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Abstract—This paper provides an analysis of the performance
of an automatic method for extraction of useful information
content from time-frequency distributions of nonstationary sig-
nals in dependence on the selected time-frequency method. The
tested algorithm for the extraction of the signal components
(useful information) from the noisy mixture is based on an
initial segmentation of the time-frequency distribution which
provides a fixed number of data classes. The normalized energies
of the different classes are used as input to a statistical test
which produces two outputs: ‘useful information” classes and
‘noise” classes, respectively. The quantity used as indicator of
the class type, being the normalized energy of one class, is
highly dependent on the time-frequency kernel filter. This paper
reports the results of the proposed method applied to three
well performing time-frequency methods, the Smoothed-Pseudo
Wigner-Ville distribution, the Choi-Williams distribution, and the
Modified-B distribution. The performance comparison attests the
method’s robustness for the different kernel filters, in various
SNRs.

Index Terms—Time-frequency distributions, threshold, K-
means, intersection of confidence intervals (ICI) rule.

I. INTRODUCTION

Signals encountered in various practical contexts are of-
ten mixtures of useful information (signal components) and
noise. Noisy environments require to be suppressed to allow
the further analysis of signal features in many engineering
applications. Nonstationary noisy signals can be written as
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with a;(t) being the time-varying amplitude, f;(¢) the instanta-
neous frequency, and ®;(#) the instantaneous phase of the *"
signal component, and the signal is corrupted by independent

additive white Gaussian noise (AWGN) [1]. Furthermore,
x;(n) is one of the signal components, where their total
number J is not necessarily known to the user. When using
time-frequency distributions (TFDs) p(n, m) (with dimension
(N x M)), to represent such signals, the analyst’s interest is
focused on the contribution of the J signal components [1].
In a simplified model, often adopted in real-life applications,
signal components are equated with elongated energy ridges,
while the contribution of the AWGN is evenly distributed in
the time-frequency (TF) plane. However, white Gaussian noise
is evenly distributed over the TF plane, i.e. an additive white
noise model holds for the WD only. On the other hand, if a
finite number of data samples is used to compute the TFD, the
variance takes a finite value, depending on the TFD kernel [2]-
[5], defining the structure of the noisy TFD. The characteristic
TFD structure allows the application of both hard and adaptive
thresholding methods as simple denoising procedures [6]-[10].
The thresholding operation is defined as:

pln,m), if p(n,m) > e
0, otherwise

pen(n, m) = { 2

where p(n,m) is a discrete TFD, and € is an adequate hard
threshold level. The hard threshold level e determines the
quantity of coefficients to be irreversibly removed from the
TFD, and its choice is hence a crucial preprocessing step,
which is usually left to the analysts’ arbitrary choice.

This task has recently been taken over by the applica-
tion of an automatic, near-to-optimal, adaptive thresholding
method [11], efficient in the useful information extraction
from TFDs. The method considers the set of observations
C = {p(n,m)ln = 1,.,N, m = 1,..., M}, partitioning
these N x M observations into K subsets, making use of the
K-means method as C = {Ci|k € N, 1 < k < K}, in order



to minimize the within-cluster sum:
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where pi is the mean of each set C. The elements of each
set are then distributed in the TF plane as

if p(n,m) € Cy
elsewhere,

pr(n,m) :{ p(n(,)jn)’

4)
to obtain K classes pi(n, m) from the initial TFD. Based on
a reasonable sparsity constraint applicable to TFDs, implying
components being narrow energy ridges, while noise being
evenly spread over the TF plane, it can be expected that
classes containing mainly noise coefficients will present large
TF supports, while classes containing signal components will
presents small supports. TF supports or amplitude-normalized
energies of individual classes are intended as the class’ total
number of non-zero coefficients, i.e., the {y-norm of the class
[12]-[15], denoted as E(k).

In order to partition the set C to obtain C = {C),pise, Cr}
the individual classes C} should be classified as one of the
two subsets based on the corresponding E(k).

The method for determining the pertinent neighborhood of
E(k) relies on the intersection of confidence intervals (ICI).
K confidence intervals are calculated for each F(k) together
with E(k, ) being the estimate of the ideal E (k).

In order to determine the affine regions of E(k) the pro-
posed procedure tracks the overlapping of confidence intervals
resulting in the value i (k) (where i+ (k) defines the largest
index i(k) of E(k,7) for which the intersection of all consec-
utive confidence intervals is nonempty and estimation error
e(k) = E(k) — E(k, i) is minimal [16], [17]).

It is considered that the ideal E(k) belongs to the interval
D(k,i) with the probability 1 — «, where the confidence
intervals D(k, ) are defined as

D(k,i) = [E(k,i) — To(k,i), E(k,i) + To(k,i)].  (5)

The ICI rule introduces a set of growing class indices for
each E(k) (i(k) = 1,2,---, K — k + 1). Next, it calculates
the corresponding confidence intervals D(k,4) (confidence
intervals are reducing in size as i(k) increases). The smallest
upper and largest lower confidence limits are U(k,4) and
L(k,i). In the next step it tracks the intersection of the
confidence intervals as long as it exists (in other words, as
long as it is nonempty) [16]. Finally, the class index i (k) is
obtained as the largest one for which it is still true that the
intersection of all confidence intervals up to, and including
i+ (k), is nonempty. In particular, i (k) is

i* (k) = argmax{N[ 11 D(k, ) # 0}. (6)
i(k)

Assuming a sufficiently large number of classes was chosen,
i* (k) can be defined as the integer value of i(k) close to the
ideal one i*(k) resulting in an estimation of E(k,4i™) as close

TABLE I
KERNEL FILTERS IN THE DISCRETE TIME-LAG DOMAIN.

