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a b s t r a c t 

With their ability to cater for simultaneously for multifaceted information, multichannel (multivariate) 

signals have been used to solve problems that are normally not solvable with signals obtained from a 

single source. One such problem is the decomposition of signals which comprise several components 

for which the domains of support significantly overlap in both the time, frequency and the joint time- 

frequency domain. Earlier, we proposed a solution to this problem based on the Wigner distribution of 

multichannel signals, which requires the attenuation of the cross-terms. In this paper, an advanced solu- 

tion is proposed, based on eigenvalue analysis of the multichannel signal autocorrelation matrix, followed 

by the minimization of their time-frequency concentration measure. The analysis offers less restrictive 

conditions for the signal decomposition, compared to the case of the Wigner distribution. The algorithm 

for the separation of components is based on concentration measures of the eigenvector time-frequency 

representation, which represent linear combinations of the overlapping signal components. With an in- 

creased number of sensors/channels, the robustness of the decomposition process to additive noise is 

also demonstrated. The theory is supported by numerical examples, whereby the required channel dis- 

similarity is also statistically investigated. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

a  

t  

f  

o  

f

 

n  

m  

(  

f  

c  

b  

d  

m  

t  

m

(

d  

W  

t  

t  

f

 

i  

i  

n  

s  

w  

p  

d  

e  

e  

f  

t  

s

h

0

. Introduction 

It is well established that the use of the conventional Fourier

nalysis for the characterization and processing of signals with

ime-varying spectra is quite limited [1–19] . During the last

ew decades, these constraints have inspired the development

f various powerful algorithms and approaches within the time-

requency signal analysis framework [9] . 

Traditional time-frequency analysis deals with univariate sig-

als, frequently characterized through amplitude and frequency

odulated oscillations [9–15,19] . The short-time Fourier transform

STFT) and the Wigner distribution (WD) are commonly used time-

requency representations. In practice, signals are usually multi-

omponent, meaning that they can be represented as linear com-

inations of individual signals (components). Owning to its many

esirable properties, Wigner distribution has been the basis of

any instantaneous frequency (IF) estimators, developed to cap-

ure and describe frequency oscillations [9,17,18] . However, un-
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esirable components, known as cross-terms, do appear in the

igner distribution of multicomponent signals. With the inten-

ion to keep desirable properties of the STFT and high concentra-

ion of the WD, the S-method is developed as an alternative time-

requency representation, balancing between the previous two [9] . 

For an independent characterization, each signal (component)

n a multicomponent signal should be separated from others and

ndividually analyzed [4–7] . Such decomposition of multicompo-

ent signals on individual components is possible for univariate

ignals by means of the algorithm originally presented in [4] ,

hich is based on the S-method. This type of decomposition is

ossible under the condition that time-frequency supports of in-

ividual components do not overlap. In the univariate case, in gen-

ral, it is not possible to separate overlapped signal components,

xcept for some very specific and a priori known/assumed signal

orms, such as linear frequency modulated signals – using chirplet

ransform [20] or Radon transform [21] , or sinusoidally modulated

ignals – using inverse Radon transform [22,23] . 

Recently, new perspectives for the multicomponent sig-

al decomposition have appeared, in light of the multivari-

te/multichannel signal paradigm [1] . Multivariate (multichannel)

ata have been largely available lately, as a result of new de-

elopments in the sensor technology. With the aim to exploit
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multichannel signal interdependence through a joint time-

frequency analysis, concepts of modulated bivariate and trivariate

data oscillations appeared first, followed by the generalization of

the concept to an arbitrary number of channels [19,24–26] . The

joint IF concept has been proposed in [24] , as a characterization

of multichannel data obtained by capturing combined frequency

in all individual channels. The IF of a multichannel signal is de-

fined as a weighted average of the IFs in all individual channels.

Following the foundations of these basic time-frequency concepts

for the multichannel data, synchrosqueezed transform has been

reintroduced within the multivariate/multichannel framework [19] .

Furthermore, the wavelet ridge algorithm, as a tool for the ex-

traction of local oscillatory dynamics of multichannel signal, is

also defined for multichannel signals [24] . Within the multichannel

framework, significant research has also been conducted with the

aim to place the empirical mode decomposition within the mul-

tichannel/multivariate context [27–31] . Interestingly enough, this

type of decomposition is possible only in the case of components

which do not overlap in the time-frequency plane, even in the

multichannel case. 

Multivariate Wigner distribution has been the basis of the re-

cently proposed approach for the decomposition of multichannel

multicomponent signals [1] . Exploiting the significant reduction

of undesirable cross-terms due to the multichannel signal nature,

this method provides the possibility to efficiently extract the com-

ponents with overlapped supports in the time-frequency domain,

something that was not, in general, possible for univariate sig-

nals, using any known decomposition procedure. In particular, the

autocorrelation matrix of Wigner distribution is decomposed into

eigenvectors. Using a steepest descent approach [1] , they are lin-

early combined to form the extracted components. Alongside the

possibility to separate overlapped components, it has been even

possible to apply the decomposition procedure to extract the IF of

real-valued multichannel signals with amplitude variations propor-

tional to phase variations [2] . The influence of channel phase dif-

ferences (in the bivariate case) is analyzed in [3] . 

