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Abstract
In this paper, we present an approach to the reconstruction of signals exhibiting
sparsity in a transformation domain, having some heavily disturbed samples. This
sparsity-driven signal recovery exploits a carefully suited random sampling consen-
sus (RANSAC) methodology for the selection of a subset of inlier samples. To this
aim, two fundamental properties are used: A signal sample represents a linear com-
bination of the sparse coefficients, whereas the disturbance degrades the original
signal sparsity. The properly selected samples are further used as measurements in
the sparse signal reconstruction, performed using algorithms from the compressive
sensing framework. Besides the fact that the disturbance degrades signal sparsity in
the transformation domain, no other disturbance-related assumptions are made—there
are no special requirements regarding its statistical behavior or the range of its values.
As a case study, the discrete Fourier transform is considered as a domain of signal
sparsity, owing to its significance in signal processing theory and applications. Numer-
ical results strongly support the presented theory. In addition, the exact relation for the
signal-to-noise ratio of the reconstructed signal is also presented. This simple result,
which conveniently characterizes the RANSAC-based reconstruction performance, is
numerically confirmed by a set of statistical examples.

Keywords Sparse signals · Robust signal processing · RANSAC · Impulsive noise ·
Compressive sensing · Sample selection · DFT

1 Introduction

In recent years, the reconstruction of sparse signals, based on a reduced set of ran-
dommeasurements, attracted significant research interest [3–7,10,12–15,17,19,20,22,
26,29,33,34,36–38,40–50,52,53,55,58]. Within the compressive sensing (CS) frame-
work, a rigorous mathematical foundation has been established to support this type

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-021-01654-4&domain=pdf
http://orcid.org/0000-0002-9736-9036


Circuits, Systems, and Signal Processing

of reconstruction, including the conditions that guarantee a successful and unique
reconstruction result [6,49]. The most important requirement imposed by this theory
is that the signal must be sparse in a particular transformation domain. Such signals
are characterized by a small number of nonzero elements in the sparsity domain as
compared to the full signal length and do appear in various applications [49]. Lin-
ear combinations of such coefficients represent compressive sensing measurements.
Within the compressive sensing theory, highly effective algorithms for the sparse sig-
nal recovery have been supported by a well-defined mathematical framework [6,49].
These algorithms aim at minimizing sparsity measures under conditions posed by the
measurements equations. The CS theory consistently characterizes the phenomena
related with the reduced set of measurements [49]. The missing observations can be
a result of physical unavailability, restrictions in the sensing process or restrictions
posed by some physical phenomena. Highly corrupted signal samples, such as those
being affected by the impulsive noise, can be also treated as unavailable and recovered
using the CS techniques [49].

Signal samples in the time domain, being linear combinations of the sparsity domain
coefficients, can be considered as the measurements within the CS framework. The
number of samples required for the reconstruction is closely related to the number of
nonzero coefficients in the sparse domain [6,13,49]. It has been repeatedly confirmed
that in the case of heavily disturbed samples (outliers), it is preferable to omit these
samples in both signal analysis and processing [50,51]. In the CS and sparse signal
processing context, this means that the uncorrupted or low-corrupted samples (inliers)
are considered as available measurements, whereas the heavily corrupted samples are
considered as unavailable, and are reconstructed by applying some of the CS-based
recovery algorithms. This further implies that a detection method shall be applied
to identify the highly corrupted samples prior to their reconstruction [49]. One such
methodology, founded on the signal sparsity principles, is presented in this paper. In
contrast to the methods that combine the robust estimation and the CS-based signal
recovery, the proposed method can provide an exact reconstruction if the reduced set
of inliers is noise free, rather than to obtain a filtered approximation of the original
signal [1,9,12,30,31,54,57].

The proposed algorithm is based on a random selection of subsets of signal sam-
ples (random sampling consensus—RANSAC) and a detection of the event when a
disturbance-free (or low-corrupted) subset is selected. The RANSAC-based approach
improves our detection and reconstruction based on sparsity measures, reported in
[45], in the way that it provides a criterion to properly choose the best and largest
possible set of adequate measurements—inliers, which are suitable for the CS-based
reconstruction of corrupted samples—outliers [18]. The RANSAC approach is widely
known for its outlier removal capabilities, commonly exploited in machine learning
and computer vision [25,28,56], image registration [16,23] and other frameworks
requiring robust estimation in the presence of outliers [11]. The signal-to-noise ratio
(SNR) analysis in the CS-based reconstruction [44,47,49] shows that the quality of
the reconstruction is directly influenced by the number of available samples. The pre-
sented RANSAC-based methodology is additionally equipped with the analysis of
noise influence to the reconstructed signal, using an exact and simple relation for the
SNR in the resulting signal.
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The most important difference between the presented method and other methods
that combine the robust estimation and the CS recovery is the assumption that we
cannot distinguish the corrupted samples from the uncorrupted ones, based on their
values [1,9,12,30,31,54,57]. During the last decades, blind denoising has been studied,
among other areas, in the context of audio signal processing [2,5,8,27,32,35,41]. In
our previous works with the audio signal denoising [5,41], we made extensive com-
parisons of CS-based denoising [41] and alternative sparsity-driven blind denoising
[5] techniques for audio signals with the denoising approaches based on classical and
sophisticated techniques founded upon the auto-regressive or othermore advanced sig-
nal models [8,27]. The presented RANSAC-based approach delivers improved blind
denoising performance in the context of audio signal processing, as techniques from
[5,41], while bringing significant improvements in numerical efficiency of the process.

