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Abstract— Vertex-frequency analysis (VF) can be considered
as a generalization of the classical time-frequency analysis.
It provides tools and algorithms aiming to characterize the
localized signal behavior in the joint vertex-frequency domain.
Localized Graph Fourier Transform (LGFT) is an example of
such a tool, with a role in the graphs signal processing which
is equivalent to the role of the Short-time Fourier transform
in traditional signal processing. Bearing in mind the rapidly
increasing amounts of data and large dimensions of graphs
related to practical applications, the calculation complexity of
each tool for the spectral analysis of signals on graphs shall
be continuously revisited. As they provide the possibility to
calculate VF representations using only local neighborhoods of
vertices, without the need for the eigendecomposition, polyno-
mial approximations of spectral windows are commonly used in
practice, mostly in the form of the Chebychev approximation.
This paper revisits this choice, compares it with two other
polynomial approximation approaches, and investigates their
influence on the VF-based graph signal analysis and inversion.

I. INTRODUCTION

Graph signal processing attracted a significant research
interest recently [1]–[5]. With graphs acting as signal do-
mains, this particular signal processing framework can be
viewed as an extension and generalization of the traditional
theory. Large graphs naturally fit into the Big Data context,
now concerning the fast-growing number of practical appli-
cations. Therefore, the possibility to analyze not the entire
graph signal, but rather its local behavior, has become very
important for various applications and it is delivered by the
vertex-frequency analysis [6]–[13]. VF representations aim
to characterize the localized signal behavior in the joint
vertex-frequency domain, therefore establishing a natural
analogy with the classical time-frequency analysis [14]–[16].
Polynomial LGFT approximations provide the possibility to
calculate the LGFT based on the low-order local neighbor-
hood for each considered vertex. As Chebyshev polynomials
are dominantly exploited in this context, we investigate how
the choice of an alternative polynomial basis influences the
results in the context of VF analysis and inversion.

The paper is organized as follows. The basic theory of
graphs signal processing is outlined in Section II, while one
of the basic VF representations is presented in Section III.
Polynomial LGFT approximations are considered in Section
IV. Numerical results are given in Section V, while the paper
is concluded with Section VI.
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II. BACKGROUND THEORY

Consider a graph with N vertices, n ∈ V = {1, 2, . . . , N},
connected with edges having associated weights Wmn, n =
1, 2, . . . , N , m = 1, 2, . . . , N . Zero-valued weights Wmn =
0 indicate that the edges m and n are not connected. Weights
Wmn are used to form the weight matrix W of size N ×N .
In the case of unweighted graphs, nonzero elements in W
are equal to unity, while this specific form of the weight
matrix is known as the adjacency matrix, A.

In addition to the weight matrix, W, and the adjacency
matrix, A, graphs are commonly described by the means
of the Laplacian matrix, L = D −W, where D represents
the diagonal weight matrix, whose elements on the matrix
diagonal are Dnn =

∑
mWmn.

Spectral analysis of graphs is most commonly based on
the eigendecomposition of the graph Laplacian L or the adja-
cency matrix, A. The eigenvectors, uk, and the eigenvalues,
λk, of the graph Laplacian are calculated based on the usual
definition Luk = λkuk, k = 1, 2, . . . , N .

Consider a graphs signal, x = [x(1), x(2), . . . , x(N)]T .
The graph Fourier transform (GFT) of such signal is defined
as the expansion onto a set of orthonormal basis functions,
uk, k = 1, 2, . . . , N , that is

X(k) = GFT{x(n)} =

N∑
n=1

x(n) uk(n). (1)

where uk, with elements uk(n), n = 1, 2, . . . , N , represent
eigenvectors of the graph Laplacian, L. The corresponding
inverse graph Fourier transform (IGFT) is then defined as

x(n) = IGFT{X(k)} =

N∑
k=1

X(k) uk(n). (2)

