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Abstract—An analysis of different sequences for the recon-
struction and targeting of underwater sonar images is presented.
The sonar images are assumed to be sparse, and their recon-
struction is possible by using the compressive sensing theory. The
goal is to localize and reconstruct targets by using an iterative
version of the orthogonal matching pursuit (OMP) method. The
sequences which are used as the transmitted signal waveforms
are formed with: the Alltop sequence, the M sequence, a random
Gaussian sequence, a binary random sequence, the Zadoff-Chu
sequence, and the Bjorck sequence. The comparison of the
reconstruction results is done for various numbers of samples in
the sequences and sparsity levels. An analysis of the performance
for each of the sequences in various noise levels is done as
well. Percentage of successfully detected targets is used as a
performance measure.

Index Terms—Comparison, Compressive sensing, Reconstruc-
tion, Sequence, Sonar imaging, Sparsity, Targeting

I. INTRODUCTION

The idea of sparse reconstruction from a reduced set of
measurements is a well studied topic in the field of signal
processing. A signal with very few nonzero samples in one of
its representation domains is a sparse signal. When a signal is
considered as sparse, it can be reconstructed with a reduced set
of measurements. The field dealing with this problem is within
the theory of compressive sensing (CS) and sparse signal
processing (SSP) [1]-[3]. The idea is to reduce the number
of measurements, so that system’s processing of the signals
(acquisition time, energy, required memory) is also reduced.
Other than the desired sampling techniques with reduced set
of samples, there are some undesirable constraints that make
the signal having a reduced set of measurements. In any case,
under certain conditions, the theory of SSP and CS can be
used to successfully reconstruct such signals. Since the theory
reflects the acquisition of signals, it can be used in many
fields and applications. In recent years, many methods and
algorithms for the reconstruction and analysis were developed,
each corresponding to a specific type of signal. One of the
most successful algorithms is the orthogonal matching pursuit
(OMP) and its variants [4]-[6].

The radar and sonar signal analysis using CS theory is a
topic which has been discussed in the literature. Underwater
sonar imaging is a representative example of sparse signal
since in a relatively large sonar image there are only a
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few targets. As such, it may significantly benefit from the
compressive sensing techniques. It is confirmed that the CS
theory can be used in radar/sonar systems to obtain high-
quality images with small amount of measurements. Here,
we will consider sonar two-dimensional signals (images) for
targeting underwater objects. One of the famous methods
for reducing number of measurements in radars, presented
in [7], assumes that the radar image is sparse in range-
Doppler domain where the targets are represented using the
Doppler frequency shifts and delays. The same concept is
used in underwater sonar imaging [8]. Although similar, radar
and sonar systems have differences which make changes in
their configuration and analysis. The sound velocity in sonar
systems is much slower than velocity of radar waves, which
makes the Doppler frequency shifts spreading over larger
spectrum. Besides frequency variation, scaling effect should
always be taken into consideration, particularly for the Doppler
effect. These changes have to be taken into consideration for a
successful application of compressive sensing techniques and
signal reconstruction.

In [8], the reconstruction of sonar images using a compres-
sive sensing method and Alltop sequence was examined. In
[9], it has been shown that the maximum length sequence
(M sequence) can be used for the reconstruction of the sonar
images using the basis pursuit algorithm. There exists a vast
number of different sequences used for the transmission and
analysis of signals, some of them presented in [10]-[17]. In
this paper, in addition to the Alltop and M sequences, we
will analyze and compare four more sequences, which are: the
random Gaussian, the random binary sequences, the Zadoft-
Chu, and the Bjorck sequences. The iterative form of the OMP
algorithm [6] will be used for sparse signal reconstruction.
The comparison will be done for various numbers of available
samples, sparsity and noise levels. Percentage of successful
target detection (reconstruction of the target component) will
be used for comparison. Also, in practice, signals are only
approximately sparse due to different reasons such as off-grid
effects, noise, background reflection [6], [18]. Reconstruction
of approximately sparse images with a sparsity assumption
introduces an error in the reconstructed image, which will be
analyzed in this paper.

The paper is organized as follows. A general model of sonar



images is described in Section II, together with the definitions
of each sequences. The theory of CS and SSP is presented
in Section III. The derivation of the exact reconstruction error
is introduced in Section IV. The results and comparisons are
shown in Section V. Section VI concludes the paper.