The paper is organized as follows: After the introduction, the background of the
compressive sensing theory and the RANSAC overview are presented in Sect. 2. The
denoising procedure based on theRANSAC is presented in Sect. 3, which also includes
the discussion regarding the numerical complexity. The presented theory is verified
numerically in Sect. 4, while the paper ends with some concluding remarks.

2 Definitions

Consider a signal x(n) with N samples in the discrete-time domain. Assume that the
sparsity domain of the signal is the discrete Fourier transform (DFT) domain. The
signal and the DFT coefficients are related via

X(k) = DFT{x(n)} =
N−1∑

n=0

x(n)ϕ∗
k (n), (1)

x(n) = IDFT{X(k)} = 1

N

N−1∑

k=0

X(k)ϕk(n) (2)

or X = Wx and x = W−1X, where the basis functions take the form ϕk(n) =
exp( j2πnk/N ). In the matrix notation, the N -dimensional vector X has elements
X(k), vector x has elements x(n), and the N × N transformation matrix W is with
elements ϕ∗

k (n), k = 0, 1, . . . , N − 1, n = 0, 1, . . . , N − 1.
The time-domain representation of a signal which is sparse in the DFT domain

reads

x(n) =
K∑

i=1

Aiϕki (n), (3)

where Ai , i = 1, 2 . . . , K , represent the nonzero elements at the transformation
domain positions ki , i = 1, 2, . . . , K . The sparsity of this signal is K , (K � N ).

Assume that there are M available samples at the instants ni , i = 1, 2,…, M . In
the CS theory, the linear combinations of the sparsity coefficients are referred to as the
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measurements. Therefore, the available signal samples can be considered as the CS
measurements, y(i) = x(ni ). The measurement vector is denoted by y. Its elements
are

y(i) = x(ni ) = 1

N

N−1∑

k=0

X(k)ϕk(ni ), i = 1, 2, . . . , M . (4)

The corresponding system of M equations with N unknowns is

a1,0X(0) + a1,1X(1) + · · · + a1,N−1X(N − 1) = y(1)

a2,0X(0) + a2,1X(1) + · · · + a2,N−1X(N − 1) = y(2)
...

aM,0X(0) + aM,1X(1) + · · · + aM,N−1X(N − 1) = y(M), (5)

where ai,k = ϕk(ni )/N .
The matrix notation for this system of M linear equations is

AX = y. (6)

The measurement matrix A, with elements ai,k , is obtained from the inverse DFT
matrixW−1, by eliminating the rows corresponding to the unavailable/outlier samples.
Notice that the system in (5) or (6) is the general form of the CS setups, for a sparse
vector, X, related to its measurements, y, via the measurement matrix, A, which may
be random or formed as a partial using any standard linear transform [49]. The method
proposed in this paper can be applied to any of them.

The goal of the CS approach is to reconstruct the complete signal X(k), k =
0, 1, 2, . . . , N − 1 (or x(n), n = 0, 1, 2, . . . , N − 1 if a signal and its linear transform
are considered), from the reduced (compressively sensed) subset of measurements
(signal samples at the instants ni , i = 1, 2, . . . , M) withM < N . This problem cannot
be solved in a direct way, since there are M equations representing M measurements
with N unknown transformation domain elements of X(k), such that M < N . When
the signal sparsity is assumed, the sparsity measure minimization is added to the
problem setup. Among an infinite number of solutions for the underdetermined system
in (6), AX = y, we look for the one with the sparsest possible representation in the
transformation domain while satisfying the measurement equations. The constrained
minimization problem formulation is,

min ‖X‖0 subject to y = AX. (7)

The solution to this problem exists (if some conditions are met) and it produces the
signal transformation elements, X(k), and consequently the signal samples, x(n), at
all instants.