In this paper, the decomposition procedure is performed by

starting directly from a realization of signal autocorrelation ma-

trix. This leads to less restrictive signal decomposition conditions,

compared to the case of the decomposition based on multichan-

nel Wigner distribution. It is shown that the eigenvectors of the

analyzed matrix contains linear combinations of components over-

lapped in the time-frequency plane. These components are then

extracted by minimizing the concentration of the linear combina-

tions of eigenvectors. Numerical results verify the presented the-

ory, with a special emphasis on robustness in noisy conditions and

its relation to the number of channels. Overlapped components ap-

pear in various signal processing applications, such as in radar sig-

nal processing [1] , multiple antenna systems [32] , some biomed-

ical signals, audio signals [33] , to mention but a few. Multivariate

time-frequency analysis has been related to the analysis of EEG sig-

nals of the newborns [34] . A potentially interesting application of

the presented decomposition approach can be also found in multi-

channel lamb wave analysis [35] . 

The problem of the multicomponent multichannel signal de-

composition can be closely related to the problem of blind source

separation [36–38] . Although carrying a similar spirit as the mul-

ticomponent signal decomposition considered in this paper, blind

source separation based on time-frequency analysis still has some

crucial differences. For example, the method for blind source sepa-

ration proposed in [37] has a different ultimate criterion for the

decomposition. Namely, it is based on the difference of time-

frequency signatures of the sources, whereas our decomposition

approach enforces the separation based on the concentration mea-

sure of each individual component. The second difference is the

motivation behind the approaches: while the multicomponent
ultichannel signal decomposition aims at extracting all individual

ignal components, the blind source separation framework aims to

eparate signal sources, which could be either monocomponent or

ulticomponent signals. 

The paper organization is as follows. After a short overview of

he background theory and basic definitions, Section 2 continues

ith the detailed analysis of multichannel multicomponent signals.

n this section, the attention is devoted to the eigenvectors of sig-

al autocorrelation matrix and their relations with signal compo-

ents. Section 3 presents the multichannel multicomponent signal

ecomposition approach, founded on the minimization of the con-

entration measure. Numerical results are given in Section 4 , while

he paper ends with concluding remarks. 

. Multivariate multicomponent signals 

Discrete-time signals of the form 

 (n ) = 

⎡ 

⎢ ⎢ ⎣ 

a 1 (n ) e jφ1 (n ) 

a 2 (n ) e jφ2 (n ) 

. . . 

a C (n ) e jφC (n ) 

⎤ 

⎥ ⎥ ⎦ 

, n = 1 , 2 , . . . , N, (1)

btained by measuring a complex-valued signal x ( n ) with C sen-

ors, are known as complex multichannel signals. The amplitude

nd phase of the original signal are modified by each sensor, to

ive a i (n ) exp ( jφi (n )) = αi x (n ) exp ( jϕ i ) . In the case of real-valued

easured signal, its analytic extension 

 (n ) = x R (n ) + jH{ x R (n ) } 
s commonly used, with x R ( n ) being the real-valued measured sig-

al and H{ x R (n ) } its Hilbert transform. The analytic signal contains

nly nonnegative frequencies and the real-valued counterpart can

e reconstructed. This form of signal is especially important in the

nstantaneous frequency interpretation within the time-frequency

oments framework. 

Consider a multichannel signal obtained by sensing a mono-

omponent signal of the form x (n ) = A (n ) exp ( jψ(n )) . The value

f this signal measured at a sensor i can be written as 

 i (n ) exp ( jφi (n )) = αi exp ( jϕ i ) x (n ) . 

A real-valued form of this multichannel signal takes the

orm a i ( n )cos ( φi ( n )). According to Bedrosian’s product the-

rem [16] , the complex analytic signal a i (n ) exp ( jφi (n )) =
 i (n ) cos (φi (n )) + jH{ a i (n ) cos (φi (n )) } is a valid representa-

ion of the real amplitude-phase signal a i ( n )cos ( φi ( n )) if the

pectrum of a i ( n ) is nonzero only within the frequency range

 ω| < B and the spectrum of cos ( φi ( n )) occupies an nonoverlapping

much) higher frequency range. A signal is monocomponent if

 i ( n ) is slow-varying as compared to φi ( n ) variations. The signal

odel with slow amplitude variations, as compared to the phase

ariations, has been often considered in literature [39–45] . 

However, in general, for the case of multicomponent signals, the

omponents are localized along more than one instantaneous fre-

uency. 

