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Abstract — Binary compressive sensing (CS) is a relatively 

new idea in the theory of sparse signal reconstruction. Under 
this framework, the signal is reconstructed based on the sign 
of the available measurements. This paper analyzes basic 
one-bit CS concepts for the case of complex valued random 
Gaussian measurement matrices. The reconstruction is 
compared with the B-bit quantized measurements. The 
concept of binary CS-based reconstruction is generalized by 
applying a sigmoid function to the measurements. Noise 
influence is also considered.  The reconstruction is performed 
using a simple iterative thresholding algorithm.  

Keywords — compressive sensing, complex, binary, 
bipolar, sigmoid, reconstruction, sparse signal processing  

I. INTRODUCTION 
OMPRESSIVE sensing (CS) is an intensively studied 
field of signal processing, dealing with the 

reconstruction of sparse signals [1]-[7]. Signals are sparse 
if they can be represented by a small number of non-zero 
coefficients in some transformation domain. Within the CS 
framework, such signals can be reconstructed based on a 
reduced set of measurements. Based on the CS techniques, 
signal acquisition, transmission and storage can be 
performed more efficiently, which is crucial in big data 
setups. The reduced set of measurements (observations, 
samples) can be a result of an intentional sampling 
strategy, physical constraints, or a consequence of a signal 
corruption. In particular, signal samples can be 
intentionally omitted if they are too heavily corrupted by a 
noise. This case occurs often in application of some signal 
processing denoising techniques, such as the L-statistics 
[4]. During the last decade, the CS theory has been 
significantly developed, with various reconstruction 
methods and algorithms being introduced [8]-[13]. 

In practice, certain signal classes can be considered as 
sparse in specific transformation domains, e.g. digital 
images are sparse in a two-dimensional discrete cosine 
transform domain. Similarly, signals appearing in 
telecommunications, radar technology, and biomedicine 
are commonly sparse in the Fourier transform domain, 
therefore making possible to apply the CS concepts and 
perform reconstructions based on the reduced sets of 
samples [12]. Generally speaking, the CS theory 
inherently assumes that the measurements are taken 
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accurately. However, high accuracy implies a very large 
number of bits in signal digital forms, which could be, 
consequently, extremely demanding and expensive for 
hardware implementations [14]. Therefore, in practice, 
measurements have to be quantized, meaning that they are 
represented, acquired, transferred and stored using a 
limited number of bits.  
  One-bit measurements represent the most extreme 
case of quantization. Each measured value is represented 
by its sign only. Such quantization approach is very 
robust, memory efficient and simple for sensor design. 
This paper deals with complex-valued signals, quantized 
using signs of real and imaginary parts. One-bit 
measurements can be treated as sign constraints [14]-[17], 
as opposed to the values to be matched in the mean 
squared sense during the reconstruction process. As signs 
of measurements do not provide amplitude information of 
the signal, the signal can be recovered up to a constant 
scalar factor only. In the one-bit CS framework, by 
imposing a unity energy constraint on the reconstructed 
signal, the ambiguity is resolved and the signal 
reconstruction can be performed [14]. 

 Quantization to one-bit measurements is particularly 
suitable for hardware systems. The quantizer for the 
algorithm presented in this paper takes the form of a 
comparator, which is an inexpensive and fast hardware 
device. Moreover, one-bit quantizers do not suffer from 
dynamic range issues [14]-[17]. In [18], a complex form 
has been used in the direction-of-arrival estimation with a 
partial Fourier transform matrix as a measurement matrix. 
Some recent works investigate various aspects of the one-
bit CS, particularly the influence of noise, such as: 
application in noisy wireless networks [19], biomedicine 
[20], robustness in noisy environments [21], [22], [23]; 
while general reviews regarding this form of CS can be 
found in [21] and [24].  