Simple counting of the nonzero values of X(k) is achieved using the so-called �0-
norm ‖X‖0. However, the solution based on the �0-norm is an NP-hard optimization
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problem. Its calculation complexity is of order
(N
K

)
. In theory, the NP-hard problems

can be solved by an exhaustive search. However, as the problem parameters N and K
increase, the computational time increases and the problem becomes unsolvable in a
realistic time frame.

Many methods are recently developed for the CS-based reconstruction, by solving
the minimization problem (7) or its various equivalent forms (a review of the CS
reconstruction methods can be found in [49]). In this paper, we will use a very simple
and efficient algorithm that belongs to the class of matching pursuit algorithms. This
algorithm will be described in Sect. 3.2.

2.1 RANSAC Review

The random sample consensus (RANSAC) is used for linear regression when the
outliers in the data are expected. Outliers are data values that differ significantly from
other samples, meaning that they are unusual values in the considered set of samples.
A quantitative description of the outliers will be given in the next section.

Consider a set of data x(ni ) sampled at random instants ni . Assume that the true
data values fit a linear model, x(n) = an + b. Since some outliers in the dataset can
be expected, these data samples will be far from the linear model. In the standard
RANSAC approach, we will:

1. Assume a small subset S with S randomly selected samples x(ni ) at ni ∈ S.
2. The samples with indices in S are used to roughly estimate the linear regression

model parameters,

â
∑

ni∈S
n2i + b̂

∑

ni∈S
ni =

∑

ni∈S
ni x(ni ) and â

∑

ni∈S
ni + b̂N =

∑

ni∈S
x(ni ). (8)

3. After the parameters a and b are estimated, the line

x̂(n) = ân + b̂ (9)

is defined. The distances dn of all data points (n, x(n)), n = 0, 1, . . . , N −1, from
this line are calculated, dn = |ân + b̂ − x(n)|/√1 + â2.

4. If a sufficient number of data points is such that their distance from the model line
is lower than an assumed distance threshold d, then all these points are included
into a new set of data

D = {(ni , x(ni ))| dni ≤ d}, (10)

and the final parameters a and b (for machine learning or prediction) are calculated
with all data from D.

5. If therewas no sufficient number of data pointswithin the distance d, a new random
small set of data, S, is taken and the procedure is repeated from point 2.

6. The procedure ends when the desired number of data points within D is achieved
or the maximum number of trials is reached.
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3 Reconstruction of Sparse Signal with Outliers

Consider a signal x(n), 0 ≤ n ≤ N − 1, which is sparse in a transformation domain
with a sparsity K � N . Assume that the signal is noisy with a small noise ε(n) in all
samples. Assume that I samples of the signal x(n), at unknown positions n ∈ NI , are
corrupted additionally with an impulsive disturbance ν(n) so that the analyzed signal
is x(n) + ε(n) + ν(n). The impulsive disturbance ν(n) can be modeled, for example,
as ν(n) = 0 for n /∈ NI and ν(n) assumes arbitrary high values for n ∈ NI . Signal
samples at n ∈ NI , with heavy disturbing values, are called outliers. The original
signal, x(n), can be recovered if a sufficient number of the inlier samples (with small
noise or without noise) exists.

The inliers and outliers are introduced in the previous signal description in an
intuitive way. For the quantitative description of these forms of signal disturbances
the so-called z-score is used. It is defined as [18]

z(n) = x(n) − μ̂x

σ̂x
, (11)

where μ̂x is the sample average and σ̂x is the sample standard deviation of the signal
x(n), n = 0, 1, 2, . . . , N − 1. In order to declare that a signal value is either inlier
or outlier, a threshold T is assumed. The signal samples with the z-score such that
|z(n)| ≤ T are declared as inliers and the samples with |z(n)| > T as outliers.
Since the most common form of small disturbances is the one obeying the Gaussian
distribution [18], the threshold value T is assumed between 2 and 3, corresponding to
thewell-known two-sigma rule and the three-sigma rule. Since the values of the sample
average μ̂x and the sample standard deviation σ̂x can be significantly compromised
with possible impulsive disturbances, it is recommended using the median and the
corresponding median absolute deviation (MAD) in the z-score, instead of the sample
mean and sample standard deviation. The MAD definition will be provided later.

The sufficient number of inliers for the full signal reconstruction is directly related
to the full recovery conditions studied in the CS theory [6,13,26]. A rough estimation
of the smallest number of samples that should be used in the reconstruction of K
sparse signal can be made based on the statistical results presented in [45]. The exact
reconstruction conditions are commonly defined by the restricted isometry property
(RIP), using the spark, or the coherence of the measurement matrix [6,13,46,49].
However, these conditions are either computationally unfeasible or too pessimistic. In
numerical tests, we followed the set of practical guidelines from [13,46] for situations
when one could expect perfect recovery from a partial Fourier matrix using convex
optimization. It is suggested that in the case when K ≤ M/5, the recovery rate is
highly reliable. It is worth mentioning that computationally feasible results for the
reconstruction uniqueness of signals sparse in the DFT domain are presented in [43],
[40].

