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Abstract

Model order and frequency estimation of multiple 2-D complex sinusoids in additive white Gaussian noise

are addressed. Frequency estimation follows the coarse-fine search strategy. Coarse estimates, obtained by

locating maxima of the 2-D discrete Fourier transform, are refined in a two-stage procedure. In both stages,

frequency refinement is based on three-point periodogram maximization. In order to provide accurate model

order estimation (MOE) for a wide signal-to-noise ratio (SNR) range, our approach combines two metrics

for sinusoid detection in the 2-D frequency domain, one for low and the other for high SNR values. The

proposed frequency estimation attains the Cramér-Rao lower bound and it outperforms parametric methods

in terms of the estimation accuracy and numerical efficiency. Compared with information criterion-based

methods, the proposed MOE is numerically more efficient, it does not require estimation of noise variance

and therefore does not suffer from overestimation at high SNR.

Keywords: Multidimensional signal processing, discrete Fourier transform, frequency estimation,

Cramér-Rao bound, probability of false alarm

1. Introduction

Frequency estimation of multiple 2-D sinusoids represents an important issue in numerous areas, including

sensor array processing, wireless communications, ultrasound imaging, sonar and radar [1–6]. In planar

sensor arrays (PSAs), for example, frequency components of a 2-D sinusoid are related to the azimuth and

elevation angles of the signal source, i.e., direction-of-arrival (DOA) in PSAs reduces to frequency estimation

[7, 8]. Frequency estimation approaches can be broadly divided into two categories, non-parametric and

parametric ones. The most widely used non-parametric approach is based on 2-D spectral estimation

performed via computationally attractive 2-D discrete Fourier transform (DFT). For large datasets, this
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approach yields satisfactory estimation accuracy. However, with smaller datasets, it suffers from the Fourier

resolution limit.

Instead of analyzing the signal in the frequency domain, the parametric-based approaches usually treat

it in the original time domain. Maximum likelihood (ML) method [9, 10], a representative of this class, is

a computationally exhaustive approach. Subspace-based methods have been developed in order to alleviate

the ML computational complexity and they separate the received signal into sinusoid and noise subspaces by

means of eigenvalue decomposition or singular value decomposition. This class includes signal parameters

via rotational invariance technique (ESPRIT) [4, 11], matrix enhancement and matrix pencil (MEMP)

[1], modified MEMP (MMEMP) which resolves the frequency-pairing problem encountered in the MEMP

method [3], principal-singular-vector utilization for modal analysis (PUMA) [5], multidimensional folding

(MDF) [12] and improved MDF (IMDF) [2]. A significant disadvantage of the subspace-based frequency

estimation methods is high computational complexity, which can be additionally increased by the frequency-

pairing problem [1]. In addition, when two or more frequencies along one dimension coincide, some of these

methods fail to separate 2-D components correctly, which, in turn, results in severe performance degradation

[2].

In the aforementioned methods, the number of 2-D complex sinusoids (model order) is known in ad-

vance. In practice, however, this is often not the case. Model order estimation (MOE) in the presence of

noise is an important and challenging issue [13–18]. It has been investigated thoroughly for 1-D signals

and generally considered separately from the frequency estimation problem [15–17, 19]. The most popular

MOE techniques, namely Bayesian Information Criteria (BIC), Akaike Information Criteria (AIC), adap-

tively penalized likelihood approach (PAL) and exponentiation embedded family (EEF) have been recently

generalized for 2-D complex exponential signals [13]. In these techniques, identification of correct model

order is carried out via minimizing a penalized-likelihood function calculated for a set of candidate model

orders. To ensure that the true model order is within the set, its cardinality has to be set high, which

represents a computational overhead. Moreover, for each candidate order, the ML frequency estimation of

signal components is used [13, 15, 16], which is a computationally demanding approach [9, 10]. Another

drawback of the information criterion-based MOE techniques is performance deterioration due to poor noise

variance estimation. Namely, at high SNR, residuals of the extracted components affect the noise variance

estimation resulting in overestimation of the number of components [6, 13, 15–17].

In [14], a subspace-based approach for detecting 2-D complex sinusoids corrupted by additive white

Gaussian noise (AWGN) and their parameter estimation is proposed. It is a 2-D extension of the frequency

counterpart of the ESPRIT method. Being 2-D spectrum area-selective, its computational complexity is

reduced compared to standard time-domain subspace-based methods [1–5, 11, 12]. However, a restriction

of [14] is that all frequencies are distinct in all dimensions.

An effective and accurate interpolation-based method (IBM) for frequency estimation of noisy 1-D com-
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plex sinusoids is proposed in [20] and extended to 2-D sinusoids in [21]. In IBM, both the frequencies

and amplitude of each component are estimated after the leakage terms of other components have been

iteratively removed. In addition, it works with a known model order.