In this paper, a general Gaussian distributed 
measurement complex matrix is assumed. The results with 
a binary complex algorithm are compared with a digital 
algorithm using B bits with respect to the number of 
iterations and accuracy, extending the real case analysis 
from [15]. This paper extends our previous work [25] with 
the case when the measurements are corrupted with an 
additive noise. The noise in the measurements is zero-
mean Gaussian, with various variances.  

Generalization of the binary compressive sensing case 
by using the bipolar sigmoid and hyperbolic tangent 
functions of the measurement values, as the reference for 
the reconstruction, is presented as well. The bipolar 
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sigmoid functions are convenient and commonly used 
instead of sign functions in the neural network 
configurations [11]. The sign measurements present a 
special case of the hyperbolic tangent function.  

The paper is organized as follows. In Section II, the 
traditional compressive sensing is briefly explained. The 
idea of complex-valued binary compressive sensing and 
the bipolar sigmoid generalization are shown in Section 
III. In Section IV, the reconstruction algorithm is 
presented. Results are shown in Section V.  

II. TRADITIONAL COMPRESSIVE SENSING 
 Consider a discrete signal x(n) of length N, with 
≤ ≤ −0 1,n N  while X(k) denotes the corresponding 

transform domain representation. The signal and the 
corresponding transform are related as  
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or in a vector form 

 ,          = .=x ΨX X Φx    (1) 

The matrices Φ  and Ψ  are the direct and the inverse 
transformation matrices, respectively. We assume that the 
signal is K-sparse in the transformation domain, meaning 
that it has =K N  nonzero coefficients in that domain. 
 Following the CS theory, only M N<  samples can be 
used to reconstruct this signal. The signal with M available 
observations is denoted by ( ) ( ), 1,2,..., ,my m x n m M= =  
written in a vector form as: 

 [ ]1 2( ), ( ),..., ( ) .TMx n x n x n=y   (2) 
  The general goal of CS is to minimize the sparsity of X 
using the available observations y and under the 
constraints dictated by the measurements equations 
= ,y AX  where the relation between the measurements y  

and the transform domain representation X  is modeled 
using the measurements matrix. In other words, the CS 
reconstruction goal is to solve 
 0min   subject to   = ,X y AX   (3) 

where the rows of the M N×  measurement matrix A  
correspond to the positions of the available samples. The 
measurement matrix consists of i.i.d. standard normal 
distribution coefficients, so that there is no difference 
between direct/inverse transform framework for the 
measurements. The 0l -norm used in (3) counts the 
number of nonzero coefficients in X. However, this norm 
is not convex and is very sensitive (not applicable) to the 
noise. This is the reason why, more robust convex 1l -
norm is used to measure the sparsity resulting in the 
minimization problem 
 1min   subject to   = .X y AX   (4) 

Since the problem is now convex, the gradient descent 
algorithms can be used. Under certain conditions solutions 
of (3) and (4) are the same. 
 To solve the CS reconstruction problem, many 
algorithms have been developed. In this paper, a simple 
thresholding algorithm, presented in Section IV, is used. 

III. BINARY COMPRESSIVE SENSING 
 In the CS theory, the number of measurement bits is not 
commonly considered. Bit-limiting the measurements 
could significantly affect the reconstruction performance 
of standard CS approaches. The measurement quantization 
is particularly important in the hardware implementation 
context. One-bit measurements are the most extreme and 
simplest case, realized with comparator-based hardware 
devices. The one bit represents the sign of the sample 
 { }sign=y AX   (5) 
which is, for real-valued signals and transforms, 
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Then, the CS reconstruction goal can be reformulated as 
 { }1min   subject to   =sign .X y AX   (7) 

This way, we try to reconstruct the coefficients ( )X k  by 
ignoring the amplitude of the available measurements. 
Consequently, this method needs more measurements, 
commonly M N> , so that the traditional idea of CS is, in 
that sense, destructed. However, in the case when the 
quantization accuracy is more important than the number 
of measurements, we can afford having a larger number of 
samples [14]. The requirement for storage is also 
significantly reduced for sign measurements since the total 
number of bits is still low. 