It is important to emphasize that the use of lower values for M , when some
unsuccessful reconstructions are expected to happen, will not be problematic for the
RANSAC, since this methodology, by definition, searches for successful reconstruc-
tion, as it will be shown in the next section.
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3.1 ConcentrationMeasure-Based Denoising

To solve the stated problem, in our previous work [4,5,38,44,45], we exploited the idea
of eliminating random subsets of samples and performing the reconstruction using the
remaining samples. For each realization, the sparsitymeasure of the recovered signal is
used for the detection of the full recovery event. By using a sparsitymeasure close to the
l0-norm, all realizations containing disturbed samples will produce a sparsity measure
close to the total number of samples N . This is expected, since a disturbance at any
signal sample, will affect all coefficients in the sparsity domain [45]. As an illustration,
consider a disturbance at ni , of the form ν(n) = ν0δ(n − ni ), which is added to the
signal sample x(n) at ni . Its DFT, Xν(k) = ν0 exp( j2πni k/N ), k = 0, 1, . . . , N − 1,
is spread over all DFT coefficients of the original signal. In many CS approaches, �1-
norm is used as a measure of signal sparsity [39]. Noise influence on sparsity measures
has also been investigated in [20,55].

In the case when only the uncorrupted samples are used in the reconstruction, the
sparsity measure is of order K . It is much lower than the total number of samples N .
Therefore, by setting a threshold for the sparsity measure between K and N , we can
detect a full recovery event.

The main idea behind this approach can be significantly improved, with respect to
the detection criterion and the final signal estimation, using an increased number of
samples provided by the RANSAC method, which has been extensively applied in
machine learning [25,28,56] and signal processing [11].

3.2 RANSAC-Based CS Signal Denoising

In this section,we present theRANSAC-basedCSdenoising approach. The considered
signal model, described at the beginning of this section, is

x(n) = s(n) + ε(n) + ν(n), (12)

where s(n) is a desired signal sparse in the DFT domain, ε(n) is a Gaussian noise with
variance σ 2

ε , and ν(n) is a heavy-tailed impulsive noise with large amplitudes. The
Gaussian noise is considered as a small noise and the samples with this kind of noise
as inliers. The impulsive noise causes outliers in the signal samples.

For the RANSAC-based denoising, we will use the following algorithm:

1. The considered desired signal s(n) is K -sparse. Randomly select a small subset S
of the time indices, n, with S corresponding samples x(n) at n ∈ S, such that the
reconstruction for a K -sparse signal is theoretically possiblewith high a probability
if the selected samples were noise free, x(n) = s(n), or with small noise only,
x(n) = s(n) + ε(n).

2. The signal samples x(n) with the time indices n ∈ S are used to reconstruct the
signal, xR(n), at all instants n = 0, 1, . . . , N − 1. An approach to solve the CS
reconstruction problem is a two-step strategy as follows [49]:

– Step 1: Detect the positions of nonzero elements X(k) in the sparsity domain,
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– Step 2: Apply an algorithm for reconstruction with known positions of nonzero
elements (use the positions from Step 1).

Next, more details will be provided for this reconstruction approach. Themeasure-
ments, x(n), are characterized by a linear nature, meaning that they are obtained as
linear combinations of the sparsity domain elements, X(k), with the corresponding
rows of the measurement matrix, A, acting as weights. As in (4) and (5), we can
write

y(i) = x(ni ) = 1

N

N−1∑

k=0

ai,k X(k), ni ∈ S (13)

or in a matrix form y = AX. This implies that a back-projection of the measure-
ments, y, to the measurement matrix, A, defined by

X0 = AHy = AHAX (14)

can be used to estimate the positions of the nonzero elements in X.
In an ideal case (one-step reconstruction algorithm [49]), the matrix AHA should
ensure that the initial estimate, X0, contains exactly K elements at positions
{k1, k2, . . . , kK }, for which the magnitudes are larger than the largest magnitude
at the remaining positions. Under such condition, by taking the positions of these
largest magnitude elements inX0 as the set {k1, k2, . . . , kK }, the algorithm for the
known nonzero element positions, can be applied to reconstruct the signal using
the pseudo-inversion as

