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Abstract—The quantization (digitalization) of measurements
greatly affects the reconstruction performance, especially in algo-
rithms based on the reconstruction in the measurement domain.
However, it provides a significant advantage in the hardware
implementation sense. In this paper, we analyze the performance
of the gradient-based algorithm in the signal reconstruction based
on a reduced set of digital measurements. This algorithm is
considered as a powerful tool for the reconstruction of various
types of signals. The paper investigates the accuracy of the algo-
rithm using B-bit quantized measurements. The reconstruction
performance is analyzed through numerical examples.
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I. INTRODUCTION

The reconstruction of sparse signals has been an attractive
research area of signal processing in the last decade. By
definition, sparse signals are signals with small number of non-
zero components in a transform domain, compared to the total
number of components. It can be expected that such signals
can be reconstructed with less randomly positioned samples
compared to the number of samples required by the traditional
way of sampling a signal. The mathematical foundation of such
reconstruction procedures is developed within the compressive
sensing (CS) framework [1]–[5].

Since the introduction of these concepts, many techniques
have been proposed for taking measurements and reconstruct-
ing sparse signals [6]–[8]. These approaches have been applied
in various everyday applications where signal processing is
used. In the cases when signal samples are heavily corrupted,
the CS algorithms also demonstrated good performance in the
denoising of such signals. Improved results over classical filter-
ing are obtained by excluding highly corrupted samples from
the calculation and marking them as unavailable (missing),
which then reduces to the concept of signal reconstruction
according to the CS theory [4].

Ideally, the measurements used for the reconstruction should
be taken accurately, assuming a very large number of bits in
their digital form. However, this could be extremely demand-
ing and expensive for hardware implementation. That is the

reason why, in practice, the measurements are quantized to a
certain level, using a limited number of bits [9]–[14]. Quan-
tized measurements provide robustness, memory efficiency
and simplicity in the corresponding sensor design. The most
extreme case of quantization is the one-bit quantization, which
is very suitable for hardware systems. The disadvantage of this
system is that the signal can be recovered up to a constant
scalar factor only. This system also requires a larger number
of measurements for a successful reconstruction [9]. In this
paper, we will focus on the general B-bit quantization of
available measurements and the signal reconstruction based
on the quantized data.

We consider a gradient-descent based algorithm, from the
group of convex relaxation algorithms [7], [8]. This algorithm
is characterized with a very interesting idea to perform the
reconstruction in the spatial/measurements domain. In this
algorithm, the missing samples are considered as variables, and
the available samples remain unchanged [7]. The performance
of this algorithm in the reconstruction of the sparse signal from
a reduced set of quantized samples will be validated using the
mean square error (MSE).

The paper is organized as follows. In Section II, the back-
ground of CS and quantization are reviewed. In Section III,
the considered algorithm is described and in Section IV the
performance analysis is presented. The conclusions are given
in Section V.

II. COMPRESSIVE SENSING AND QUANTIZATION

Consider a discrete-time signal x(n) defined as

x(n) =

N∑
k=1

X(k)ψk(n), 1 ≤ n ≤ N

and its transformation domain coefficients X(k), given by

X(k) =

N∑
n=1

x(n)ϕn(k), 1 ≤ k ≤ N.

In the vector/matrix notation the signals are

x = ΨX and X = Φx,



with x and X denoting the signal values and transform
coefficient vectors, whereas Ψ and Φ are used for inverse and
direct transformation matrices, respectively. We assume that
the signal is sparse in the Discrete Fourier Transform (DFT)
domain. The elements of the transformation domain matrices
are given by

φk(n) = e−j2π(k−1)(n−1)/N , and ψn(k) = φ∗k(n)/N. (1)

A signal is K-sparse if the number of non-zero coefficients
in the transformation domain is much smaller than the total
number of coefficients, i.e. K � N . Following the theory of
CS, a K-sparse signal can be reconstructed with less samples
than required by the conventional sampling techniques. A
random subset of M samples from x(n) at positions ni ∈
M = {n1, n2, . . . , nM} ⊂ N = {1, 2, . . . , N} is considered
as a set of available signal measurements and denoted by
vector y

y = [x(n1), x(n2), . . . , x(nM )]T . (2)

Each measurement is formed as a linear combination of
transform coefficients X(k), that is

y(i) = x(ni) =

N∑
k=1

X(k)ψk(ni). (3)

This system of M measurements can be written as

y = AX, (4)

where M ×N matrix A is obtained from the transformation
matrix Ψ, where the rows at the positions corresponding to the
positions of available samples are preserved, while the other
NQ = N −M rows are eliminated from the complete matrix.