In this paper, we consider model order and frequency estimation of multiple 2-D complex sinusoids

embedded in AWGN. Our non-parametric approach operates in the frequency domain. Maxima of the 2-D

periodogram correspond to approximate location of sinusoids in the 2-D frequency plane. Coarse frequency

estimation is, therefore, performed by locating periodogram maxima on the frequency grid. Since the true

sinusoid frequencies generally do not coincide with the grid values, a refinement is needed to improve the

estimation accuracy. Refinement is performed in two stages. In the first stage, MOE is carried out and

coarse frequency estimations refined. The second stage represents an additional refinement step in which,

prior to frequency estimation, the influence of components on the one currently estimated is suppressed. The

proposed method outperforms parametric methods [2, 3, 11] in terms of estimation accuracy and numerical

efficiency. IBM [21] exhibits similar performance in both accuracy and numerical efficiency, but it requires

the model order to be known a priori.

Our MOE approach produces accurate results for both low and high SNR. For low SNR, it uses a newly

introduced metrics calculated in the frequency domain. The metrics, however, cannot be used at high SNR

since it is affected by residuals of the extracted components, similarly to noise variance estimation [13, 15–

17]. To address the MOE accuracy at high SNR, we introduce an additional spectrum amplitude threshold

which does not include noise variance estimation. In terms of the numerical efficiency, the proposed method

outperforms information criterion-based methods [13, 15–17] since it is not based on minimization of a

penalized-likelihood function calculated for a set of candidate model orders, with maximal order set high

enough to include the correct model order.

The paper is organized as follows. In Section 2, the signal model is given and estimation problem

formulated. The proposed method for MOE and frequency estimation of multiple 2-D complex sinusoids is

described in Section 3, whereas its performance is evaluated in Section 4. Conclusions are drawn in Section

5. The derivation of probability of false alarm used in sinusoid detection test is given in Appendix A, whereas

Appendix B provides the rationale and guidelines for selecting an optimal amplitude threshold value used

in detection test at high SNR.

2. Signal model and problem formulation

A 2-D signal under consideration s(m,n) contains K complex sinusoids as follows:

s(m,n) =

K∑
k=1

Ake
j(2πf1km+2πf2kn), (1)
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where K represents the number of distinct 2-D frequencies {(f1k, f2k), k = 1, 2, · · · ,K}, Ak is complex

amplitude of the k-th component, and 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1. Phases of complex amplitudes

are random real numbers uniformly distributed within [−π, π). Frequencies satisfy f1k ∈ [−0.5, 0.5) and

f2k ∈ [−0.5, 0.5). The received signal can be written as

x(m,n) = s(m,n) + ξ(m,n), (2)

where ξ(m,n) represents 2-D AWGN sequence with zero mean and unknown variance σ2
ξ , and with i.i.d.

real and imaginary parts. We will assume that the number of components K is not a priori known. Finally,

we allow 2-D sinusoids to have a single matching frequency, i.e., that f1k = f1l or f2k = f2l for k 6= l.

In matrix form, relation (2) reads

X = S + Ξ, (3)

where the M ×N signal matrix S can be written as

S =

K∑
k=1

AkSk(f1k, f2k) =

K∑
k=1

Aksm(f1k)s>n (f2k), (4)

with

sm(f1k) = [1 ej2πf1k ej2π2f1k · · · ej2π(M−1)f1k ]>

sn(f2k) = [1 ej2πf2k ej2π2f2k · · · ej2π(N−1)f2k ]>
(5)

and [·]> representing the transpose operator.

Note that the signal matrix corresponding to the k-th component,

Sk(f1k, f2k) = sm(f1k)s>n (f2k), (6)

satisfies the separability condition [7, 8], which enables separate estimation of frequency components f1k

and f2k. The matrix Sk(f1k, f2k) is closely related to array manifold a(θ, φ) of planar arrays, which also

satisfies the separability condition.

This paper addresses estimation of the number of 2-D complex sinusoids K and their frequencies

{(f1k, f2k), k = 1, 2, · · · ,K} from the matrix X. Once these frequencies are estimated, complex ampli-

tudes Ak, k = 1, 2, · · · ,K can be estimated via iterative approach presented in [21].