.1. Multivariate and multicomponent signals 

Consider a multicomponent discrete-time signal 

 (n ) = 

P ∑ 

p=1 

s p (n ) , (2)

ith P components of the form 

 p (n ) = A p (n ) e jψ p (n ) , (3)



L. Stankovi ́c, M. Brajovi ́c and M. Dakovi ́c et al. / Signal Processing 167 (2020) 107261 3 

w  

n  

t  

c  

c  

i

x  

S  

e  

c  

t⎡
⎢⎢⎣

W

A

f  

m

 

x

M  

 

C

 

n  

C  

e

 

s⎡
⎢⎢⎣
o

X

w  

m  

p

 

b

R

w  

m

R

w  

t

Fig. 1. Signal Decomposition with a signal measured by C = 2 sensors. Additive 

noise of the standard deviation σε = 0 . 01 is present in the signal: (a) Time- 

frequency representation of the input signal. (b) Eigenvalues of the autocorrela- 

tion matrix R . (c) Time-frequency representation of the first eigenvector. (d) Time- 

frequency representation of the second eigenvector. (e) Time-frequency representa- 

tion of the reconstructed first signal component. (f) Time-frequency representation 

of the reconstructed second signal component. 
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here the component amplitudes A p ( n ) have a slow-varying dy-

amics as compared to the variations of the phases ψ p ( n ). Assume

hat components are independent signals, i.e., that no component

an be written as a linear combination of other components (for all

onsidered time instants n ). The corresponding multichannel signal

s then given by 

 (n ) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∑ P 
p=1 α1 p s p (n ) e jϕ 1 p ∑ P 
p=1 α2 p s p (n ) e jϕ 2 p 

. . . ∑ P 
p=1 αCp s p (n ) e jϕ Cp 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

x (1) (n ) 

x (2) (n ) 
. . . 

x (C) (n ) 

⎤ 

⎥ ⎥ ⎦ 

. (4)

ignal in the m th channel, denoted by x ( m ) ( n ), is obtained as a lin-

ar combination of the signal components s p ( n ) multiplied with

omplex constants a mp = αmp e 
jϕ mp , m = 1 , 2 , . . . , C, p = 1 , 2 , . . . , P,

o give 
 

 

 

 

x (1) (n ) 

x (2) (n ) 
. . . 

x (C) (n ) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

a 11 a 12 . . . a 1 P 
a 21 a 22 . . . a 2 P 

. . . 
. . . 

. . . 
. . . 

a C1 a C2 . . . a CP 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

s 1 (n ) 
s 2 (n ) 

. . . 
s P (n ) 

⎤ 

⎥ ⎥ ⎦ 

. (5) 

e will introduce the notation 

 = 

⎡ 

⎢ ⎢ ⎣ 

a 11 a 12 . . . a 1 P 
a 21 a 22 . . . a 2 P 

. . . 
. . . 

. . . 
. . . 

a C1 a C2 . . . a CP 

⎤ 

⎥ ⎥ ⎦ 

or the C × P matrix that transforms the signal components to the

easured signal. 

Observation: The maximum number M of independent channels

 

(1) ( n ), x (2) (n ) , . . . , x ( C ) ( n ) in x ( n ) is 

 = min { C, P } . (6)

The proof is evident since the transformation matrix in (4) is an

 × P matrix with rank{ A } ≤ min { C, P }. 

Note that if C < P the maximum number of independent chan-

els x (1) ( n ), x (2) (n ) , . . . , x ( C ) ( n ) is equal to the number of sensors

 , while if C ≥ P the maximum number of independent channels is

qual to the number of components P . 

A matrix form of the previous relation between signals mea-

ured on C sensors and P signal components is 
 

 

 

 

x (1) (1) . . . x (1) (N) 

x (2) (1) . . . x (2) (N) 
. . . 

. . . 
. . . 

x (C) (1) . . . x (C) (N) 

⎤ 

⎥ ⎥ ⎦ 

= A 

⎡ 

⎢ ⎢ ⎣ 

s 1 (1) . . . s 1 (N) 
s 2 (1) . . . s 2 (N) 

. . . 
. . . 

. . . 
s P (1) . . . s P (N) 

⎤ 

⎥ ⎥ ⎦ 

. (7) 

r 

 sen = AX com 

here X sen is an C × N matrix of sensed signal values with ele-

ents x ( s ) ( n ) and X com 

is a P × N matrix of signal component sam-

les with elements s p ( n ). 

The autocorrelation matrix R of the sensed signal is defined

y 

 = X 

H 
sen X sen , (8) 

here ( · ) H denotes the Hermitian transpose. The elements of this

atrix are 

 (n 1 , n 2 ) = x 

H (n 2 ) x (n 1 ) = 

C ∑ 

i =1 

x (i ) ∗(n 2 ) x 
(i ) (n 1 ) , (9) 

here x (n 1 ) = [ x (1) (n 1 ) x 
(2) (n 1 ) . . . x (C) (n 1 )] T is the column vec-

or of sensed values at a given instant n . 
1 
The matrix R can be used for the analysis and characteriza-

ion of multicomponent multichannel signals. It is also the starting

oint of the decomposition algorithm for multicomponent signals

resented in this paper. 

Note that the sensed values x ( n 1 ) are the linear combinations of

he signal components. Although the decomposition could be per-

ormed directly, based on the sensed signals, it would not be com-

utationally efficient for C > P that is case common in the analysis.

he efficiency is improved using the matrix eigen-decomposition

f the autocorrelation matrix R . Some properties of this decompo-

ition, needed for the analysis of multicomponent signals, will be

eviewed next. 