XK = (AH
KAK )−1AH

K y = pinv(AK )y, (15)

where AK is the matrix obtained from the measurement matrix A, by keeping the
columns which correspond to the indices {k1, k2, . . . , kK }, as elaborated in detail
in [49].
The reconstructed signal is

xR(n) = IDFT{XK0(k)} (16)

where XK0(k) are zero-valued at all k except k ∈ {k1, k2, . . . , kK }, where
XK0(ki ) = XK (i).
The procedure can be iteratively implemented. In the iterative procedure, the
largest signal component is detected and estimated first (as it were K = 1). The
reconstructed component is subtracted from the available measurements, and the
modified measurements are used to detect the position of the second largest com-
ponent. The two largest components are re-estimated together and subtracted from
the availablemeasurements. The procedure is continued until the subtraction of the
estimated components from the available measurements does not produce suffi-
ciently small (stopping criterion) value or until an assumed sparsity, K , is reached.
The iterative implementation is particularly suitable in the case when the nonzero
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coefficient values significantly differ. By reconstructing the detected large com-
ponents, during the iterations, and removing their influence on the previously
non-detected components, smaller components will emerge [49].

3. After the signal is reconstructed at all instants, using (16), from a reduced set of
samples in (13), the distancedn of all signal samples (n, x(n)),n = 0, 1, . . . , N−1,
from the estimated signal xR(n) are calculated,

dn = |xR(n) − x(n)|. (17)

4. If there are a sufficient number of signal values with distance from the recon-
structed signal (model) being lower than an assumed threshold, for example, for
the Gaussian distributed inliers d = 2.5σε, then all these points are included in
the new set of the signal values

D = {(n, x(n)) | dn ≤ d}, (18)

and the final reconstruction is calculated with all data from D. Note that the robust
estimation of the standard deviation can be done using the median absolute devi-
ation (MAD), defined by

MADx = median
m=0,1,...,N−1

{∣∣x(m) − median
n=0,1,...,N−1

{x(n)}∣∣}. (19)

The MAD value is related to the sample standard deviation, σε, as MADx =
0.6745σx (for the Gaussian random variable). The real and imaginary parts are
considered separately for complex-valued signals. In this way we can estimate the
standard deviation, σε, needed for the proposed algorithm implementation [21,24].

5. If there was no sufficient number of signal values within the distance d, that is,
card{D} < T = 3N/4, a new random set of signal sample indices, S, is taken
and the procedure is repeated from Step 2. The value T is assumed based on the
expected number of outliers. The assumed T = 3N/4means that we do not expect
more than N/4 outliers.

6. The procedure is stopped when the desired number of data points within D is
achieved, card{D} ≥ T = 3N/4 or themaximumnumber of trials Nmax is reached.

The previously described denoising approach is summarized in Algorithm 1. It
exploits a matching pursuit CS reconstruction procedure, CSREC·, summarized in
Algorithm 2.

The presented RANSAC-based denoising algorithm will produce the same results
if other CS reconstruction methodologies are used, such as, for instance, the Bayesian
CS reconstruction or the iterative hard thresholding (IHT). An overview of these
procedures, along with their algorithmic presentation, suitable for implementation,
can be found in [37,49].
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Algorithm 1 RANSAC CS Denoising Algorithm
Input: Noisy signal x, RANSAC set size S, bound for inliers d, threshold for the consensus number of

samples T , maximum number of iterations Nmax , signal sparsity K

1: D ← 0, Nit ← 0
2: while D < T and Nit ≤ Nmax do
3: Nit ← Nit + 1
4: S ← randperm(N , S), 
 S random numbers from the first N natural numbers
5: A ← rows of the inverse DFT matrix W−1 selected by the set S
6: y ← elements of x selected by the set S
7: X ← CSREC (y,A, K )
8: xR = W−1X
9: D = find(|x − xR | < d),
10: D = card(D), 
 the number of elements in D

11: end while

Perform the CS reconstruction with the consensus set D:

12: A ← rows of the inverse DFT matrix W−1 selected by set D
13: y ← elements of x selected by the set D
14: X ← CSREC (y,A, K )
15: xR ← W−1X
Output: Reconstructed denoised signal xR

Algorithm 2Matching Pursuit CS Reconstruction

1: function CSrec(y,A, K )
2: K ← ∅, e ← y,
3: for i = 1 to K do
4: k ← position of the largest value in |AH e|
5: K ← K ∪ k
6: AK ← columns of the measurement matrix A selected by the set K
7: XK ← pinv(AK )y
8: yK ← AKXK
9: e ← y − yK
10: end for
11: X ← 0, X ← XK for k ∈ K

12: return X
13: end function

3.3 Calculation Complexity

The main difference between RANSAC and the standard CS methods is in the iter-
ative procedure with random subsets of samples. Since this is the main factor in the
computational complexity of this method, we will find the probability that within S
randomly selected observation samples, there are no outliers.