3. Proposed 2-D frequency estimation

Due to its discrete nature, 2-D DFT maximization generally yields frequency estimations displaced from

the true frequencies and a refinement is required to improve the estimation accuracy. In this paper, we

propose a two-stage procedure for frequency estimation. In both stages, owing to the separability condition

(6), 2-D frequency estimation is carried out via two 1-D estimations, one along each frequency dimension,
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which leads to significant computational savings. For 1-D frequency estimation, we use recently proposed

three-point 1-D periodogram maximization [22, 23], presented in Section 3.1. In the first stage (Section

3.2), the strongest component is detected by locating maximum of the 2-D DFT, its frequencies are refined

and used for removing this component from the spectrum. This procedure is repeated until the remaining

spectrum does not contain peaks that can be associated with 2-D complex sinusoids. The first frequency

estimation stage, therefore, provides the number of signal components. Since sinusoids affect each other

regarding frequency estimation [24], we propose to mitigate the influence of other sinusoids on the one

currently processed by removing them from the spectrum of the received signal in the second stage. The

second stage (Section 3.3) is crucial in achieving the CRLB of frequency estimation. It uses MOE and

frequency estimations provided by the first stage.

3.1. Three-point 2-D periodogram maximization

In this section, the 1-D periodogram maximization procedure [22] is extended to the 2-D periodogram,

which is used in both stages of the proposed fine frequency estimation.

The ML frequency estimation of a single 2-D complex sinusoid is obtained as [25]

f̂ML = arg max
θ1,θ2

P (θ1, θ2), (7)

where the 2-D periodogram P (θ1, θ2) is defined as

P (θ1, θ2) =

∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

x(m,n)e−j(2πθ1m+2πθ2n)

∣∣∣∣∣ . (8)

θ1 and θ2 represent continuous frequencies. The periodogram P (θ1, θ2) is efficiently calculated using the

2-D DFT. We propose to refine coarse 2-D periodogram maxima using the approach [22] developed for

mono-component 1-D sinusoids, based on the Candan’s estimation [26] and three-point 2-D periodogram

maximization. The method is presented in Table 1.

3.2. Model order estimation and frequency refinement - Stage I

The first refinement stage can be described by the algorithm presented in Table 2. The outputs of this

stage are MOE K̂ and frequency estimations (fr1k, f
r
2k), k = 1, 2, · · · , K̂.

The sinusoid removal step plays the crucial role in both MOE and frequency estimation. If (fr1k, f
r
2k) is

very close to true frequency (f1k, f2k), term s∗m(fr1k) sHn (fr2k) in (12) approximately equals the conjugated

version of the signal matrix Sk(f1k, f2k) of the k-th component (see (6)). Then, the element-wise product

in (12) will result in demodulation of that component, i.e., its shifting in the 2-D frequency domain towards

low-frequency band of Xd. Ideally, if (fr1k, f
r
2k) = (f1k, f2k), the demodulated component will occupy only

the DC term of Xd. Step 2 removes the demodulated component, whereas step 3 cancels the demodulation

effect of step 1. Removing current strongest component from the analysed signal can be performed very
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Table 1: Three-point 2-D periodogram maximization

Coarse estimation Calculate the 2-D DFT of matrix X, denoted as XFT(k1, k2), where k1 and k2 represent

discrete frequency indices. Locate the maximum position in both dimensions, i.e., find indices k10 and

k20 that maximize |XFT(k1, k2)|.

Candan’s estimation Calculate the Candan’s displacement [26] in both frequency dimensions:

δ1C =
arctan

(
tan( πM )Re

{
XFT(k10−1,k20)−XFT(k10+1,k20)

2XFT(k10,k20)−XFT(k10−1,k20)−XFT(k10+1,k20)

})
π
M

δ2C =
arctan

(
tan( πN )Re

{
XFT(k10,k20−1)−XFT(k10,k20+1)

2XFT(k10,k20)−XFT(k10,k20−1)−XFT(k10,k20+1)

})
π
N

,

(9)

and then the Candan’s frequency estimations

f1C =
k10 + δ1C

M

f2C =
k20 + δ2C

N
.

(10)

In (9) and (10), subscript C stands for Candan.

Parabolic interpolation For each frequency dimension d = 1, 2, calculate three periodogram samples Pd1,

Pd2 and Pd3 at frequencies θd1 = fdC −∆d, θd2 = fdC and θd3 = fdC + ∆d. Middle frequencies fdC

are given by (10). Side frequencies θd1 and θd3 are displaced by ∆d from fdC . According to [22], ∆d

is chosen to satisfy ∆1 ∈ (0, 1
2M ] and ∆2 ∈ (0, 1

2N ], without significantly affecting the final estimation

accuracy. The final frequency estimation along the d -th dimension is obtained by calculating the vertex

of a parabola fitted through points (θd1, Pd1), (θd2, Pd2) and (θd3, Pd3) [22]