A. Complex-valued extension 
Further, we assume a complex-valued signal ( )x n . 

Then the measurements y=AX are also complex. We also 
assume the measurement matrix A consists of random, 
complex-valued coefficients, i.i.d, normal, zero-mean 
distribution of real and imaginary parts, with a unity 
variance 
 ( ) ~ (0,1) (0,1),k mn jψ +N N   (8) 
for 0,1,..., 1k N= −  and 1,2,..., .m M=  In that case, the 
measurements are formed as 

 { }{ } { }{ }sign sign ,j= ℜ + ℑy AX AX   (9) 

where both real and imaginary parts are one-bit quantized. 

B. Bipolar sigmoid measurements 
  Since the sign function is not differentiable, it is 
common to use the hyperbolic tangent function instead of 
the sign function in the corresponding decision processes 
(like, for example, in the neural networks [11] or signal 
compression). The measurements are then presented as 
 { }{ } { }{ }tanh tanh .jα α= ℜ + ℑy AX AX   (10) 

For a large value of α , the hyperbolic tangent function 
will behave as a sign function. In the vicinity of zero, it 
will behave as a linear operator. The hyperbolic tangent 
function with 3α = is shown in Fig. 1.  

IV. BINARY ITERATIVE THRESHOLDING ALGORITHM 
For the reconstruction, we will adapt a method from the 

family of greedy algorithms, the Binary Iterative Hard 
Thresholding (BIHT) algorithm presented in [15], [16] for 
complex-valued signals. It is an extended version of the 



 

Iterative Hard Thresholding (IHT) algorithm [10]. This 
algorithm is convenient for the one-bit compressive 
sensing framework. 

 
Fig. 1. A hyperbolic tangent function acting as a sigmoid 

 
 For the binary case, the CS based reconstruction is then 

defined as solving the following problem 
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  The BIHT algorithm can be divided in three steps. 

1. In the first step, the approximation is computed and 
moved in the gradient direction (in the gradient descent 
sense). Given that the initial estimate is 0 =X 0 , the value 
of the signal is updated at the iteration i as 

{ }{ } { }{ }1 sign sign ,
2

H
i i i ijτ
+ ⎡ ⎤= + − ℜ − ℑ⎣ ⎦a X A y AX AX  

where τ  is a constant regulating the gradient descent step. 

2. Vector iX  is updated using the largest elements in 1i+a   
 1 1=T { },i K i+ +X a   (12) 

where {}T .K  is the thresholding operator, taking only the 
K largest components. 

The first two steps are repeated until a desired error or 
the consistency is achieved (or, in the worst case, if the 
maximum number of iterations is achieved). 

 3. After the procedure is stopped and the signal is 
reconstructed, the final step is to normalize the estimate 
and project the approximation onto the unit 2l  sphere 

 2/ .R i i=X X X   (13) 
 The algorithm is numerically evaluated in Section V. 
 The stationary case solution of the iterative process 
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where KX  and KA   are obtained by keeping the K  non-
zero elements of X  and corresponding columns of A . 
 The binary measurements can be generalized using their 
B-bit digitalized form. The measurements are stored into 
B-bit registers, 
 { }digital .B B= = ⎢ ⎥⎣ ⎦y AX AX   (14) 

In this case, the reconstruction is performed using the 
iterative matching pursuit algorithm. 

 The same algorithm can be used for the hyperbolic 
tangent function, replacing the sign function with tanh. 

V. RESULTS 
 Example 1: Consider a signal ( )x n  of the length N = 

256. The coefficients of the measurement matrix A are 
complex-valued i.i.d. normal random variables, that is, 
( ) ~ (0,1) (0,1)k mn jψ +N N  for 0,1, , 1k N= −K  and 
1,2, , .m M= K  The assumed signal is sparse, with sparsity 

level K = 5. It is reconstructed using the BIHT algorithm 
based on M = 3N measurements, with one-bit real and 
imaginary parts. The gradient-descent step is 0.001τ = . 
The original and the reconstructed signals are compared in 
Fig. 2. 