For a successful reconstruction, the goal is to minimize
a sparsity measure of the transform coefficients in X, cor-
responding to a candidate problem solution, which satisfies
the system of the available measurements equations, y = AX.
The reconstruction can be formulated as the solution of an l0-
norm minimization problem

min ‖X‖0 subject to y = AX. (5)

However, since task (5) is an NP-hard combinatorial problem,
the common alternative is to use the l1-norm to obtain a
relaxed formulation of this optimization problem as

min ‖X‖1 subject to y = AX. (6)

It is important to note that the solutions of (5) and (6) are
the same if the signal x(n) and its transform X(k) satisfy
restricted isometry property with a specified constant [3], [6].

A. Quantization Effect

In the traditional CS framework, the number of bits of
the measurements was not normally considered. The aim was
to find an exact reconstruction solution of a sparse signal.
In recent years, the quantization of the available samples
is being also considered, as a very important part of the
hardware implementation [12]–[14]. The disadvantage is that
the bit-limiting measurements could significantly affect the
reconstruction performance of the standard CS approaches.
It is assumed that the measurements are stored into B-bit
registers, that is

yB = digitalB{AX}. (7)

Then, the goal is to reconstruct the values of missing
samples as realistic as possible. In the most extreme case,
one-bit quantization, more measurements are needed M � N .
Note that even for M � N the storage requirement could be
significantly reduced for these measurements since the total
number of bits is reduced.

Note that, for a complex-valued signal x(n), both real and
imaginary parts of yB are B-bit quantized

yB = digitalB{<{AX}}+ jdigitalB{={AX}}. (8)

When a signal is quantized to B bits, the difference in
amplitude which produces the quantization is known as the
quantization error defined by e(n). Then, the signal can be
assumed as a noisy signal with a uniform noise e(n)

xq(n) = x(n) + e(n). (9)

The quantization error (noise) is

−∆/2 < e(n) < ∆/2, where ∆ = 2−B . (10)

III. RECONSTRUCTION ALGORITHM

The reconstruction algorithm is an adaptation of the ap-
proach presented in [7], modified for digital measurements.
The algorithm uses the available measurements as the ref-
erence point. While the measurements are not affected, the
unavailable samples are iteratively recovered.

Consider a signal x(n), K-sparse in the DFT domain. Un-
like the most CS algorithms, where we use the measurements
for the reconstruction procedure, a signal x(0)r (n) of length N ,
at the initial iteration p = 0, is formed as

x(0)r (n) =

{
digitalB{x(n)}, n ∈M
0, n ∈ NQ

, (11)

where M is the set of available sample positions while the set
of positions of missing samples is denoted by NQ = N \M.
Values of this signal at the available sample positions are equal
to original signal x(n), while the values at the positions of the
missing samples are set to zero.



Step 1: For each missing sample ni ∈ NQ, two signals

x+(n) = x
(p)
r (n) +Dδ(n− ni)

x−(n) = x
(p)
r (n)−Dδ(n− ni)

. (12)

are formed, by adding a constant value ±D. The recon-
struction accuracy depends on D. The value of the largest
available measurement is used to initialize parameter D as
D = max{|x(0)r (n)|}.

Step 2: Estimate the differential of signal transform measures

g(ni) =
‖X+(k)‖1 − ‖X−(k)‖1

N
(13)

where X+(k) and X−(k) present x+(n) and x−(n) in the
DFT domain, respectively.

Step 3: Form a gradient vector G of length N . At the available
samples positions this vector is zero-valued, indicating that
these samples should not be changed. At the missing samples
positions, ni ∈ NQ, values of G are g(ni), calculated by (13).

Step 4: Update the signal xr(n) using the gradient vector, and
digitize the obtained samples to B-bits, i.e.

xr
(p+1)(n) = digitalB{xr(p)(n)−G(n)}. (14)

These four steps are iteratively repeated until the desired
reconstruction precision is achieved. The precision is improved
by reducing the value of the parameter D after several iter-
ations. The criterion for such reduction can be conveniently
defined as xr(p+1)(n) = xr

(p)(n), or alternatively, the oscilla-
tory behavior around the solution can be detected by measuring
the angle between the gradients obtained in two successive
iterations. The value of this angle close to 180◦ is an indicator
of an oscillatory behavior [7]. The algorithm is stopped when
the value D is below the quantization step.