III. LOCALIZED GRAPH FOURIER TRANSFORM

As in its classical counterpart, the localized graph Fourier
transform (LGFT), admits frequency localization using a
spectral domain window. If such a window, centered at the
spectral index k, is denoted by H(k − p), the LGFT is
defined as the inverse GFT of X(k), localized by the spectral
window:

S(m, k) =

N∑
p=1

X(p)Hk(λp) up(m), (3)

that is, the spectral domain LGFT form in (3) can be
implemented using band-pass transfer functions Hk(λp) =

H(k − p). If the condition
∑K−1
k=0 H2

k(λp) = 1 is satisfied



for all λp, p = 1, 2, . . . , N , the inversion is performed using

x(n) =

N∑
m=1

K−1∑
k=0

S(m, k)Hm,k(n) (4)

where Hm,k(n) =
∑N
p=1Hk(λp)up(m)up(n). One of such

band-pass functions suitable for the inversion is given by

Hk(λ) =


sin

(
π
2 vx

(
ak

bk−ak ( λak − 1)
))

, for ak < λ ≤ bk

cos

(
π
2 vx

(
bk

ck−bk ( λbk − 1)
))

, for bk < λ ≤ ck

0, elsewhere,
(5)

with ak+1 = bk, bk+1 = ck and the initial and the last
intervals defined as ak = ak−1+λmax

K−1 , bk = ak+λmax

K−1 , ck =

ak+2λmax

K−1 with a1 = 0 and limλ→0(a1/λ) = 1, for uniform
bands within 0 ≤ λ ≤ λmax. The sine and cosine functions
are not differentiable at the interval-end points. Therefore, the
argument, x = ak

bk−ak ( λak − 1), is commonly mapped using
a polynomial vx(x). However, without loss of generality, in
his paper we use vx(x) = x.

IV. POLYNOMIAL LGFT APPROXIMATION

As Hk(λp) can be observed as a transfer function of a
band-pass graph system, centered at an eigenvalue, λk, and
around it, it can be assumed that it has the polynomial form

Hk(λp) = h0,k + h1,kλp + · · ·+ hM−1,kλ
M−1
p , (6)

where k = 0, 1, . . . ,K − 1, K is the number of bands and
M is the polynomial order.

This further implies that, for a given vertex m and spectral
index K, S(m, k) in (3), assumes the following vector form

sk = UHk(Λ)UTx = Hk(L)x =

M−1∑
p=0

hp,kL
p x, (7)

where sk is the column vector with elements S(m, k), m =
1, 2, . . . , N . The polynomial form in (7) uses only the (M−
1)-neighborhood in the calculation of the LGFT for each
considered vertex, without the need for eigendecomposition
analysis. Therefore, it significantly reduces the computational
cost. A polynomial approximation of an order (M − 1), can
be used to implement bandpass LGFT functions, Hk(λ), k =
0, 1, . . . ,K − 1.

The Chebyshev approximation is based on Chebyshev
polynomials which are defined by

T0(z) = 1, T1(z) = z, . . . , Tm(z) = 2zTm−1(z)−Tm−1(z).

for m ≥ 2 and −1 ≤ z ≤ 1.
The finite (M − 1)-order of the Chebyshev polynomials

P̄k,M−1(λ) =
ck,0
2

+

M−1∑
m=1

ck,mT̄m(λ), (8)

where scaling and shifting of the form T̄m(λ) =
Tm(2λ/λmax − 1) is used to map the argument from the
interval, 0 ≤ λ ≤ λmax, to the interval from −1 to 1. The

polynomial coefficients are calculated using the Chebyshev
polynomial inversion property as ck,m = 2

π

∫ 1

−1Hk((z +

1)λmax/2)Tm(z)dz/
√

1− z2.
Therefore, according to (7), the LGFT can be calculated

as sk = P̄k,M−1(L)x, for k = 0, 1, 2, . . . ,K − 1, with

P̄k,M−1(L) =
ck,0
2

+

M−1∑
m=1

ck,mT̄m(L), (9)

= h0,kI + h1,kL + h2,kL
2 + · · ·+ h(M−1),kL

M−1.