θfind =
1

2

θ2d3(Pd1 − Pd2) + θ2d2(Pd3 − Pd1) + θ2d1(Pd2 − Pd3)

θd3(Pd1 − Pd2) + θd2(Pd3 − Pd1) + θd1(Pd2 − Pd3)
, (11)

where d = 1, 2.

efficiently, without calculating the 2-D DFT, following the rationale used in the 1-D case [27]. Namely, since

the DC term of Xd equals the sum of its values, the matrix X† defined in (13) can be written as

X† =
(
Xd −Xd

)
◦ (sm(fr1k) s>n (fr2k))

= X(k) −Xd sm(fr1k) s>n (fr2k),

(14)

where Xd represents the mean value of Xd, and Xd − Xd within brackets corresponds to step 2 of the

algorithm. Note that, since sm(fr1k) s>n (fr2k) represents an approximation of the signal matrix Sk(f1k, f2k),

relation (14) implies that the k-th component is removed from X(k) via subtraction as well as that Xd

represents an estimation of the complex amplitude Ak.
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Table 2: Model order estimation and first frequency refinement

Initialization Set k = 1, K̂ = 0, X(1) = X and MXFT
= P (θfin1 , θfin2 ), where (θfin1 , θfin2 )

represents a fine frequency estimation of the strongest component (see Table 1).

Loop

Sinusoid detection If the spectrum of X(k) does not contain peaks that can be associated with

sinusoids, output MOE K̂ and frequency estimations (fr1k, f
r
2k), k = 1, 2, · · · , K̂, and exit.

Coarse estimation Detect the strongest component by locating maximum of |X(k)
FT(k1, k2)|.

Fine estimation Refine coarse frequency estimation using the approach proposed in Section 3.1,

resulting in (fr1k, f
r
2k) (r stands for refined).

Sinusoid removal Remove the strongest component from X(k) in the following three steps.

1. Demodulate X(k) using estimation (fr1k, f
r
2k) as

Xd = X(k) ◦ (s∗m(fr1k) sHn (fr2k)), (12)

where sm(·) and sn(·) are defined in (5), [·]∗ and [·]H represent the conjugate and Hermi-

tian transpose operators, respectively, whereas ◦ represents the element-wise (Hadamard)

product.

2. Remove the direct current (DC) term of Xd which results in a matrix X′.

3. Modulate X′ to obtain the signal matrix X† without the strongest component, that is

X† = X′ ◦ (sm(fr1k) s>n (fr2k)). (13)

Set K̂ = k, k = k + 1 and X(k) = X†.

End loop

Frequency estimation (fr1k, f
r
2k) obtained in this stage does not meet the CRLB for each component, as

will be shown in Section 4. To accomplish this goal, we perform the second refinement stage, as described

in Section 3.3.

MOE is carried out within this stage. Step Sinusoid detection in Table 2 embodies a sinusoid detection

criterion, which will be elaborated in the following subsection. Related to the sinusoid detection is the

spectrum maximum MXFT set in the initialization step in Table 2.
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3.2.1. Sinusoid detection

The proposed criterion for sinusoid detection combines two metrics to provide an accurate MOE for a

wide SNR range. The first one is calculated as follows:

d =
|XFT(k10, k20)|2

1
M+N−2

 M−1∑
k1=0
k1 6=k10

|XFT(k1, k20)|2 +
N−1∑
k2=0
k2 6=k20

|XFT(k10, k2)|2


, (15)

where k10 and k20 maximize |XFT(k1, k2)|2 along k1 and k2, respectively, i.e.

|XFT(k10, k20)| = max
k1,k2

|XFT(k1, k2)|2.

In the absence of sinusoids, both the numerator and denominator of d represent estimates of noise

variance, using 1 and M +N −2 samples, respectively. In addition, they are independent of each other since

all random variables forming them are distinct, i.e., |XFT(k10, k20)|2 does not appear in the denominator.

Finally, statistics of d does not depend on the noise variance σ2
ξ since the numerator and summation terms

within the denominator are linearly dependent on σ2
ξ which therefore cancels out in quotient d.