.2. Eigenvectors and linear combination of vectors 

For any square matrix, the eigenvalue decomposition of a K × K

imensional matrix R gives 

 = Q �Q 

H = 

K ∑ 

p=1 

λp q p q 

H 
p , (10)

here λp are the eigenvalues and q p are the corresponding eigen-

ectors of R . Matrix � is a diagonal matrix with eigenvalues

p , p = 1 , . . . , K on the main diagonal whereas the matrix Q is

ormed from eigenvectors as Q = [ q 1 , . . . , q K ] . Note that the eigen-

ectors q p are orthonormal. 
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Fig. 2. Signal Decomposition with a signal from C = 16 sensors. Additive noise of 

the standard deviation σε = 0 . 1 is present in the signal: (a) Time-frequency repre- 

sentation of the input signal. (b) Eigenvalues of the autocorrelation matrix. (c) Time- 

frequency representation of the first eigenvector. (d) Time-frequency representation 

of the second eigenvector. (e) Time-frequency representation of the reconstructed 

first signal component. (f) Time-frequency representation of the reconstructed sec- 

ond signal component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Signal Decomposition with a signal from C = 128 sensors. Additive noise of 

the standard deviation σε = 1 is present in the signal: (a) Time-frequency represen- 

tation of the input signal. (b) Eigenvalues of the autocorrelation matrix. (c) Time- 

frequency representation of the first eigenvector. (d) Time-frequency representation 

of the second eigenvector. (e) Time-frequency representation of the reconstructed 

first signal component. (f) Time-frequency representation of the reconstructed sec- 

ond signal component. 

 

 

 

 

 

Remark 1. Consider a set of nonorthogonal vectors v m 

, m =
1 , 2 , . . . , M. If a matrix R is defined by 

R = 

M ∑ 

m =1 

v m 

v H m 

, (11)

then finding the eigenvectors of this matrix can be considered as

the process of the orthogonalization of the space defined by vec-

tors v m 

whose energies are ‖ v m 

‖ 2 2 = e m 

. 

Note this particular form of matrix is obtained for the multi-

component multichannel overlapping signals, since the elements of

matrix R in (8) are calculated as R (n 1 , n 2 ) = x H (n 2 ) x (n 1 ) . 

The previous remark will be illustrated considering the cases

with M = 1 , M = 2 , and an arbitrary M . 

• If M = 1 then the orthogonalization over v 1 is not needed. In

this case, the eigenvector of matrix R q 1 = v 1 / 
√ 

e 1 . This case

appears exactly if the Wigner distribution is used in univariate

signals. This property is used in the synthesis of signals with a

given Wigner distribution. 
• For M = 2 , the orthogonalization of the space defined by v 1 and

v 2 is performed. In this case, the eigenvectors, q 1 , q 2 , as the

orthogonal vectors over this space, can be written as two linear

combinations of v 1 and v 2 , that define matrix R in (11) , that is 

q 1 = γ11 v 1 + γ21 v 2 

q 2 = γ12 v 1 + γ22 v 2 . 
In order to prove this property we will start from definition

(11) 

R = v 1 v 
H 
1 + v 2 v 

H 
2 . 

We assumed that the eigenvector q 1 is of the form q 1 = γ11 v 1 +
γ21 v 2 . The eigenvector of matrix R satisfies the relation Rq 1 =
λ1 q 1 . Since 

Rq 1 = (v 1 v 
H 
1 + v 2 v 

H 
2 )(γ11 v 1 + γ21 v 2 ) 

= v 1 v 
H 
1 (γ11 v 1 + γ21 v 2 ) + v 2 v 

H 
2 (γ11 v 1 + γ21 v 2 ) 

= v 1 (γ11 e 1 + γ21 b 12 ) + v 2 (γ11 b 
∗
12 + γ21 e 2 ) 

where b 12 = v H 1 v 2 , we can obtain a system 

λ1 q 1 = λ1 (γ11 v 1 + γ21 v 2 ) 

= v 1 (γ11 e 1 + γ21 b 12 ) + v 2 (γ11 b 
∗
12 + γ21 e 2 ) . 

From this system of equations we can find γ 11 , γ 21 , and λ1 ,

based on e 1 , e 2 , and b 12 with additional condition that ‖ q 1 ‖ 2 2 =
1 . The same holds for q 2 . 

• This proof can be generalized for any M . 

Rq i = 

M ∑ 

m =1 

v m 

v H m 

M ∑ 

l=1 

γli v l = 

M ∑ 

m =1 

v m 

M ∑ 

l=1 

γli v 
H 
m 

v l 

= 

M ∑ 

m =1 

v m 

M ∑ 

l=1 

γli b ml = 

M ∑ 

m =1 

v m 

B mi 
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Fig. 4. Time-frequency representation of a P = 9 component signal using the Wigner distribution (left) and the spectrogram (middle), along with the eigenvectors of the 

autocorrelation matrix (right) obtained with C = 12 sensors. Additive noise of standard deviation σε = 0 . 01 is present in the input signal. 
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From this relation and 

λi q i = 

M ∑ 

m =1 

v m 

λi γmi 

with Rq i = λ1 q i follows the system 

M ∑ 

m =1 

v m 

B mi = 

M ∑ 

m =1 

v m 

λi γmi . 