IV. RESULTS

Example 1: Observe a signal defined by

x(n) = 3 sin( 2π
N k1n)+2 cos( 2π

N k2n)+0.5 sin( 2π
N k3n), (15)

of length N = 64. The frequency positions are randomly
chosen from the range 1, 2, . . . , N/2. The sparsity of the signal
is K = 6. As an example, assume that 25% of samples are
unavailable, meaning that NQ = 16. The number of bits is
B = 8. The original signal, the signal with unavailable samples
set to zero, and the reconstructed signal are shown in Fig. 1.
The same signal, reconstructed with B = 4 bits and B = 2 bits
are shown in Fig. 2 and Fig. 3, respectively. It is interesting to
note that, even when only B = 2 bits are used, the algorithm
finds the right region of the reconstructed sample.

Example 2: In this example, the performance of the recon-
struction is verified by varying the number of bits and missing
samples. We assume a signal of the form (15). Typical cases for
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Fig. 1. Gradient-based reconstruction with B = 8-bits samples: original
signal (top); signal with missing samples set to zero (middle); reconstructed
signal (bottom)
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Fig. 2. Gradient-based reconstruction with samples quantized to B = 4 bits:
signal with missing samples set to zero (top); reconstructed signal (bottom)



TABLE I
MSE RESULTS IN 100 REALIZATIONS WITH VARIOUS NUMBER OF BITS B AND MISSING SAMPLES NQ

B = 4 B = 8 B = 12 B = 16 B = 20 B = 24
NQ eq = 7.93× 10−3 eq = 3.00× 10−5 eq = 1.17× 10−7 eq = 4.38× 10−10 eq = 1.78× 10−12 eq = 7.15× 10−15

8 8.35× 10−3 3.15× 10−5 1.23× 10−7 4.62× 10−10 1.89× 10−12 7.47× 10−15

16 9.29× 10−3 3.46× 10−5 1.34× 10−7 5.04× 10−10 2.08× 10−12 8.25× 10−15

24 1.14× 10−2 4.26× 10−5 1.63× 10−7 6.01× 10−10 2.51× 10−12 9.90× 10−15

32 1.74× 10−2 6.96× 10−5 2.54× 10−7 1.04× 10−9 3.96× 10−12 1.63× 10−14

40 1.08× 10−1 5.25× 10−4 1.78× 10−6 6.45× 10−9 3.09× 10−11 1.11× 10−13
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Fig. 3. Gradient-based reconstruction with B = 2-bits samples: signal with
missing samples set to zero (top); reconstructed signal (bottom)

the number of bits are B = 4, 8, 12, 16, 20, 24. Moreover, the
number of missing samples is varied as NQ = 8, 16, 24, 32, 40.
The mean square error (MSE)

MSE = mean(||x− xr||22) (16)

will be used as the reference for successful reconstruction,
where xr is the reconstructed signal and x is the original signal
(in vector form). The MSE values of the reconstruction are
averaged in 100 realizations and shown in Table I. The average
square quantization error in the measurements is given as eq .

The results imply that the number of bits greatly affects
the reconstruction process. For example, in the case when
B = 4 bits are used, and depending on the scenario, a decent
reconstruction can be assumed. It is interesting to observe that
B = 8 bits provides a fair reconstruction result. Hence, in
practical cases, it delivers an efficient compromise between
the number of bits and the reconstruction performance.

V. CONCLUSIONS

The performance of the gradient-based algorithm in the CS
reconstruction based on a reduced set of quantized measure-

ments was analyzed. Unlike many conventional CS algorithms,
which perform the reconstruction in the transformation do-
main, the gradient-based algorithm greatly depends on the
measurement values. The algorithm has shown a great accu-
racy in the reconstruction based on B-bit quantized samples.
The reconstruction precision was validated numerically. Our
future work is focused on the adaptation and improvement of
the algorithm, taking into account the application context.
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[4] LJ. Stanković, S. Stanković, M. Amin, ”Missing Samples Analysis in
Signals for Applications to L-estimation and Compressive Sensing,”
IEEE Signal Processing Letters, vol. 94, Jan 2014, pp. 401-408, 2014.

[5] E. Candès, J. Romberg and T. Tao. “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on Information Theory, vol. 52, pp. 489–509, 2006.
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