The probability that the first randomly chosen sample is not affected by an outlier
is (N − I )/N since there are N samples in total and N − I of them are inliers. We
continue the process of random sample selection, and the probability that both the first
and the second chosen samples are not outliers is N−I

N
N−I−1
N−1 . In this way, we can

calculate the probability that all of S randomly chosen samples x(n) at the positions
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n ∈ S are not outliers. This probability is

P(S, N , I ) =
S−1∏

i=0

N − I − i

N − i
. (20)

Since N−I−i
N−i < 1, we can see that the probability P(S, N , I ) decreases as the number

of terms in the product increases. Thus, in this kind of reconstruction it is important to
keep the number of samples S in the observation set as low as possible, while satisfying
the CS reconstruction conditions.

In general, for an expected number of pulses I , the expected number of random
realizations to achieve at least one outlier-free reconstruction using a subset of S
samples is

Nit = 1

P(S, N , I )
. (21)

In classic literature dealing with the RANSAC, it is common to use the following
calculation for the expected number of the iterations to get an outlier-free realization.
The probability that one randomly selected sample is inlier is (N − I )/N . It is then
assumed that this probability can be used for S samples. The probability that there is
at least one outlier in S samples is [1 − ((N − I )/N ))S]. Finally, the probability of
an outlier-free realization in Nit such trials is

P = 1 − [1 − ((N − I )/N )S]Nit (22)

where

Nit = ln(1 − P)

ln(1 − ((N − I )/N )S)
, (23)

with the given probability P . This calculation is correct if the approximation

N − I − S

N − S
≈ N − I

N
, (24)

holds; otherwise, instead of ((N − I )/N )S we should use P(S, N , I ) = ∏S−1
i=0 (N −

I − i)/(N − i) to get the correct result.

3.4 Expected Signal-to-Noise Ratio

Assume that the RANSAC has produced the correct result, that is, the reconstruction
which is not influenced by the outliers. This means that the final reconstruction is done
using all consensus samples in the setD. This set of samples contains only inliers (with
the Gaussian noise). Then, we can use a simple formula for the output SNR in the
K -sparse signal, reconstructed from D samples, SN Rout , derived in [44,47,49]
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SN Rout = SN Rin0 + 10 log

(
D

K

)
. (25)

Since the outliers are eliminated before the reconstruction, the input SNR is denoted
by SN Rin0 and it includes the noise in inliers only. For reference, we will provide
the total input SNR in notation SN Rin , which includes outliers as well. We will also
provide the value of the SNR in the mid-result, when the sample consensus is reached
in a small subset S with S samples. This SNR is denoted by SN Rout0 and its relation
to the input SNR is

SN Rout0 = SN Rin0 + 10 log

(
S

K

)
. (26)

The improvement achieved by the RANSAC-based approach with respect to the ran-
dom selection of the subsets and the concentration measure-based selection of the
reconstruction set, is equal to

SN Rout − SN Rout0 = 10 log

(
D

K

)
− 10 log

(
S

K

)
= 10 log

(
D

S

)
. (27)

This improvement can be significant, having inmind that we have to keep S as small as
possible, in order to reduce the expected number of iterations Nit , which is crucial for
the calculation complexity, for both the measure-based denoising and the RANSAC-
based denoising. The number of consensus samples, D, can be as high as the number
of inliers, meaning that the ratio D/S could be very large.

4 Numerical and Statistical Examples

The results from the last two sectionswill nowbe illustrated onnumerical and statistical
exampleswith sparse noisy signals, containing inliers and outliers, reconstructed using
the CS version of the RANSAC.

Example 1 A general form of a noisy signal, sparse in the DFT domain, is considered
as

x(n) = s(n) + ε(n) + ν(n), (28)

where

s(n) =
K∑

i=1

Ake
j(2πnki /N+φk ) (29)

is a signal sparse in the DFT domain with K nonzero amplitudes randomly positioned
at {k1, k2, . . . , kK }. The amplitude values are equal to one, Ak = 1, since the same
amplitudes are the worst case in the CS reconstruction condition [46,49]. The phases,
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Fig. 1 The number of iterations Nit in the reconstruction of a signal using the RANSAC, with I = 16 out
of N = 128 samples being affected by an impulsive Cauchy disturbance. The average value is 11.99
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Fig. 2 The number of inliers in the solution in the reconstruction of a signal using the RANSAC, with
I = 16 out of N = 128 samples being affected by an impulsive Cauchy disturbance. The average value is
111.33

φk , are random and uniformly distributed, 0 ≤ φk < 2π , for each component and
realization. The Gaussian complex-valued noise ε(n) is with the standard deviation
σε = 0.5. The impulsive Cauchy noise ν(n) is formed as ν(n) = 3ε1(n)/ε2(n) +
j3ε3(n)/ε4(n), where εi (n), i = 1, 2, 3, 4 are unit variance, zero-mean, Gaussian
noises. The impulsive noise is added in I signal samples. In the denoising of this signal,
the CS form of the RANSAC is applied with random subsets of S samples, where S
is small enough to keep the lowest possible calculation complexity, but sufficient to
provide the correct reconstruction of a K sparse signal with acceptable probability.