The sinusoid detection problem reduces to the following binary hypothesis test:

d
H1

≷
H0

γL, (16)

where the null hypothesis H0 and the alternative hypothesis H1 are given as

H0 : Sinusoid is absent (X = Ξ)

H1 : Sinusoid is present (X = S + Ξ),
(17)

and γL represents the detection threshold. The value of γL will be selected so that the probability of false

alarm (PFA)

PFA = P (d ≥ γL;H0) (18)

is fixed. For the metric d given by (15), the PFA equals

PFA =

(
γL

M +N − 2
+ 1

)−(M+N−2)

. (19)

Derivation details are given in Appendix A. From (19), the threshold γL is obtained as

γL = (M +N − 2)

(
P
− 1
M+N−2

FA − 1

)
. (20)

For high SNR, residuals of the removed sinusoids become significant compared with noise, and test

(16) may lead to overestimating the number of sinusoids. To take residuals into account, we introduce an

amplitude threshold as a percentage ε of the spectrum maximum prior to removing any component (MXFT
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in Table 2). Selection of ε is driven by two contradictory requirements. The first one dictates ε to be as

big as possible in order to prevent residuals from being counted as separate components. The other one

dictates ε to be as small as possible to enable detection of sinusoids of a wide amplitude range. Therefore,

ε should quantify a boundary between the weakest component and residual of the strongest one. Selecting

a proper ε value is affected by several factors, including the SNR, total number of components and their

relative position in the 2-D frequency plane, which make an analytical optimization practically infeasible.

Appendix B provides rationale and guidelines for selecting an optimal ε value, εopt, given by (31), which is

numerically justified in Example 3 in Section 4.

The proposed criterion for sinusoid detection states that the spectrum of X contains peaks that can be

associated with 2-D complex sinusoids if the following two conditions are met:

d ≥ γL

and (21)

|XFT(k10, k20)| > εoptMXFT
,

where |XFT(k10, k20)| represents the current spectrum maximum. For low SNR (hence L in γL), MOE is

affected by the first condition, whereas the second one prevents overestimation at high SNR. Criterion (21)

is checked in the Sinusoid detection step in Table 2.

The proposed sinusoid detection has been motivated by approaches for detection of well-focused objects

in SAR/ISAR images [28, 29]. In addition to complex sinusoids, models in [28, 29] included polynomial-phase

signals [28] and sinusoidal frequency modulated signals [29].

Finally, note that the proposed MOE can be used with any iterative 2-D frequency estimation method

based on sinusoid detection, parameter estimation and cancellation, e.g., in [21].

3.3. Frequency refinement - Stage II

In order to reduce the influence of sinusoids on each other during the frequency estimation, we propose

to remove all sinusoids from the received signal matrix except for the one to be estimated [27, 30]. After

that, 2-D periodogram maximization, as an ML approach for single frequency estimation, is used.

The outputs of Stage I are MOE K̂ and frequency estimations (fr1k, f
r
2k), k = 1, 2, · · · , K̂. Improving the

estimation accuracy with respect to Stage I is carried out following the algorithm presented in Table 3.

Removing all 2-D sinusoids from X except for the one currently processed is carried out iteratively by

repeating the Sinusoid removal step in Table 2 K̂ − 1 times with (fr1l, f
r
2l) in place of (fr1k, f

r
2k) in (12) and

(13), l = 1, 2, · · · , K̂ and l 6= k. Relation (14) enables removal without calculating the 2-D DFT.

Note that the proposed sinusoid removal approach is analogous to that used in [21] (originally proposed

in [20] for 1-D case). In [21], frequencies and amplitude of the current sinusoid have been estimated after the

leakage terms of the other ones have been iteratively removed. In our case, we also cancel all other sinusoids
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Table 3: Second frequency refinement

For k = 1, 2, · · · , K̂

Removal of other sinusoids Remove all 2-D sinusoids from the received signal matrix X, except

the k-th one, using estimations (fr1l, f
r
2l), l = 1, 2, · · · , K̂, l 6= k, in step Sinusoid removal in

Table 2.

Final frequency estimation For frequency dimensions d = 1, 2, calculate three periodogram

samples Pd1, Pd2 and Pd3 at frequencies θd1 = frdk −∆d, θd2 = frdk and θd3 = frdk + ∆d.

Calculate the final frequency estimations θfind , d = 1, 2, according to (11) in Table 1 and

update frequency estimations as frdk = θfind , d = 1, 2.

End for

(step Removal of other sinusoids in Table 3) prior to the final frequency estimation of the current one. In

that sense, term Xd in (14) represents an estimation of the complex amplitude of the current sinusoid after

all other sinusoids have been cancelled out.

4. Numerical results

In this section, performance of the proposed model is evaluated through the MSE of frequency estimation

and percentage of correct order estimation (PCOE). To determine an optimal ε to be used in the proposed

MOE (see (21)), we introduce percentage of high PCOE (PH-PCOE) as follows:

PH-PCOEγL(ε) =

∑NSNR

i=1 JPCOEε,γL(SNR(i)) ≥ TPCOEK
NSNR

, (22)

where PCOEε,γL(SNR(i)) represents the value of PCOE calculated for given SNR(i) and with parameters ε

and γL, NSNR represents the number of considered SNR values, TPCOE is high threshold in the PH-PCOE

calculation and J·K is the Iverson bracket defined as

JSK =

1, statement S is true

0, otherwise.