The reconstruction performance of the BIHT algorithm 
was also checked in a more extensive numerical 
experiment. For signal with sparsity K = 5, the number of 
measurements M was varied from 64 to 1024, with step 
64. For each observed number of measurements M, the 
mean squared error (MSE) is calculated based on 100 
independent random realizations of signal with sparsity  
K = 5, with corresponding random realizations of matrix 
A. The results are shown in Fig. 3, where blue dots 
represent squared errors in each observed realization, 
whereas the red dots show the corresponding MSE values. 

 
Fig. 2. Reconstruction of a signal using the BIHT algorithm, based on 

the measurements with one-bit real and imaginary parts. The signal 
parameters are N = 256, 3 256M = ×  and K = 5. 

 
Fig. 3. MSE in the reconstruction of signals with one-bit real and 

imaginary parts, with length N = 256 and sparsity K = 5. The MSE is 
calculated based on 100 independent realizations of signals and 
measurements, for each considered number of measurements M. Blue 
dots denote mean squared errors from each realization, red dots represent 
the MSE obtained by averaging the results from all realizations. 



 

 
Fig. 4. The mean squared error in the reconstruction of signals with 

length N = 128 and sparsity K = 2 using: the BIHT algorithm (first row) 
and the OMP algorithm (second row). The MSEs are calculated based 
100 independent realizations of signals for each considered number of 
measurements. In the OMP signal case, MOMP random 8-bit quantized 
measurements are considered (real and imaginary parts are quantized 
independently). In the case of the BIHT, the corresponding number of 
measurements is M = 8MOMP. Blue dots denote mean squared errors in 
each realization, red dots represent the MSE obtained by averaging the 
results from all realizations. 

  Example 2: In this experiment, we observe a signal of 
length N=128, with the sparsity K = 2. The original, 
complex-valued measurements ( ), 1,2, ,y m m M= K  are 
intentionally brought as inputs of a B=8-bit quantizer, to 
obtain quantized measurements ( )y m% . The real and 
imaginary parts are quantized independently, each with 8-
bits. They form { } { }( ) ,

B B
y m j= ℜ + ℑ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦AX AX% where 

. B⎢ ⎥⎣ ⎦  denotes the B-bit quantization. These quantized 8-bit 

measurements are used as the basis of the CS 
reconstruction using the classical OMP algorithm from [8], 
[11], [12]. The number of available 8-bit 
measurements OMPM  was varied from 8 to 128, with step 
8. The reconstruction MSE was calculated based on 100 
independent random realizations of signal with various, 
randomly positioned non-zero coefficients with random 
amplitudes, and with corresponding random coefficients in 
the measurement matrix A, of the form 
( ) ~ (0,1) (0,1)k mn jψ +N N  for 0,1,..., 1k N= −  and 

1,2,..., .OMPm M=  The obtained results are shown in Fig. 4 
(second row), where the quantization with B=8 bits 
increases the MSE level, as compared to the reconstruction 
using the accurate complex-valued measurements.  

Signals with the same properties as in the OMP case are 
considered in the experiment using the BIHT algorithm 

 
Fig, 5. The mean squared error in the reconstruction of signals with 

length N = 128 and sparsity K = 2 using: the BIHT algorithm (first row) 
and the OMP algorithm (second row). The MSEs are calculated based on 
100 independent realizations of signals for each considered number of 
measurements. In the OMP signal case, MOMP random 6-bit quantized 
measurements are considered (real and imaginary parts are quantized 
independently). In the case of the BIHT, the corresponding number of 
measurements is M = 6MOMP. Blue dots denote mean squared errors in 
each realization, red dots represent the MSE obtained by averaging the 
results from all realizations. 

 
with M = B·MOMP one-bit measurements (with real and 
imaginary one-bit parts). 

The reconstruction MSE is shown in Fig. 4 (first row). 
The MSE slowly reduces as the number of measurements 
increases, but the BIHT algorithm does not reach the level 
of the OMP MSE, for the observed number of 
measurements, and for the observed quantization levels.  