II. SONAR IMAGE MODELLING

We assume that the sonar image is modelled and calculated
using one of six different sequence forms of the transmitted
signal. The sequences considered for the signal are: (1) the
Alltop sequence, (2) the M sequence, (3) the random Gaussian
sequence, (4) the binary random sequence, (5) the Zadoff-Chu
sequence (it is shown, that it cannot be used for this sonar
image calculation), and (6) the Bjorck sequence.

The general form of the transmitted signal will be denoted
by s(n). The transmitted signal is modulated on a carrier
frequency f.. In the continuous time domain, the modulated
transmitted signal is of the form [7]-[9]

o(t) = 55 ) exp (2 fet), (1)

where A is the code width of the sequence, 0 < ¢t < NA, and
fe is the carrier frequency.

The echo signal from one point target, with velocity v, is
delayed for 7 and scaled in frequency due to the Doppler effect
for (¢4 v)/(c — v). The echo signal form is

v
rit)=gs <(A)) e (2rf (- 7)), @

where ¢ is a complex scattering coefficient and c is the speed
of sound.

For K scattering points, after demodulation using the carrier
frequency f., the received discrete echo signal can be written
as a sum of K discrete forms of echoes (2) [9], [19], [20]

K
T(n) = ngis(n - dkl) exXp (jwkin)7 (3)
i=1

where dj, corresponds to the range (time delay) and wy, to the
cross-range (Doppler shift) of targets. Assume that the range
and cross-range coordinates are on the grid and that they may
take one of the values from the set

(dp,wq) S {dl,dg,. . dN} X {w17WQ7 .. .WN},
where
dp S {dl,dQ,...dN}
wg € {w1,wa,...wN}. )

Note that there are N? possible target positions in total. This
model is applicable for real target positions as well. Then an
off-grid target will spread over a few grid points. The off-grid
effects are analyzed in [6].

The received echo, with the assumed discrete grid for the
range and cross-range, can be written as

K
T(?’L) = ng1¢kz (TL), (5)
=1

where ¢ (n) are the basis functions defined by

or(n) = s(n — dy) exp (jwkn). (6)
The basis function for a given pair (dy,w,) = (p, % q),
corresponding to the scatterer k, can be written as
) n
Op.q(n) = s(n —p)exp (]27rqﬁ> @)
and
K
T(TL) = Z 9k; d)pi,lh (TL) (8)
i=1

The scatterer index k and the indices of its range position
p and cross-range position g are related as

k=p+ Ngq,
p=Fk—N[k/N|
q=[k/N]

with p = 0,1,...,N—-1,¢q = 0,1,...,N — 1, and k£ =
1,2,...,N? — 1 and |k/N] is the rounding of k/N to the
first lower integer value.

The periodic autocorrelation of the signal s(n) is defined
by

Rs(n) = Z s(n+m)s*(m). )

This function is closely related to the coherence index,

. | 25 Pk(n)@y ()
k.p \/Zn |¢k(n)|2\/2n |¢P(n)|2’

as a very important parameter in the compressive sensing [3].
Next, we will consider and compare various sequences that
can be used in the sonar image modelling and implementation.

1

A. Alltop sequence

The transmitted signal can be formed using the Alltop
sequence as its s(n) part, [6]-[8]. This sequence can be written

as
1
s(n) \/Ne
where 0 < n < N — 1. The Alltop sequence, for N = 31,
is shown in Fig. 1(a), along with its periodic auto-correlation
function Rss(n).

The property of this sequence, important for this application
is that the side lobes of the auto-correlation function are small.
Indeed, for the Alltop sequence the side lobes are of 1/v/L
order for the periodic auto-correlation function. The side lobes
remain close to this value for the aperiodic auto-correlation
function as well.
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B. M sequence

The M sequence (or maximum length sequence - MLYS) is
a pseudo-random binary sequence based on linear feedback
shift register sequences. This pseudo-random sequence is
widely used in many systems, including digital communication
systems that employ direct-sequence spread spectrum and
frequency-hopping spread spectrum transmission systems.

The sequence is generated using the recursive formula [9],
[10]

N
s(n) = Z cms(n—m) (11)
m=1

The M sequence is normalized so that its energy in N
samples is equal to one. The number of occurrences of values
—1/v/N and 1/v/N in the M sequence are approximately
the same. For the sequence of length N = 2™ — 1 the
number of 1/v/Ns is N/2, while the number of —1/v/Ns
is N = N/2—1. An example of the M sequence, for N = 31
is presented in Fig. 1(b).