The least squares approximation using monomials (in this
paper it will be abbreviated as LS) assumes that trans-
fer functions Hk(λ) are approximated using polynomial
PLSk,M−1(λ) = ᾱ0,k + ᾱ1,kλ + · · · + ᾱM−1,kλ

M−1 such
that squared error

∫ λmax

0
|Hk(λ) − PLSk,M−1(λ)|2dλ is min-

imized. The interval 0 ≤ λ ≤ λmax can be, as in the
case of Chebyshev approximation, normalized and mapped
to [−1, 1], to ensure the stability of the calculation, using
z = 2λ−λmax

λmax
. The introduction of sm =

∫ 1

−1 z
mdz ,m =

0, 1, . . . , 2M − 2 and bm =
∫ 1

−1 z
mHk((z + 1)λmax/2)dz,

m = 0, 1, . . . ,M − 1, leads to
s0 s1 . . . sM−1
s1 s2 . . . sM
...

... . . .
...

sM−1 sM . . . s2M−2




α0,k

α1,k

...
αM−1,k

 =


b0
b1
...

bM−1

 ,
or, in the matrix form, Sa = b. By solving this system, we
get the coefficients α0,k, α1,k, . . . , αM−1,k. As λ = 0.5(z +

1)λmax, we have
∑M−1
m=0 αm,kz

m =
∑M−1
m=0 ᾱi,kλ

m. The
approximation is then

PLSk,M−1(L) = ᾱ0,kI+ᾱ1,kL+ᾱ2,kL
2+· · ·+ᾱ(M−1),kL

M−1,

based on which sk = P̄LSk,M−1(L)x, for k = 0, 1, . . . ,K−1.
The least squares approximation using Legendre

polynomials assumes minimization of
∫ λmax

0
|Hk(λ) −

PLegk,M−1(λ)|2dλ where PLegk,M−1(λ) = β̄0,kφ0(λ) +

β̄1,kφ1(λ) + · · · + β̄M−1,kφM−1(λ). Polynomials
φ0(z) = 1, φ1(z) = z, φ2(z) = z2 − 1/3, . . . are
called Legendre polynomials and they satisfy Bonnet’s
recursion formula

(m+ 1)φm+1(z) = (2m+ 1)zφm(z)−mφm−1(z). (10)

The normalization and shift, using z = 2λ−λmax

λmax
, is

done, such that φ̄m(λ) = φm(2λ/λmax − 1). For each
m = 0, 1, . . . ,M − 1 we calculate Cm =

∫ 1

−1 φ̄
2
m(z)dz,

upon which polynomial coefficients βm = 1
Cm

∫ 1

−1Hk((z +

1)λmax/2)φ̄m(z)dz are calculated. As λ = 0.5(z + 1)λmax,
we have

∑M−1
m=0 βm,kφm(z) =

∑M−1
m=0 β̄i,kλ

m, which en-
ables us to form, in analogy to the previous approximations,

PLegk,M−1(L) = β̄0,kI+β̄1,kL+β̄2,kL
2+· · ·+β̄(M−1),kLM−1.

V. NUMERICAL RESULTS

Observe a graph with N = 100 vertices, along with the
graph signal x(n), as presented in Fig. 1. For the calculation



Fig. 1. Observed graph and graph signal.

TABLE I
MSE IN VF INVERSION AND IN POLYNOMIAL APPROXIMATION OF VF

FREQUENCY WINDOW. POLYNOMIALS ARE OF ORDER M = 5.