Several cases, for specific values of the total number of samples, N , sparsity, K ,
number of outliers, I , and the size of the RANSAC subset, S, are considered.

The case for N = 128, K = 5, I = 16, and S = 32 is presented in detail with
illustrations in Figs. 1, 2, 3, and 4. This experiment is performed 100 times with
different random realizations of signals, x(n), and noises, ε(n) and ν(n). The values
of the number of iterations, Nit , in every realization are calculated and shown in
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Fig. 3 Reconstruction of a signal with I = 16 out of N = 128 samples using the RANSAC, being affected
by an impulsive Cauchy disturbance. One random realization is shown for the illustration. The noisy signal
is marked by the red crosses, and the reconstructed signals are denoted by the green circles, while the
original signal is shown with the black dots (Colour figure online)

0 20 40 60 80 100
-30

-20

-10

0

10

20

30

40

Fig. 4 The signal-to-noise ratio values in the reconstruction of a sparse signal using the RANSAC with
I = 16 samples (out of N = 128) being affected by an impulsive Cauchy disturbance. The average values
are SN Rin = −16.73 dB for the input signal to noise, SN Rin0 = 13.00 dB for the input signal to Gaussian
noise (when the impulsive noise is not counted), and SN Rout = 26.46 dB for the RANSAC reconstructed
(output) signal

Fig. 1. The final number of signal samples in the sample consensus, D, which is used
in the final signal reconstruction is given in Fig. 2. One of the realizations of the noisy
signal, original signal, and the reconstructed signal is shown in Fig. 3. The noisy signal
is marked by the red crosses, the reconstructed signal is denoted by the green circles,
while the original signal is shown with the black dots. The SNR for the input signal
s(n) + ε(n) + ν(n), SN Rin , for the input signal without impulsive noise s(n) + ε(n),
SN Rin0, and for the reconstructed signal xR(n), SN Rout , for every realization, is
given in Fig. 4.

The statistical results averaged over all considered realizations are given in Table
1.
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Table 1 Results for the case with N = 128, S = 32, K = 5

Nit SN Rin SN Rin0 SN Rout0 SN Rout D Time

I = 8 2.94 −8.81 13.01 16.23 27.07 119.46 0.010

I = 16 11.99 −16.73 13.00 14.39 26.46 111.33 0.038

I = 24 57.66 −17.53 13.01 13.29 25.91 103.56 0.201

The SNR values are given in [dB], while the average time for the algorithm execution (with MATLAB
2016b on MacBook Pro with 2.3 GHz Dual-Core Intel Core i5) is in seconds

The theoretically expected improvement (Sect. 3.4) in the SNR (omitting the impul-
sive noise in the input signal) for the case I = 8, in Table 1, is

SN Rout − SN Rin0 = 10 log

(
D

K

)
= 10 log

(
119.46

5

)
= 13.77dB (30)

For other two cases, I = 16 and I = 24, we get

SN Rout − SN Rin0 = 13.46dB (31)

and SN Rout − SN Rin0 = 13.14 dB, respectively. This is in high agreement with the
statistical data in Table 1.

The average processing time for the algorithm is shown in Table 1 (the last column)
for the considered cases, along with the specification of the computer and MATLAB.
As expected, the main computation burden is in the combinatorial search for a reduced
set of signal samples without outliers (which includes the CS reconstruction in each
iteration step), meaning that the processing time can roughly be approximated based
on the required number of iterations, shown in the first column of the results.

Example 2 Since the impulsive Cauchy noise may take some small values as well
(some of the assumed I outliers may happen to be inliers, in reality), the expected
number of iterations is smaller than the theoretically obtained result given by (20).
In order to check the expected number of iterations, Nit , against its theoretical value,
avoiding the ambiguity of possible Cauchy noise inliers, we will provide that all
I signal samples are certainly outliers. The impulsive noise is modified as ν(n) →
ν(n)+100, to be sure that all of these samples are the outliers. Then, we have repeated
the same experiment with 100 realizations and obtained Nit = 10.74, while the theory
in (20) predicts P = 0.0927 with Nit = 1/P = 10.78, for I = 8. The same numerical
experiment as in Example 1 is performed for I = 16, and we get P = 0.0071 with
Nit = 1/P = 140.95, while the statistics for this case produced Nit = 139.78. The
same holds for I = 24. The complete results of the experiment, with the modified
impulsive noise, are given in Table 2.