Property of the M sequence is that its periodic auto-
correlation function is of the form

1, for n = kN
R.(n)=<{"
(n) {—1/N, elsewhere

12)
The periodic auto-correlation function for the M sequence and
N = 31 is given in Fig. 1(b).

For the compressive sensing it is important to notice that
the measurement matrices formed from the M sequences are
characterized by almost the same coherence index as the
Alltop sequences.

C. Random Gaussian sequence

In the case of Gaussian random sequence the signal s(n)
assumes the values distributed according to the zero-mean and
unit variance normal Gaussian form

1

s(n N(0,1). 13
() ~ =N (0.1) (13)

The auto-correlation function of this random signal is
Rs(n) =E{s(n+m)s(m)} = d(n —m). (14)

Note that for limited sequence the auto-correlation function is
just an approximation of this form. One random realization of
the Gaussian form of the signal s(n) and its periodic auto-
correlation function are show in Fig. 1(c).

D. Random binary sequence

The random sequence that randomly assumes values 1/ VN
and —1/v/N, with equal probability may be used as a signal
s(n). A random realization of this signal and its periodic
autocorrelation function, for N = 31 are given in Fig. 1(d).

E. Zadoff-Chu sequence
The Zadoff-Chu sequence is defined as [13], [14]

o fn) = ﬁexp —j%ﬁin("’gm) , N even,
v - . ZTT n(n
eexp (- ) N odd
(15)

where  is integer such that ged(y, N) = 1 and (@ is arbitrary
integer.
This sequence had the auto-correlation function

N

Rs(n) = Z s(n+m)s*(m) = d(n —m).

m=1

(16)

This is an interesting an important property that would highly
recommend this sequence.

The Zadoff-Chu sequence is a constant amplitude zero
autocorrelation (CAZAC) sequence, since it has almost zero
size lobes of the periodic auto-correlation function [15], [16].

However, if we take into account that this auto-correlation
is multiplied by the other part in the received signal, then
the ambiguity for the range and cross-range appears. It can
not be resolved, making this sequence unsuitable for the
sonar imaging applications. The Zadoff-Chu sequence and its
autocorrelation functions are shown in Fig. 1(e), for N = 31.

F. Bjorck sequence

The Bjorck sequence is defined by [17]

s(n) = —— exp (j[(n/N)] arccos(

1
N )
n=01,...,N—1,

where NV is a prime number that assumes the form N = 4m+-1
and [(n/N)] is the Legendre symbol that takes values +1 and
0 as

0, for n =0 mod N
+1, for n is a qudratic residue mod N

[(n/N)] =

—1, for n is a qudratic nonresidue mod N

The Bjorck sequence is also a CAZAC sequence, since it has
almost zero size lobes of the periodic auto-correlation func-
tion [15], [16]. The Bjorck sequence and its autocorrelation
functions are shown in Fig. 1(f), for N = 33.

III. SPARSE SIGNAL PROCESSING

Any considered sequence can be used to define the mea-
surement matrix and fit into the framework of compressive
sensing theory and sparse signal processing. We can rewrite
the samples of received signal, defined by (8), in a matrix from

r = Pg, a7

where r is the column vector of the echo signal, ® is the basis
functions matrix and g = [g(0), g(1),...,g(N? — 1)]T is the
column vector of the scattering coefficients g(k) = gx.



TABLE 1
ELEMENTS OF THE THE FUNCTION s(n) FROM EQ. (20)

Sequence Elements
Alltop L exp (271']'713 /N)
M sequence \iﬁMLS{Z“Y -1}
Gaussian ~ WN (0,1)
binary ~ \/—Ns1gn(/\/(0, 1))
Zadoff-Chu  — exp (— 25" (n + 2Q + mod(N, 2)))
Bjorck \/% exp (][(n/N)] arccos( 1+f/ﬁ)>

The scattering vector g is assumed to be K-sparse since
the echo is produced by only K reflecting points, and this
number is assumed to be much smaller than the total number
of possible scattering points N x N.