The parameter γL will be calculated according to the predefined PFA (relation (20)). On the other hand,

the optimal ε will be obtained via

εopt = argmax
ε

PH-PCOEγL(ε). (23)

The SNR of the k-th sinusoid component is calculated as

SNRk = 10 log10

|Ak|2

σ2
ξ

. (24)
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Figure 1: MSE of three-component 2-D complex sinusoid frequency estimation (strongest component) - Case of different

frequencies along each dimension.

In this section, the MSE, PCOE and PH-PCOE values are averaged over 300 Monte-Carlo simulations.

Example 1: We first consider K = 3 sinusoids with frequencies (f11, f21) = (0.103, 0.319), (f12, f22) =

(0.329, 0.189), (f13, f23) = (0.204, 0.418), and amplitudes |A1| = 1, |A2| = 0.9 and |A3| = 0.8. The signal

size is M ×N = 32× 32. The MSE performances of the proposed method, IBM [21], MMEMP [3], ESPRIT

[11] and IMDF [2] are presented in Figs. 1 and 2 for the strongest and weakest components, respectively. For

the proposed method, the MSEs of both Stage I and Stage II are depicted. From Fig. 1, we conclude that

Stage I is not sufficient to attain the CRLB for higher SNR values, which is due to the fact that frequency

estimation of the strongest component is influenced by the presence of weaker ones. In Stage II, however,

this influence is attenuated by removing weaker sinusoids from the considered signal prior to final frequency

estimation. On the other hand, both stages perform similarly for the weakest component, as presented in

Fig. 2. Stage II brings no significant accuracy improvement for this component since it is estimated in Stage

I after all other components have already been removed. The IBM, MMEMP and IMDF estimators perform

very well, whereas the ESPRIT-based estimation is outperformed by other techniques, especially for lower

SNR. Nonetheless, ESPRIT approaches the CRLB for higher SNR.

Example 2: Sinusoids with a single matching frequency are considered. The signal contains five sinu-
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Figure 2: MSE of three-component 2-D complex sinusoid frequency estimation (weakest component) - Case of different fre-

quencies along each dimension.

soids with parameters (f11, f21) = (0.107, 0.308), (f12, f22) = (0.308,−0.189), (f13, f23) = (0.107,−0.189),

(f14, f24) = (0.403,−0.227), (f15, f25) = (−0.371,−0.039), |A1| = 1, |A2| = 0.95, |A3| = 0.9, |A4| = 0.8 and

|A5| = 0.75. The MSE curves for the strongest and the weakest component are presented in Figs. 3 and 4,

respectively. IMDF was left out in this example since it cannot resolve components with equal frequencies

[2]. IBM and the proposed method (Stage II) reach the CLRB, whereas MMEMP and ESPRIT are charac-

terized by a small bias. Again, in the proposed method, Stage I does not suffice to reach the CRLB, which

can be seen from the bottom plot of Fig. 3. This is not the case for the weakest component (Fig. 4), whose

estimation accuracy meets the CRLB for both Stage I and II.

Overall, the proposed method outperforms MMEMP, ESPRIT and IMDF in terms of the estimation

accuracy and calculation complexity. On the other hand, its performance is on par with that of IBM in

terms of both accuracy and complexity. However, as opposed to all other considered methods, the proposed

one does not require the number of components to be known in advance.

Example 3: Let us now determine the optimal value for parameter ε used in criterion (21). To that end,

we calculate PH-PCOE defined in (22) with TPCOE = 0.99 and PFA = 5× 10−6. The signal from Example

2 is considered. Figure 5 presents PH-PCOEγL(ε) obtained for ε ∈ [0, 1] with a step of 0.05. The optimal ε
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Figure 3: MSE of five-component 2-D complex sinusoid frequency estimation (strongest component) - Case of equal frequencies

along one dimension.

according to (23) is εopt = 0.065. Note that PH-PCOEγL(ε) is practically flat and maximal for a wide range

of ε values. For the optimal ε value, we will select a point where this flat region starts in order to allow as

big amplitude difference between the components as possible, as discussed in Section 3.2.1. Note also that

the numerically obtained εopt has a clear analytical justification presented in Appendix B.

Example 4: Here we compare the proposed MOE method with BIC, AIC and EEF, generalized for 2-D

complex exponential signals in [13] on the signal from Example 2. In BIC/AIC/EEF, maximal model order

used in calculating and minimizing penalized-likelihood function was set to 7. In the proposed method,

we use PFA = 5 × 10−6 and εopt = 0.065 obtained in Example 3. The PCOE curves are presented in Fig.