To additionally check the influence of the quantization 
on the OMP reconstruction, we reduce the number of 
measurement bits to B = 6, and perform the same 
experiment. The results are presented in Fig. 5. They 
indicate that, in this case, the OMP and the BIHT 
reconstruction performance are similar. With an increase 
of the number of available one-bit measurements, the MSE 
of the BIHT reduces proportionally. It is important to note 
that the main advantage of the BIHT reconstruction is in 
much simpler hardware implementation. 

  Example 3: In this example, we shall consider a 
signal of length N = 256, with noisy measurements  
 { }{ } { }{ }sign sign ,j= ℜ + + ℑ +y AX ε AX ε   (15) 

where ε  is a Gaussian noise vector with zero-mean and 
variance σ2. The variance is varied from 10-3 to 1. The 
BIHT algorithm is executed with 0.001τ = . The MSE and 
the signal-to-noise ratio (SNR) values are used to evaluate 
the reconstruction quality.  



 

 
Fig. 6. MSE and SNR of the reconstruction of signals in 100 realizations, 
with various noise levels and M = 3N and K = 5 
 

 
Fig. 7. MSE and SNR of the reconstruction of signals in 100 realizations, 
with various noise levels and M = 3N and K = 10 
 
 

The error, averaged over 100 independent signal and 
noise realizations, with K = 5 and M = 3N, is shown in 
Fig. 6. The case when the same number of measurements 
was taken, but with the sparsity K = 10, is shown in Fig. 7. 

 

Fig. 8. MSE and SNR of the reconstruction of signals in 100 realizations, 
with various noise levels and M=5N and K=10 

 

 
Fig. 9. MSE and SNR of the reconstruction of signals with hyperbolic 
tangent function measurements in 100 realizations, with various noise 
levels and M = 3N and K = 5 

 
 
Finally, the case with an increased number of  

measurements, when the sparsity level is K = 10 and M = 
5N measurements, is shown in Fig. 8.  

 



 

In all three cases, acceptable reconstruction results are 
achieved for a wide range of noise variances. The 
reconstruction was not successful only for a very large 
noise level.   

Example 4: As mentioned previously, the hyperbolic 
tangent function can be used instead of the sign function in 
the corresponding measurement process. In this example, 
we present the reconstruction of noisy measurements 
 { }{ } { }{ }tanh tanhjα α= ℜ + + ℑ +y AX ε AX ε  (16) 

with the same signal form as in Example 3 and 3α = . It is 
assumed that the signals are sparse with the sparsity K = 5. 
The signal is reconstructed using the BIHT algorithm and  
M = 3N measurements. Step 1 of  the BIHT algorithm is 
adapted to this form of measurements by changing the sign 
function with tanh function. The MSE and SNR in dB are 
presented in Fig. 9. It can be seen that the reconstruction 
based on hyperbolic tangent measurements produced 
better results than by using the signs of the measurements.  
 

VI. CONCLUSIONS 
This paper investigates the compressed sensing 

reconstruction of signals with binary measurements. For 
the case of complex-valued signals, the binary 
compressive sensing produced similar reconstruction 
results as in the case of using the all-real one-bit version of 
the approach. 

We compared the reconstruction results with the 
classical OMP-based signal recovery from a reduced set of 
quantized measurements. The measurements quantized to 
6 and 8 bits are considered in this context. The traditional 
CS reconstruction cannot be used on one-bit 
measurements. The reconstruction results obtained by 
using the one-bit BIHT is comparable with the standard 
CS recovery based on the quantized measurements, 
assuming a similar number of the total measurements bits. 

  The BIHT showed good reconstruction in both 
noiseless and noisy cases for the reconstruction of the 
signals. The generalization of the near-binary 
measurements was also presented, by using the hyperbolic 
tangent functions of the measurements as the reference. 
The presented results indicate that the reconstruction 
performance is better when bipolar sigmoid is used instead 
of sign functions for the measurements. 
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