Since of the vector g is sparse then, according to the
compressive sensing theory, all its values can be reconstructed
from a reduced set of the received signal samples [1]-[3],
considered as observations y,

y = [r(nl),r(ng),...,r(nM)]T (18)

or
y=Ag (19)

where the measurement matrix A is obtained from the full
matrix ® by keeping the rows corresponding to the available
samples at n; € M = {ny,na,...,np}. The elements of the
measurement matrix are defined as in (7)

ag,; = s(n; — dp) exp (jqul), (20)

where d,, and w, correspond to the vector rearranged coeffi-
cients (range and cross-range) for a given scattering position,
denoted by index k. As mentioned, the function s(n — p) is
defined by one of the listed sequences, which will be used in
particular applications. The elements of s(n) are summed up
in Table L.

The task of a compressive sensing reconstruction is to
produce all values of g, by minimizing its number of nonzero
samples, that is equal to ||g||,, subject to the given values of
the received signal given in y [1]-[3]. It can be written as a
general compressive sensing problem formulation

min [|g||, subject to y = Ag. 21

In other words, the aim is to reconstruct the sparsest possible
reflection coefficients vector g, by minimizing the number of
its nonzero elements ||g||, subject to the available samples y.
There are several approaches, with various methods within
each of them, to solve this problem. The most important
approaches are based on the components matching pursuit,
convex relaxation of the minimization problem and gradi-
ent based-algorithms to find the solution, and the Bayesian
based formulations and reconstruction. A simple reconstruc-
tion method [6], that belongs to the components matching
pursuit, will be used in this paper.

A. Initial estimate

For the reconstruction of sparse signal g, we will use its
initial estimate as a projection of the available measurements
of the received echo on the measurement matrix. The initial
estimate is calculated by using the available samples [21], [22]

=Aly (22)
or
go(k) = Y r(ni)aj .- (23)
n;EM
If we replace the echo signal we get
K
= > D> 9kbpa(ni)ai, (24)

n; EM i=1

We will denote the terms D, 1 &p, q; (n:)aj ., by pu(k, ki)

we get
z) = Z ¢Pi7Qi(ni)a/;::,ni

n; €M

= Z s(n; — dg)s™(n; — pi)eﬂﬂ(qf:—q)m/N

n; EM

and

K

k)= gplk, k). (25)
i=1

Note that, with a random set of available samples, the value

of u(k, k;) and the initial estimate go(k) are random variables

[18], [22]. When the summation over n; is performed over all
indices n; = 0, 1,27 ...,N —1, then

s(n—dy)s*(n — p; )€J2ﬂ(q1 ajn/N

||Fﬂ2

Note that takmg all samples n; =0,1,2,...,N — 1, we still
have case of the reduced number of samples and the need
for the CS based reconstruction since the number of possible
target positions is N x N = N2 > M = N.

The maximal absolute value of p(k, k;), for k # k;, is called
the coherence index of the measurement matrix A. It defines
the condition for the unique reconstruction of a sparse signal
from a reduced set of sample [1]-[3], [21]. The uniqueness
condition is K < (1 + 1/u)/2. It can be easily derived from
the analysis of the initial estimate.

In the case of n; = 0,1,2,..., N — 1, the analysis of the
maximal absolute value of term u(k, k;) for g, = qx reduces
to the analysis of the autocorrelation function

N-1

Z s(n —dg)s*(n —p;), for ¢; = q.

n=0

M(ka kz) =

This means that we may expect good performance in the
compressive sensing reconstruction when the maximum ab-
solute value of side lobes of the autocorrelation function
|Zn o ' s(n — dy)s*(n — p;)| are minimized (for di # p;).
Although the coherence index is very pessimistic, it can be a



good indicator the reconstruction quality that we may expect
from the presented sequences.

However, in general, we should consider the whole expres-
sion for p(k, k;) and k # k;. It reduces to the analysis of

N—1

AF(n,r) = Z s(n +m)s* (m)el 2 /N,

m=0
for all n and r. This form is equal to the ambiguity function
of the Rihaczek distribution of the sequence. The analysis
of coherence index reduces then to the calculation of the
maximum value of |AF(n,r)| for (n,r) # (0,0). Note that
AF(0,0) = p(k, k) = 1.

The ambiguity functions (their absolute values) of the
considered sequences are presented in Fig. 2. It is obvious
that Zadoff-Chu sequence can not be used, since it produces
values AF(m,r) =1 for (m,r) # (0,0).