6, showing that the proposed method does not suffer from overestimation at high SNR as opposed to the

competing approaches. It is numerically efficient, with the 2-D DFT as its most demanding operation and

it does not require estimation of noise variance as the other approaches [13].

5. Conclusions

The paper considers frequency estimation of multiple 2-D complex sinusoids in AWGN. Estimation is

performed in the frequency domain, using the DFT as the main tool. Coarse estimates, obtained by locating

13



Figure 4: MSE of five-component 2-D complex sinusoid frequency estimation (weakest component) - Case of equal frequencies

along one dimension.

Figure 5: Percentage of high PCOE (PH-PCOE) for setup in Example 2. Optimal ε corresponds to the lowest ε (0.065 in this

example) where PH-PCOE reaches maximum.

maxima in the 2-D DFT of the received signal, are refined in two stages. The first stage provides MOE and

frequency estimation improvement with respect to the coarse estimates. The second stage serves to mitigate

the influence of sinusoids on each other during frequency estimation, thus improving results of the first stage

to the CRLB precision. The proposed frequency estimation outperforms parametric methods in terms of the

accuracy and calculation complexity. Compared with the state-of-the-art MOE approaches, the proposed

approach provides more accurate results, especially at high SNR, and is characterized by significantly lower
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Figure 6: PCOE for the case of five-component signal.

calculation complexity.

Appendix A

In this appendix, we derive the PFA given by (19). To that end, let us analyze the numerator and

denominator of d given by (15). Since ξ(m,n) is zero-mean AWGN with variance σ2
ξ and i.i.d. real and

imaginary parts, the 2D DFT of ξ(m,n) is also complex AWGN with zero mean and variance MNσ2
ξ . Since

the variance term exists in both the numerator and denominator of d, we can cancel it out, i.e., we can

view the terms in the numerator and denominator of d as standard normal variables (zero mean and unit

variance). In that case, the numerator and denominator of d are independent chi-square variables with 2

and 2(M +N − 2) degrees of freedom, respectively [31]. The ratio of two independent chi-square variables,

Y1 and Y2, divided by the corresponding degrees of freedom k1 and k2, i.e.

Z =
Y1/k1
Y2/k2

,

is a random variable which conforms to the F -distribution with parameters k1 and k2, i.e., Z ∼ F (k1, k2)

[31]. Therefore, the metric d has an F -distribution with parameters 2 and 2(M+N−2), i.e., d ∼ F (2, 2(M+

N − 2)). The PFA (18) hence equals

PFA = P (d ≥ γL;H0)

= 1− Fd(γL; 2, 2(M +N − 2)) (25)

= 1− I 2γL
2γL+2(M+N−2)

(1,M +N − 2) ,

where FZ(z; k1, k2) is the cumulative distribution function (CDF) of an F -distributed variable Z with pa-

rameters k1 and k2, and Ix(a, b) is the regularized incomplete beta function [31]. Since it holds

Ix(1, b) = 1− (1− x)b,

15



the PFA reduces to

PFA =

(
1− γL

γL +M +N − 2

)M+N−2

=

(
M +N − 2

γL +M +N − 2

)M+N−2

=

(
γL

M +N − 2
+ 1

)−(M+N−2)

,

(26)

which concludes the PFA derivation.

Appendix B

The frequency estimation accuracy plays the crucial role in selecting a proper value of ε. The lower the

accuracy the stronger the residual after component removal and hence the higher εopt should be adopted. In

addition to the signal size and the SNR, the estimation accuracy of the strongest component is affected by the

total number of components and their relative position in the 2-D frequency plane (vicinity of components

and frequency matching). Analytical derivation of an optimal value of ε is therefore practically infeasible.

However, we will present a rationale for estimating an optimal ε, which will be numerically justified in

Section 4.

Figure 7 depicts the main lobe of the 2-D periodogram of a demodulated noise-free 2-D complex sinusoid.

When the estimated and true frequencies coincide, only the central 2-D DFT sample is not zero (squares in

Fig. 7). However, when the estimated and true frequencies differ, all 2-D DFT samples have non-zero values

(circles in Fig. 7). In that case, the 2-D DFT maximum (sample P0) is shifted from the true 2-D periodogram

maximum by δ1 and δ2 in θ1 and θ2 directions, respectively. The sinusoid removal performance, therefore,

depends on the values of displacements δ1 and δ2, i.e., the bigger the displacement the more residual remains

after the removal. The measure of removal is the value of the second largest 2-D DFT sample (sample P1

in Fig. 7), i.e., selecting an optimal ε should be driven by the ratio of P1 and P0.