Distribution G(n,l)
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as possible to the optimal E(k,i*). The useful information
content can then be recovered as
K
pr(n,m) = Z pr(n, m) (7

k=k++1

Fig. 1 shows TFD of the first tested noisy signal with its
segmentation to classes, as well as the extracted information.
Fig. 2 reports the described procedure of segmentation and the
ICI criterion applied to the spectrogram of a three-component
noisy signal with I' = 0.8. However, since TF techniques with
high representation quality are often preferred to the basic
spectrogram, in the following section the performance of the
adaptive thresholding method is tested on several advanced TF
methods.

II. ALGORITHM’S PERFORMANCE ASSESSMENT FOR
DIFFERENT KERNEL FILTERS

The structure of TFDs is highly influenced by the selec-
tion of the kernel filter, which controls the tradeoff between
components’ concentration and cross-terms minimization, but
also rules distortions of the TFD introduced by the presence
of noise [18]-[22]. In order to determine whether the pro-
posed thresholding method performance is stable for different
kernel filters three different TFDs have been considered. The
tested TFDs are namely: the Smoothed-Pseudo Wigner-Ville
distribution (SPWVD) [1], the Modified B-distribution (MBD)
[23], both from the class of the separable-kernel TFDs, and the
Choi-Williams distribution (CWD), known as the exponential
distribution and exponent of the Reduced interference distribu-
tions [24], [25]. Kernels of tested TFDs in the discrete time-lag
domain are given in Table I. Note that these distributions were
chosen to demonstrate the method’s performances. However,
it may also be successfully applied to various other TFDs.

The performance of the procedure is evaluated by means of
a reference TFD, i.e. the TFD of the noise-free test signal. The
error rate is calculated using the total number of residual non-
zero coefficients obtained by the subtraction of the thresholded
TFD from the reference, noise-free TFD of the same test
signal. This measure considers both the residual noise in the
TFD and involuntarily removed parts of components with
low energy. In other words, each non-zero coefficient can be
classified either as a false positive (residual noise) estimate, or
a false negative (involuntarily removed parts of components)
estimate. The error rate, represented as the total number of
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TFD of the noise-free signal and in SN R = 3 dB, TFD segmentation in 9 classes, and extracted information.

TABLE 1T
PERFORMANCE ANALYSIS OF THE PROPOSED METHOD, IN TERMS OF DIFFERENCE BETWEEN CONSIDERED TFDS AND THE IDEAL TFD FOR SIGNALS IN
FIG. 3 AND 4. VALUES ARE AVERAGED FROM 1000 SIMULATIONS OF THE SIGNAL WITH DIFFERENT REALIZATIONS OF AWGN.

Signal 1 Signal 2
SNR | CWD SPWVD MBD SNR | CWD SPWVD MBD
-3dB | 4.90 4.85 7.49 -3dB | 8.65 6.43 6.93
0dB 3.81 3.04 4.45 0dB 5.97 4.05 4.37
3dB 3.36 2.00 1.95 3dB 5.27 2.82 1.52
6dB 3.11 1.67 1.98 6dB 5.39 1.73 1.41

residual non-zero coefficients, is considered as percentage of
the N x M -dimensional set of observations. Table II reports the
results obtained for two test signals with multiple components.
The TFDs of the noisy test signals and adaptively thresholded
TFDs are shown in Figs. 3 and 4. The simulation results tend
to show that the error rate stays reasonably stable for the
three TFDs for two tested signals; however better performance
of the SPWVD and MBD can be observed. Note that the
method may be also efficiently applied to signals with fast
varying instantaneous frequency. By visual evaluation of Figs.
3 and 4 better representation quality of the SPWVD and MBD
compared to the CWD can be noticed, which justifies the better
results achieved by the proposed method in terms of error rate.

III. CONCLUSION

In this paper the robustness of adaptive TFDs’ thresholding
with respect to the kernel filter has been investigated. The
thresholding method relies on the differences in the TF struc-
tures of noise and signal components, while these structures
are themselves determined by the kernel filter. For the three
tested TFDs, being the SPWVD, the CWD and the MBD, the
method has shown tendency to perform better when applied
to the SPWVD and MBD rather than to the CWD, which
is consistent with the representation quality achieved by the
TFDs. The reported results show that the method performance
improves as the representation quality of the TFD is enhanced
by advanced TF methods, expanding the possibility form its
current application to the spectrogram to TFDs with high
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Fig. 2. Intersection of confidence intervals (for kK = 1) for the TF supports of the 9 classes of the TFD from Fig. 1.
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Fig. 3. TFDs of the noisy signal (left column), and thresholded TFDs (right column) for a two-component signal with linear frequency modulations.
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Fig. 4. TFDs of the noisy signal (left column), and thresholded TFDs (right column) for a two-component signal with parabolic frequency modulations.

quality performance, fitted to the users’ requirements.
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