The mean and the variance of g, are calculated using the
randomly sampled available signal measurements [18]. The
one-target initial estimate is calculated as

go(k’) = Z gkl(?bplv(h (ni)al:,ni'
n; EM

When the position is found, i.e. & = Fk;, its mean is
E{go(k)} = gx, M/N. Since M is a random set, for k # k;
the initial estimate behaves as random variable with zero-mean
and variance var{go(k)} = |g,|>M/N?. Now the results can
easily be generalized for any sparsity K

K
Elgo(k)} = 3 30000k ko)

=1

MK
var{go(k)} = N2 Z |9k,
i=1

(26)

216k — ki),

27
where §(k) =1 only for £ = 0 and 6(k) = 0, elsewhere.

IV. ERROR CALCULATION FOR NONSPARSE IMAGES

In real data, signals are only approximately sparse or
nonsparse. This can happen for many reasons, such as noisy
measurements or off-grid sampling [18]-[20]. Let consider
a reflected echo signal r that is only approximately sparse
in the coefficients g domain. When the signal is not strictly
sparse, it has more non-zero components in the representation
domain. However, in order to use the theory of CS, the sparsity
assumption has to be made. The error which is produced by
the reconstruction of nonsparse signal with such assumption is
calculated in this paper. We will assume that the CS conditions
for the reconstruction are satisfied with assumed sparsity K
and the number of available samples M, so that we can detect
and reconstruct K components of g.

The reconstructed coefficients vector has K (nonzero) re-
constructed components, meaning that N2 — K coefficients re-
mained unreconstructed. Following (27), one unreconstructed
coefficients produces noise in the reconstructed components
with variance |g;|> M/N2. The noise variance in the recon-
structed coefficients will have a scaling factor of (N/M)?2,

since the signal amplitudes in the initial estimate are pro-
portional to M and the amplitudes are recovered to their
original values as if all samples were available, proportional
to its size. Therefore, the variance of noise which causes a
single reflection coefficients whichQis not reconstructed to the
reconstructed one is |g;|? A (%) =L lg:|?

For a signal reflected from K points, the noise energy in
the reconstructed coefficients will be K times larger than the
energy (variance) in one reconstructed coefficient. Then, the
total noise energy caused by the unreconstructed coefficients

can be written as
N2

K

2 2

ler—gxlz=; > gl
i=K+1

(28)

Energy corresponding to the unreconstructed N — K coeffi-
cients is obviously

N2

2 2
lg—gxlls = > la:l*-

i=K+1

(29)

Finally, combining (28) and (29), we can conclude that the
error in the reconstructed coefficients with respect to the K
corresponding coefficients if the original signal were used is
K
lgr—gklls = 57 ls—sxl (30)
where [lg|l> = E{X,|g(k)|?} is the expected value of
squared norm-two, gx is the K-sparse version of g. The
elements of vector gx are gk (k) = g(k) for k € K, and
gi (k) = 0 for k ¢ K. The reconstructed vector gp is formed
in the same way. The coefficients at k& € K are the results
from the reconstruction procedure and gr(k) =0 at k ¢ K.

The case without noise is considered as the ideal case. In
real scenarios, the received signals have some noise. Having
noisy available measurements i.e.

Yn +en = Ag. €1y

will result in a noisy initial estimate go (k)

go(k) = Y (r(ni) +e(ni))aj ..

n; EM

The variance of additive noise ¢ is 0. Additive noise caused
variance in each term is o2/N. Then the total initial estimate
variance is o ;= MoZ/N. Since the initial estimate is
multiplied by N/M in the reconstruction, the noise variance
in the reconstructed component is or?N /M [6], [18].

The total error in K reconstructed coefficients is

N
lgn—gsls = K770 (32)

In general case, when the signal is approximately sparse and
noisy, the error will then be calculated as [6], [18]

2 K 2 N
ler—gxlls = 5 lle—gxlly + K302, (33)
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V. RESULTS

Example 1: Percentage of found targets. In this example,
we will statistically analyze how each sequence behaves in
various environments. We consider a sparse signal with various
sparsity levels, varying from O until 16. The considered SNR
values are 20dB, 5dB, and 0dB. The average reconstruction
success in terms of percentage of reconstructed targets in
100 realizations of each sequence is calculated. Results for
N = 31 for all analyzed sequences and varying sparsity level
are shown in Fig. 3. It is seen that, in low noise environments,
the Alltop and M sequence have the best performance. In high
noise environments, the Bjorck sequence can also compete
with them. The Gaussian and binary random sequence show
satisfactory results. The Zadoff-Chu, as expected, failed to
detect targets in any case.