From this system we may find values of γ mi and λ. Note that

b mm 

= e m 

and b ml = b ∗
lm 

. 

emark 2. Assume that 

 = v 1 v 
H 
1 + v 2 v 

H 
2 + v 3 v 

H 
3 

nd that v 3 is not an independent vector, but a linear combination

f v 1 and v 2 , then 

 1 = γ11 v 1 + γ21 v 2 + γ31 v 3 

 2 = γ12 v 1 + γ22 v 2 + γ32 v 3 . 

educes to 

 1 = β11 v 1 + β21 v 2 

 2 = β12 v 1 + β22 v 2 . 

t means that a new dependent vector will not increase the dimen-

ionality of the eigenvector space, and it will reduce to a linear

ombination of the independent vectors, with new coefficients. 

emark 3. If the vectors v 1 , v 2 ,…, v M 

are linear combinations of

nother set of independent vectors w 1 , w 2 ,…, w K then the eigen-

ectors as the linear combinations v 1 , v 2 ,…, v M 

are also the linear

ombinations of w 1 , w 2 ,…, w K . For M = 2 , in the matrix form, for

wo vectors 

q 1 

q 2 

]
= 

[
γ11 γ21 

γ12 γ22 

][
v 1 
v 2 

]
= 

[
γ11 γ21 

γ12 γ22 

][
ξ11 ξ21 

ξ12 ξ22 

][
w 1 

w 2 

]

= 

[
β11 β21 

β12 β22 

][
w 1 

w 2 

]
. 

herefore, the eigenvectors q m 

are linear combinations of w 1 ,

 2 ,…, w K . 

emark 4. If the number of independent vectors w 1 , w 2 ,…, w K is

 and v 1 , v 2 ,…, v S , are their linear combinations with C > K , then

nly K vectors v i are linearly independent. This means that only K
igenvectors can be formed in this basis. f  
.3. Eigenvectors as linear combinations of the signal components 

The previous remarks represent an analysis platform for our

ultichannel and multicomponent signal defined by (4) . The vec-

ors that form the matrix R are formed as the following linear

ombinations of the signal component vectors 

 = X 

H 
sen X sen = X 

H 
com 

A 

H AX com 

, 

ith the elements 

 (n 1 , n 2 ) = 

[
s ∗1 (n 2 ) , s 

∗
2 (n 2 ) , . . . , s 

∗
P (n 2 ) 

]
A 

H A 

⎡ 

⎢ ⎢ ⎣ 

s 1 (n 1 ) 
s 2 (n 1 ) 

. . . 
s P (n 1 ) 

⎤ 

⎥ ⎥ ⎦ 

. 

he eigenvalue decomposition is then given by 

 = Q �Q 

H = 

M ∑ 

p=1 

λp q p q 

H 
p , (12)

here the eigenvectors are linear combinations of x ( i ) and these

omponents are linear combinations of the signal components. In

ther words 

q 1 = α11 s 1 + α21 s 2 + . . . + αP1 s P 

q 2 = α12 s 1 + α22 s 2 + . . . + αP2 s P 

. . . 

 M 

= α1 M 

s 1 + α2 M 

s 2 + . . . + αPM 

s P , (13) 

ith M = min { C, P } . 
Consider the case when the signal components s p ( n ) overlap in

he frequency plane. In this case, the decomposition on the indi-

idual components is not possible using the state-of-art methods,

xcept in cases of quite specific signal forms (such as linear fre-

uency modulated signals, using chirplet transform, Radon trans-

orm or similar techniques [20,21] , or for sinusoidally modulated

ignals using inverse Radon transform, [22,23] ). In general, these

inds of signals cannot be separated into individual components in

he univariate case. However, the multichannel form of signals of-

ers a possibility to decompose the components which overlap in

he time-frequency plane. 

. Decomposition principle 

We have concluded that the eigenvectors of matrix R are

ormed as M = min { C, P } linear combinations of the signal compo-
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Fig. 5. Time-frequency representation of M = 9 eigenvectors of the autocorrelation matrix for the signal whose time-frequency representation is shown in Fig. 4 . 
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nents in (13) . Assume now that the number of sensors C is such

that C ≥ P . Then there are M = P independent linear relations for P

components. We may conclude that, in principle, the signal com-

ponent s p can be also written as linear combination of eigenvectors

q p 

s p = η1 p q 1 + η2 p q 2 + . . . + ηPp q P , 

with unknown weights ηip . 

We will consider signal with nonstationary components s p , p =
1 , 2 , . . . , P . Each component has a support in the time-frequency

domain denoted by D p . For components with partial overlapping,

both in time and frequency, the supports also partially overlap. The

case with the complete overlapping of two supports is excluded
rom this analysis. Assume the notation such that D 1 ≤ D 2 ≤ . . . ≤
 P , where D p is the area of the support D p . 