Chebyshev Legendre LS

K Ec Ew
c El Ew

l ELS Ew
LS

6 -23.18 -15.08 -20.04 -12.90 -28.21 -17.81
8 -20.23 -14.26 -19.03 -13.35 -23.6 -16.03

10 -18.62 -13.92 -18.05 -13.51 -21.05 -15.13
12 -17.61 -13.97 -17.29 -13.76 -19.48 -14.91
14 -16.92 -14.19 -16.71 -14.05 -18.42 -14.96
16 -16.41 -14.32 -16.27 -14.24 -17.66 -14.94
18 -16.02 -14.59 -15.91 -14.53 -17.09 -15.13
20 -15.72 -14.82 -15.62 -14.78 -16.64 -15.30

of the LGFT, K transfer functions (spectral windows) of the
form (5) are exploited. As efficient implementations of VF
representations require polynomial approximation of rela-
tively small order M−1, we investigate how the choice of the
polynomial influences the results. To this aim, Chebyschev,
Legendre and LS approximations are considered. Original
transfer functions, Hk(λ), for K = 16 frequency bands,
and their polynomial approximations are shown in Fig. 2,
for the realistic and practically relevant case of M = 6.
The corresponding LGFTs are shown in Fig. 3. The LS
polynomial approximation based VF calculation provides
more concentrated representation (last panel) than in the
cases of the Chebyshev and Legendre spectral window
approximations (second and third panel, respectively). This is
in accordance with the results from Fig. 2. The corresponding

TABLE II
MSE IN VF INVERSION AND IN POLYNOMIAL APPROXIMATION OF VF

FREQUENCY WINDOW. POLYNOMIALS ARE OF ORDER M = 6.

Chebyshev Legendre LS

K Ec Ew
c El Ew

l ELS Ew
LS

6 -27.16 -17.58 -20.99 -13.53 -30.40 -20.21
8 -23.08 -15.85 -20.34 -14.18 -25.56 -17.74

10 -20.73 -14.99 -19.28 -14.26 -22.66 -16.28
12 -19.25 -14.81 -18.38 -14.4 -20.8 -15.8
14 -18.24 -14.88 -17.66 -14.6 -19.52 -15.67
16 -17.51 -14.88 -17.10 -14.7 -18.59 -15.5
18 -16.96 -15.08 -16.65 -14.95 -17.89 -15.62
20 -16.53 -15.26 -16.28 -15.15 -17.35 -15.72
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Fig. 2. Exemplar transfer functions in the spectral domain and their
polynomial approximations. Polynomials with M = 6 are used in the
approximation. Top to bottom: original frequency window, Chebyshev,
Legendre and LS polynomial approximation.

inversions are shown in Fig. 4.
The described phenomena are investigated with more

details in the following experiment. For the number of
frequency bands varied from K = 6 to K = 20, with step
2, we calculate the VF representations using: (i) the original
transfer function Hk(λ), (ii) Chebyshev, (iii) Legendre, and
(iv) the LS based polynomial approximation. The MSEs
between the signals obtained trough the inversion of the
approximated LGFTs and the inversion with Hk(λ), as well
as MSEs in the window approximations, are calculated for
M = 5, 6 and 7, and shown in Tables I, II and III. The
MSEs in the inversion calculation are given in columns Ec,
El and ELS for the case of Chebyshev, Legendre and the LS
approximations, respectively, while the corresponding MSEs
in the window calculations are given in columns Ewc , Ewl
and EwLS . The least squares approximation using monomials
(LS) provided the lowest MSEs in all considered cases.

VI. CONCLUSION

We have studied the VF representations obtained using the
polynomial approximations of frequency windows and used
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Fig. 3. Vertex-frequency representations calculated based on: exactly calculated frequency localization windows from Fig. 2 (first panel), Chebyshev,
Legendre and least squares polynomial approximations from Fig. 2 (second, third and last panel).

Fig. 4. Signal inversion results based on VF representations from Fig.
3. First panel – inversion of LGFT is calculated based on the Chebyshev
polynomial approximation of spectral window, second panel – inversion of
LGFT calculated based on the Legendre polynomial approximation), third
panel –inversion of LGFT calculated based on the LS approximation.

for the localized characterization and processing of graph sig-
nals. Numerical comparisons indicate that the standard least-
squares polynomial approximation of frequency window set
used in the VF calculations leads to slight improvements,
when compared with the results based on the commonly used
Chebyshev approximation.
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