Statistics of δ1 and δ2 are affected by several factors, including the SNR, total number of components

and their relative position (higher influence on each other in case of close components), which render precise

analytical derivation practically infeasible. However, a guidance regarding selecting a proper value of ε in

general case can be provided as follows. Since the MSE represents a measure of frequency estimation error,

i.e., of displacements δ1 and δ2, we can estimate δ1 and δ2 as follows:

δd = η
√

MSEd, d = 1, 2, (27)

where MSEd represents the MSE of frequency estimation fdk, d = 1, 2, whereas η represents a scaling

coefficient. To estimate MSEd, we will use the asymptotic CRLBs (ACRLBs) derived in [32, rel. (17)] for
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Figure 7: Main lobe of amplitude-normalized 2-D periodogram of a demodulated complex sinusoid (noise-free case) and position

of 2-D DFT samples (squares and circles). Squares represent optimal 2-D sampling (estimated and true frequencies coincide),

circles realistic 2-D sampling (estimated and true frequencies do not coincide). P0 represents the 2-D DFT maximum displaced

from the true 2-D periodogram maximum by δ1 and δ2 in θ1 and θ2 directions, respectively. P1 represents the second strongest

2-D DFT sample.

M � 1 and N � 1:

ACRLB(f1k) =
6

(2π)2M3NSNRk
,

ACRLB(f2k) =
6

(2π)2N3MSNRk
,

(28)

where SNRk = |Ak|2
σ2
ξ

is the SNR of the k-th component.

Since MOE is carried out in Stage I, frequency estimation (fr1 , f
r
2 ) of the strongest component does not

meet the CRLB which is reflected in MSE saturation (for a specific case, see Fig. 3 (bottom) where the

saturation occurs at around −6 dB). Hence, for the MSE in (27), we should use the ACRLB calculated for

SNR where the MSE saturation begins, denoted as SNRsat.

Following the three-sigma rule [33], the value of η in (27) should be set above 3, say η = 3.5.

When noise is present, the values of P0 and P1 also depend on the noise variance. Since ξ(m,n) is zero-

mean AWGN with variance σ2
ξ and i.i.d. real and imaginary parts, the 2-D DFT of ξ(m,n), ΞFT, is also

complex AWGN with zero mean and variance MNσ2
ξ [27]. In that case, |ΞFT|2 has a gamma distribution

with shape k = 1 and scale θ = MNσ2
ξ [31].
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Figure 8: Ratio of the second strongest and the strongest spectrum sample. SNRsat represents the SNR point where the

frequency estimation MSE of the strongest component goes into MSE saturation. Red dot corresponds to the MSE saturation

point observed in Fig. 3 (bottom).

Taking all previously said into consideration, we will estimate amplitudes P0 and P1 as follows:

P0 =
√

E [P 2 (−δ1,−δ2)] =
√
S2 (−δ1,−δ2) + E [|ΞFT|2] =

√
S2 (−δ1,−δ2) +MNσ2

ξ ,

P1 =
√

E [P 2 (−δ1, 1/N − δ2)] =
√
S2 (−δ1, 1/N − δ2) + E [|ΞFT|2] =

√
S2 (−δ1, 1/N − δ2) +MNσ2

ξ ,

(29)

where E[·] represents the expectation operator, P (θ1, θ2) the 2-D periodogram of the noisy signal (defined

in (8)) and S(θ1, θ2) the 2-D periodogram of a zero-frequency complex sinusoid, i.e., of a 2-D rectangular

pulse given as

S(θ1, θ2) = MN |Ak|
∣∣∣∣ sinc(Mθ1)

sinc(θ1)

∣∣∣∣ ∣∣∣∣ sinc(Nθ2)

sinc(θ2)

∣∣∣∣ (30)

where sinc(x) represents the normalized sinc function sinc(x) = sin(πx)
πx . In (29), the expected value of a

gamma distributed variable |ΞFT|2 equals the product of shape and scale parameters k and θ [31]. Finally,

the optimal ε will be calculated as follows:

εopt =
P1

P0
. (31)

The proposed εopt will be verified on a specific case of five components considered in Example 2 in Section

4. Figure 8 depicts the P1/P0 ratio calculated versus SNRsat. The setup considered in Example 2, with

SNRsat = −6dB, yields εopt = 0.064 (red dot in Fig. 8), which is almost identical to the value of 0.065

obtained in Example 3 which deals with numerical optimization of the value of ε.

For general case, SNRsat cannot be known in advance. However, since εopt is introduced in criterion (21)

to address sinusoid detection at high SNR, there is no need to set SNRsat too low. The binary hypothesis

test (16) incorporated in (21) deals with low SNR values.
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