The aim of this paper is to decompose the original signal, us-

ng the eigenvectors, q p , p = 1 , 2 , . . . , P of autocorrelation matrix R ,

nd to obtain the individual signal components s p , p = 1 , 2 , . . . , P,

y linearly combining the eigenvectors q p . To meet this aim, we

ill use time-frequency representations and corresponding con-

entration measures. Since the form of time-frequency represen-

ation is not crucial here, we will use the short-time Fourier trans-

orm (STFT), 

T F T (n, k ) = 

S w −1 ∑ 

m =0 

w (m ) x (n + m ) e − j2 πmk/S w , (14)
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Fig. 6. Time-frequency representation of P = 9 signal components obtained using the presented algorithm and the eigenvectors from Fig. 5 for the signal whose time- 

frequency representation is shown in Fig. 4 . 
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c
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w  

I  

z  

i  

t  
o measure the concentration of signals in the time-frequency do-

ain, and the pseudo Wigner distribution 

 D (n, k ) = 

S w −1 ∑ 

m =0 

w (m ) w (−m ) x (n + m ) x ∗(n − m ) e − j4 π mk 
S w , (15)

o visualize the results, that is, for a high resolution presentation

f the initial signal, eigenvectors and the resulting signal compo-

ents. Note that w ( n ) denotes a window of length S w 

in (14) and

15) . 

An L p -norm based measure of the time-frequency concentra-

ion, with 0 ≤ p ≤ 1, will be used. It is originally introduced in

46] as 

 { ST F T (n, k ) } = ‖ ST F T (n, k ) ‖ 

p 
p (16)
 

∑ 

n 

∑ 

k 

| ST F T (n, k ) | p = 

∑ 

n 

∑ 

k 

SP EC p/ 2 (n, k ) , (17)

here SP EC(n, k ) = | ST F T (n, k ) | 2 is the spectrogram. 

In theory, a direct way to solve the problem of eigenvectors de-

omposition to the signal components would be to form a linear

ombination of the eigenvectors 

 = β1 q 1 + β2 q 2 + . . . + βP q P, (18)

ith varying coefficients βp , p = 1 , 2 , . . . , P, keeping ‖ y ‖ 2 = const.,

nd to use the zero-norm as the concentration measure. This norm

ould produce the area of the support for the analyzed signal.

f all signal components are present in the signal y ( n ), then its

ero-norm would produce the area of D 1 ∪ D 2 ∪ . . . ∪ D P . By chang-

ng the coefficients βp , the minimum value of the concentra-

ion measure is achieved when the coefficients βp are matched
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q  
to the best concentrated signal component coefficients ηp1 , p =
1 , 2 , . . . , P with the smallest support area D 1 

[ η11 , η21 , . . . , ηP1 ] = arg min 

β1 , ... ,βP 

‖ SP EC(n, k ) ‖ 0 . 

If any two the smallest areas are equal, we will still find one

of them. In practice, the norm-one of the STFT ‖ ST F T (n, k ) ‖ 1 =
‖ SP EC(n, k ) ‖ 1 / 2 could be used to achieve the robustness to noise 

[ η11 , η21 , . . . , ηP1 ] = arg min 

β1 , ... ,βP 

‖ ST F T (n, k ) ‖ 1 . (19)

Note that this minimization problem has several local minima

as the coefficients βp in y = β1 q 1 + β2 q 2 + . . . + βP q P which corre-

spond to any signal component s p will also produce a local min-

imum of the concentration measure, equal to the area of corre-

sponding component support. In addition, any linear combination

of K < P signal components s p will also produce a local minimum

equal to the area of the union of the supports of included signal

components. Note that if P the lowest local minima correspond to

D 1 , D 2 ,…, D P , then we can detect the coefficients for all signal com-

ponents. 

As several local minima exist, multicomponent decomposition

should be performed iteratively. Initially, the matrix R with ele-

ments (9) is calculated as in (8) . Its eigen-decomposition produces

eigenvectors q p , p = 1 , 2 , . . . , P, and based on them, signal 

y = β1 q 1 + β2 q 2 + . . . + βP q P 

is formed, with weighting coefficients βp , p = 1 , 2 , . . . , P,

which are varied to solve the minimization problem (19) . The

STFT in (19) is calculated for the normalized signal y / ‖ y ‖ 2 =
y / ‖ ∑ P 

p=1 βp q p ‖ 2 . Here, we can assume that the minimization

(19) is performed by the direct search over the parameter space. 

The direct search procedure is simple, but it is not computa-

tionally efficient. It assumes that real and imaginary parts of each

parameter β1 , β2 , . . . , βP , originally initialized by zero values, are

varied over the intervals [ −1 , 1] with a step μ, aiming to find the

combination of parameter values that produces the minimum of

the concentration measure. The search space is limited to these

intervals because the concentration measure is calculated for the

normalized signal y / ‖ y ‖ 2 with unit energy, and eigenvectors are

orthonormal (of unit energy) by definition. The choice of the step

μ is a matter of compromise between the execution time and pre-

cision. Note that in one iteration of the decomposition algorithm
Fig. 7. Time-frequency representation of a P = 9 component signal using the Wigner di

autocorrelation matrix (right) obtained with C = 128 sensors. Additive noise of standard d
for the i th eigenvector), the search space dimension is 2 P − 2 , as

i = 1 holds. 

The search in the space of parameters β1 , β2 , . . . , βP , in order

o minimize the measure M { ST F T (n, k ) } = ‖ ST F T y (n, k ) ‖ 1 can be

lso performed by using more sophisticated methods, such as the

terative gradient minimization procedure presented in [1] . Other

lobal optimization methods, including heuristic algorithms - ant

olony optimization [47] , genetic algorithm, hill climbing [48] , sim-

lated annealing [49] , and also, using some deterministic [50] or

tochastic procedures [51,52] , can be also used for the concentra-

ion measure minimization. 

