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Fig. 1. Reconstruction of a signal using the BIHT algorithm, based
on the measurements with one-bit real and imaginary parts. The signal
parameters are N = 256, M = 3 X 256 and K = 5.

where both real and imaginary parts are one-bit quantized.

IV. BINARY ITERATIVE HARD THRESHOLDING
ALGORITHM

For the reconstruction, we will adapt a method from
the family of greedy algorithms, the Binary Iterative Hard
Thresholding (BIHT) algorithm presented in [15], [16] for
complex-valued signals. It is an extended version of the
Iterative Hard Thresholding (IHT) algorithm [10]. It is
convenient for the one-bit compressive sensing framework.

For the binary case, the CS is then defined as solving

argmin ||y — sign(R{AX) — jsign(3{AX})|[3

s.t. |[X]lo = K. (10)

The BIHT algorithm can be divided in three steps.

1. The first step solves the gradient descent in the least
square sense. Given that the initial estimate is X; = 0
when ¢ = 0, the value of the signal is updated at the
iteration ¢ as

a1 = X;+ %AT [y —sign(R{AX;) — j sign(S{AX;})]
(1D
where 7 is a constant regulating the gradient descent step.

2. We update the value X; by finding the K largest
components in a;y

X; =Tr{ait1},

where Tx{.} is the thresholding operator, taking only the
K largest components.

The first two steps are repeated until a desired error or
the consistency is achieved (or, in the worst case, if the
maximum number of iterations is achieved).

12)

3. After the procedure is stopped and the signal is
reconstructed, the final step is to normalize the estimate
and project the approximation onto the unit /o sphere

X,
[1Xill2”

The algorithm is numerically evaluated in the next section.

Xp= (13)
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Fig. 2. MSE in the reconstruction of signals with one-bit real and
imaginary parts, with length N = 256 and sparsity K = 5. The MSE is
calculated for 100 independent realizations of signals and measurements,
for each considered number of measurements M. Blue dots denote mean
squared errors from each realization, red dots represent the MSE obtained
averaging the results from all realizations.

The binary measurements can be generalized using the
B-bit digital form of measurement. For this purpose, it has
been assumed that the measurements are stored into B-bit
registers,

y = digital ; {AX}.

In this case, the reconstruction is performed using the
iterative matching pursuit algorithm.

V. RESULTS

Example I: Let us consider a signal x(n) of the length
N = 256. The coefficients of the measurement ma-
trix A are complex-valued i.i.d. standard normal random
variables, that is, ¢y (nm,) ~ N(0,1) + jN(0,1) for
k=01,....N—1and m = 1,2,..., M. The signal
is considered to be sparse with sparsity level K = 5. It is
reconstructed using the BIHT algorithm based on M = 3N
measurements with one-bit real and imaginary parts. The
gradient-descent step is 7 = 0.001. The original and the
reconstructed signals are compared in Fig. 1.

The reconstruction performance of the BIHT algorithm
was also checked in a more extensive numerical exper-
iment. For signal with sparsity ' = 5, the number of
measurements M was varied from 64 to 1024, with step
64. For each observed number of measurements M, the
mean squared error (MSE) is calculated based on 100 inde-
pendent random realizations of signal with sparsity K = 5,
with corresponding random realizations of matrix A. The
results are shown in Fig. 2, where blue dots represent
squared errors in each observed realization, whereas the
red dots show the corresponding MSE values.

Example 2: In this experiment, we observe a signal of
length N = 128, with sparsity K = 2. The original,
complex-valued measurements y(m), m = 1,2,..., M
are intentionally brought as inputs of a B = 8-bit quantizer,
to obtain quantized measurements g(m). The real and
imaginary parts are quantized independently, each with
8-bits, to form §(m) = [R{y(m)}] s + j|S{y(m)} .

where |-|p denotes the B-bit quantization. These quan-
tized 8-bit measurements are used as the basis of the CS
reconstruction using the classical OMP algorithm from
[8], [11], [12]. The number of available 8-bit measure-
ments Moy p was varied from 8 to 128, with step 8.
The reconstruction MSE was calculated based on 100
independent random realizations of signal with various,
randomly positioned non-zero coefficients with random
amplitudes, and with corresponding random coefficients in
the measurement matrix A, ¥ (n,,) ~ N(0,1)+jN(0,1)
fOI‘k’:O,l,...,N—l and m = 1,2,...,MO]\/[P.

The obtained results are shown in Fig. 3 (second row),
where the quantization with B = 8 bits increases the MSE
level, when compared to the reconstruction using accurate
complex-valued measurements.

Signals with the same properties as in the OMP case,
are considered in the experiment using the BIHT algorithm
with M = B - Moy p one-bit measurements (with real
and imaginary one-bit parts). The reconstruction MSE is
shown in Fig. 3 (first row). The MSE slowly reduces
as the number of measurements increases, but the BIHT
algorithm does not reach the level of the OMP MSE, for the
observed number of measurements, and for the observed
quantization level in the case of the OMP algorithm.

To additionally check the influence of the quantization
on the OMP reconstruction, we reduce the number of
measurement bits to B = 6, and perform the same experi-
ment. The results are presented in Fig. 4. They indicate
that, in this case, the OMP and BIHT reconstruction
performance is similar. With the increase of the number
of available one-bit measurements, the MSE of the BIHT
reduces proportionally. It is important to note that the main
advantage of the BIHT reconstruction is in much simpler
hardware implementation, as the measurement procedure
requires only the detection of binary values.

VI. CONCLUSIONS

In this paper, we analyzed the reconstruction of signals
by using the idea of binary measurements in the compres-
sive sensing framework. The binary compressive sensing
was applied on complex-valued signals with similar recon-
struction results as in the case of using the all-real one-bit
version of the approach. We compared the reconstruction
results with the classical OMP-based signal recovery from
a reduced set of quantized measurements. The measure-
ments quantized to 6 and 8 bits are considered in this
context. The traditional CS reconstruction cannot be used
on one-bit measurements. The reconstruction obtained by
using the one-bit BIHT is comparable with the standard CS
recovery based on the quantized measurements, assuming
a similar number of the total measurements bits.

Measurement quantization reduces the MSE level in the
traditional OMP algorithm. Our further research is oriented
towards the quantification of this phenomenon through
the derivation of the relation between the MSE level and
number of quantization bits.
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