Example 2: Error calculation. The error calculation for
the nonsparse and noisy cases are shown in this example. The
statistical and theoretical error, respectively, are calculated as

E, = 101og (|lg—gxrll3), (34)
K N
E; = 10log <(M +1)llg—gxll; + KM“§>'

The average of 1000 realizations is taken, since we ignored
the cases when we could not find the right positions of the
targets. The results for SNR=20dB and SNR=5dB are shown
in Table II. Although the M sequence is the best for finding
the targets, it is seen that, in the cases when the positions are
successfully found, the Alltop sequence shows slightly better
results in the reconstruction. Also note that the theoretical and
statistical error give almost identical values in all considered
cases.

(35)

Example 3: Analysis of the number of available samples
on the best sequences. From Example 1 we see that the
sequences M, Alltop and Bjorck show the most reliable results
in terms of the percentage of found targets. In this example,
we will further examine those sequences. Target detection rate,
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Fig. 4. Successful reconstruction percentage for M sequence for SNR =
20dB (top) and SN R = 5dB (bottom)

in terms of different number of sparsity levels and various
number of measurements, using the M sequence, is shown in
Fig. 4 for a high and moderate signal to noise ratio. The same
for Alltop sequence is shown in Fig. 5 and in Fig. 6 for the
Bjorck sequence. We can see that the M sequence and the
Bjorck sequence are more robust to changing the number of
measurements than the Alltop sequence.

Example 4: The best sequences on randomly positioned
targets. After the deep analysis on different sequences, the
sequences M and Bjorck are used for the final reconstruction
of data. We will consider an area of interest with 5 targets
randomly positioned and more targets which arrived due to
noise or off-grid sampling. We consider a noisy case with
SNR=10 dB. The original area of interest is shown in Fig. 7
(top). The reconstruction using the Bjorck sequence and the
M-sequence is shown in Fig. 7 (middle, bottom), respectively.

Example 5: The best sequences on a set-up data. In
Fig. 8 (top) a set-up of a boat under water is modelled. In
this case, the number of our target depends on the number of
points with which the boat is analyzed. In Fig. 8 (top), the
number is i = 14. Since the number of targets is high, the
sequences are considered with N = 127. It is also assumed
that noise exists with SNR=15 dB. The reconstruction with the
M sequence is shown in Fig. 8 (middle) and the reconstruction
with the Bjorck sequence is shown in Fig. 8 (bottom).



TABLE 11
AVERAGE ERROR IN 1000 RANDOM NONSPARSE IMAGES WITH M = N =31 AND K =5

SNR= 20dB ‘ M seq. Alltop  Bjorck  Gaussian  Binary  Zadoff-Chu
Statistics —-10.55 —10.52 —9.37 —9.22 —9.36 0.02
Theory —-10.60 —10.66 —9.51 —9.18 —9.42 0.00
SNR= 5dB ‘ M seq. Alltop Bjorck  Gaussian  Binary  Zadoff-Chu
Statistics —1.26 —1.03  —0.60 —0.74 —0.90 0.01
Theory —1.23 —-1.31 —0.75 —0.63 —0.90 0.00
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Fig. 5. Successful reconstruction percentage for Alltop sequence for SNR =
20dB (top) and SN R = 5dB (bottom)

VI. CONCLUSIONS

The comparison of sequences for the reconstruction and
targeting of underwater sonar images is analyzed. It is assumed
that the images are sparse, and their reconstruction is possible
by using the compressive sensing theory. Then, the goal is to
localize and reconstruct the target by using an iterative variant
of the OMP method. The comparison is performed for various
number of available samples and sparsity levels, as well as
different noise levels. It is seen that the Bjorck and M sequence
over-perform randomly generated sequences (Gaussian and
binary) in low noise setups. The Alltop sequence showed
good results also. It is shown that the Zadoff-Chu sequence
cannot be used because of its quadratic behaviour. Future
work will consider gathering and reconstruction of real data
to successfully detect all targets.
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Fig. 6. Successful reconstruction percentage for Bjorck sequence for SNR =
20dB (top) and SN R = 5dB (bottom)
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