Upon finding the concentration measure minimum, the eigen-

ector q 1 is replaced with the signal s 1 = η11 q 1 + η21 q 2 + . . . +
P1 q P , formed using the weighting coefficients corresponding to

he minimum of concentration measure (19) . Then, this signal is

emoved from the remaining eigenvectors, by removing its projec-

ion to these eigenvectors. In other words, the eigenvectors q p , p =
 , 3 , . . . , P, are modified as follows: 

 p = 

q p − q 

H 
1 q p q 1 √ 

1 − | q 

H 
1 

q p | 2 
, (20)

n order to ensure that s 1 it is not detected again. 

This procedure is iterated P times. This means that in the i th

teration, based on eigenvectors q p modified in the previous itera-

ion, new signal 

 = 

P ∑ 

p=1 

βp q p , (21)

s formed. The weighting coefficients βp , p = 1 , 2 , . . . , P are varied,

o find the new set η1 i , η2 i , . . . , ηPi which minimizes the concen-

ration measure 

 η1 i , η2 i , . . . , ηPi ] = arg min 

β1 , ... ,βP 

‖ ST F T y (n, k ) ‖ 1 , 

f the spectrogram calculated for normalized current signal y / ‖ y ‖ 2 .
ere, STFT y ( n, k ) stands for the short-time Fourier transform of

ignal y / ‖ y ‖ 2 calculated according to (14) . The i -th eigenvector is

eplaced by s i = η1 i q 1 + η2 i q 2 + . . . + ηPi q P , while the signal defla-

ion [53] is performed by subtracting the projection of the detected

omponent from remaining eigenvectors q p , p = i + 1 , i + 2 , . . . , P :

 p = 

q p − q 

H 
i 

q p q i √ 

1 − | q 

H 
i 

q p | 2 
. (22)
stribution (left) and the spectrogram (middle), along with the eigenvectors of the 

eviation σε = 1 is present in the input signal. 
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The described procedure is repeated until there is no more up-

ates of vectors q p . Vectors q p are sorted according to their con-

entration measure, after each iteration. The iterative procedure is

topped when there is no updates of vectors q p . Although repeat-

ng the procedure as long as eigenvector updates exist is numeri-

ally less efficient, it prevents the effect of error propagation and

t the same time it also prevents the possibility that a linear com-

ination of eigenvectors, producing a local minimum, is detected

s a component. 

In the noisy signal cases, the number of components can be

etermined based on two approaches: (a) The number of compo-

ents is assumed. As long as it is larger than or equal to the true

umber of components P , the algorithm works properly, producing

oise only as the extra components; (b) A threshold is set to sep-
 a  

Fig. 8. Time-frequency representation of M = 9 eigenvectors of the autocorrelation ma
rate eigenvalues corresponding to signal components from those

orresponding to the noise. This threshold determines the number

f components in the decomposition. 

.1. Specific cases 

When the components do not overlap in the time-frequency

lane, they are orthogonal. If the number of sensors is greater or

qual to the number of components, C ≥ P , then the components

re equal to the eigenvectors (up to their amplitudes) and the de-

omposition directly follows. In sense of the previous equations it

eans that we can use b mn = 0 for m � = n . 

This problem can be solved even if single signal channel is

vailable, C = 1 , by using time-frequency representation of the
trix for the noisy signal whose time-frequency representation is shown in Fig. 7 . 
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signal which produces the cross-terms free Wigner distribution –

the S-method, [4] . 

The case of combined P o overlapping and P n nonoverlapping

components, P = P o + P n can be solved with at least C = P o sensors,

as shown in [1] . 

4. Numerical examples 

This section supports the theory by on numerical examples.

In Examples 1 –3 , a real-valued discrete-time bivariate signal with

overlapping components is considered with various noise amounts

(variances). This set of examples confirms the fact that in order to

perform an efficient decomposition in noisy cases – the number
Fig. 9. Time-frequency representation of P = 9 signal components obtained using the p

time-frequency representation is shown in Fig. 7 . 
f channels should be increased, compared with the noiseless sce-

ario. In Examples 4 –5 , a very complex signal of nine overlapping

omponents is considered, corrupted with noise with two different

evels. The analysis is concluded with a statistical test which will

llustrate how the ability to separate the components depends on

he noise variance and the number of channels. 

xample 1. Consider a discrete-time bivariate signal of the form

 (n ) = [ s 1 (n ) , s 2 (n )] T . The minimum required number of sensors

or this signal, C = 2 , is used. Signal from the channel i is of the

orm 

 

(i ) (n ) = e −(n/ 128) 2 cos 

(
2 sin 

(
5 π

n 

N 

)
− 2 π

n 

2 

16 N 

+ ϕ i 

)
(23)
resented algorithm and the eigenvectors from Fig. 8 for the noisy signal whose 
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c  
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or −128 ≤ n ≤ 128 and N = 257 , as shown in Fig. 1 . The compo-

ents of this signal are 

 

(i ) 
1 , 2 

(n ) = e −(n/ 128) 2 e ± j 2 sin (5 π n 
N ) − j 2 kπ n 2 

16 N + j ϕ i . (24) 

ime-frequency representation of this signal with two very close

omponents is shown in Fig. 1 (a). The eigenvectors of the autho-

orrelation matrix indicate that there are two signal components,

s shown in Fig. 1 (b). The two eigenvectors corresponding to the

argest eigenvalues are presented in Fig. 1 (c)–(d). These two eigen-

ectors are decomposed into two signal components with mini-

um concentration measures, as described in the previous section.

he decomposition results are shown in Fig. 1 (e)–(f), and they fully

orrespond to the time-frequency representation of the individual

ignal components in (24) . 

xample 2. The signal from Example 1 is corrupted by a moderate

evel of additive noise, to give x (i ) (n ) + ε (i ) (n ) . The standard devia-

ion of noise is σε = 0 . 1 . Here, we were not able to reconstruct the

ignal with the minimum number of sensors. To achieve a stable

econstruction, the number of sensors is increased to C = 16 . The

ime-frequency representation of the original noisy signal, eigen-

alues, time-frequency representation of the eigenvectors, and the

ime-frequency representation of the obtained signal components

re shown in Fig. 2 . 

xample 3. In this case the noise intensity is increased to the

ignal level using σε = 1 . To achieve robustness of the results,

he number of sensors had to be increased. Noisy signal time-

requency representation, along with eigenvalues, time-frequency

epresentation of the eigenvectors, and the time-frequency repre-

entation of the signal components are presented in Fig. 3 . 

xample 4. In this example, a signal with a large number of

 = 9 overlapped components is considered. The minimum num-

er of sensors, required for the successful decomposition is C =
 = 9 in this case. Since a small noise is added, with σε = 0 . 01 ,

nd the measured signal phases are random, the signal is recon-

tructed with a small margin in the number of sensors C = 12 .

rom the time-frequency representation of components, presented
ig. 10. Eigenvalues for a P = 9 component noisy signal averaged over 10 0 0 random rea

he indicator of a successful reconstruction is the gap between the eigenvalues for the eig

f a combination of the signal components) and eigenvalue index equal to P + 1 = 10 (rep
n Fig. 4 (a)–(b), we can see that the components overlapping is

ignificant. Components cannot be recognized neither from the

igner distribution nor from the spectrogram with an adjusted

indow. Their eigenvalues of the autocorrelation matrix are shown

n Fig. 4 (c). The time-frequency representation of the strongest 9

igenvectors are presented in Fig. 5 . Using these eigenvectors the

ignal is decomposed into components, as shown in Fig. 6 . 

xample 5. A noisy signal, as in Example 4 , with P = 9 compo-

ents is analyzed here. In addition to the random different phases

n each sensor, a random amplitude change is assumed as well. The

oefficients in (4) defined by a mp = αmp e 
jϕ mp , are here used in the

orm a mp = (1 + νmn ) αmp e 
jϕ mp , where the random variable νmn as-

ume the values within −0 . 25 ≤ νmn ≤ 0 . 25 and the variable ϕmp is

niformly distributed over the interval from 0 to 2 π . The decom-

osition results are presented in the same way as in the previous

gures. Time-frequency representations obtained using the Wigner

istribution and the spectrogram are given in Fig. 7 , along with the

igenvalues of the autocorrelation matrix. The time-frequency rep-

esentations of the 9 strongest eigenvectors are shown in Fig. 8 .

he linear combinations of the eigenvectors are done according to

he presented algorithm and the final results for the signal compo-

ents can be seen in Fig. 9 . 

Finally, a statistical test is run for the noisy P = 9 component

ignal from the last example. The eigenvalues are calculated in

0 0 0 random realizations and presented in Fig. 10 for two val-

es of the additive noise variance σ 2 
ε = 1 and σ 2 

ε = 1 / 2 . Ability to

learly separate the strongest P = 9 eigenvectors, corresponding to

he linear combinations of the signal components, from the back-

round noise is a good indicator when the presented algorithm can

uccessfully be applied. For the value of variance σ 2 
ε = 1 / 2 we can

onclude that the number of sensors C > 50 would be sufficient,

hile the same separation gap is obtained for C > 100 with σ 2 
ε = 1 .

his indicator is verified against the reconstruction check for these

cenarios. 
lizations, for two additive noise scenarios with σ 2 
ε = 1 (left) and σ 2 

ε = 1 / 2 (right). 

envectors at the eigenvalue index equal to P = 9 (representing the smallest energy 

resenting the strongest background noise component). 
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[  
5. Conclusion 

This work presents new contributions to the most challenging

topic in multicomponent signal decomposition, that is, the case

with components for which the supports are overlapped in the

time-frequency plane. The decomposition concepts have been in-

vestigated starting directly from the signal autocorrelation matrix

of the input, whose eigenvectors can be linearly combined to form

individual signal components. The decomposition procedure based

on the presented theory has been evaluated through several nu-

merical examples, and has conclusively verified the presented the-

ory and the decomposition efficacy. For rigor, the robustness of the

procedure against the influence of an additive noise has been stud-

ied from the perspective of the degrees of freedom, that is, the

number of sensors (channels) required to achieve a stable separa-

tion of signal components. 
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