In this case (of the modified impulsive noise), we can also check the result for
the SNR in the final RANSAC mid-result, when the consensus is detected on a small
subset with S samples. Then,
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Table 2 Results for the case with N = 128, S = 32, K = 5, with highly impulsive noise so that all its
values are outliers

Nit SN Rin SN Rin0 SN Rout0 SN Rout D

I = 8 10.74 −22.45 13.01 21.02 27.20 119.96

I = 16 139.78 −26.75 13.00 21.06 27.05 111.94

I = 24 2335.67 −27.21 13.01 20.71 26.31 103.56

Table 3 Results for the case with N = 128, S = 64, K = 12

Nit SN Rin SN Rin0 SN Rout0 SN Rout D

I = 8 5.40 −5.24 16.79 14.90 26.30 107.52

I = 12 15.06 −10.13 16.76 13.33 25.79 104.85

I = 16 99.47 −11.42 16.80 13.10 25.41 101.41

Table 4 Results for the case with N = 256, S = 64, K = 12

Nit SN Rin SN Rin0 SN Rout0 SN Rout D

I = 16 5.36 −8.63 16.83 15.79 29.14 231.65

I = 32 61.84 −14.55 16.84 14.15 28.30 214.07

I = 40 261.30 −16.90 16.81 14.42 28.25 208.48

SN Rout0 − SN Rin0 = 10 log

(
S

K

)
= 10 log

(
32

5

)
= 8.06 dB (32)

for all three considered cases, I = 8, I = 16, and I = 24. This result is in complete
agreement with the statistical results for these SNR values in Table 2.

Example 3 The experiment form Example 1 is repeated with some other numbers of
the available samples, N , sparsites, K , the number of impulsive disturbances, I , and
the samples used in the RANSAC-based CS reconstruction. The results are given in
Tables 3 and 4 and further prove the efficiency of the proposed method and accuracy
of the proposed SNR descriptors.

Example 4 The experiment from Example 1 is repeated with the impulsive noise only,
that is, when x(n) = s(n)+ν(n). As expected, for all considered numbers of outliers,
the obtained results are within the computer precision accuracy. They are given in
Table 5. In this case, the value of d should be very small. We used d = 10−6 for this
experiment.

Example 5 In this example, the presented RANSAC-based methodology is compared
with an advanced method developed for the removal of ”clicks and pops” from audio
signals, proved as superior in comparison with other state-of-art techniques [8,27].
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Table 5 Results for the case with N = 128, S = 32, K = 5, with highly impulsive noise in outliers and
without noise in inliers

Nit SN Rin SN Rin0 SN Rout0 SN Rout D

I = 8 10.68 −22.44 316.64 276.25 282.12 120

I = 16 138.21 −26.75 316.67 271.86 277.52 112

I = 24 2402.23 −27.47 316.67 270.51 275.40 104

In our example, a recorded signal containing spoken word ’Hallelujah’ is con-
sidered. Signal is recorded on a MacBook computer using MATLAB with sampling
frequency 11025Hz. The recorded signal is corrupted with additive impulsive noise of
the form σε1(n)/ε2(n), with ε1(n) and ε2(n) being white, Gaussian noises with mean
values equal zero and unit variances. Two cases are considered: (i) A small percent of
p = 1% samples is corrupted, with σ = 0.008 and (ii) a higher percent of p = 8%
samples is corrupted, with σ = 0.0035.

We compare the RANSAC-based recovery with the recent method for impulsive
noise (clicks) detection and removal (AR-based reconstruction), presented in [8,27].
The detection and the AR model-based reconstruction are done using authors’ algo-
rithms, codes and parameters (semi-causal with decision-feedback scheme) [8]. The
bidirectional signal processing (BDSP), originally introduced in [27] is considered as
a representative methodology. This algorithm is highly adapted for the removal of this
kind of impulsive disturbances in audio signals.

The results are presented inFigs. 5 and6. In thefirst casewith 1%corrupted samples,
the BDSP produced MSE of −48.21dB, while RANSAC-based reconstruction MSE
is slightly improved to −51.17, where d = 0.02 and assumed sparsity K = 35 is
used. In this analysis the DCT was used as the sparsity domain. The initial MSE in
the signal was −33.72dB Reconstruction times are 18.04s and 37.27s, meaning that
the BDSP is computationally more efficient in this case. Algorithms were executed
on a notebook computer with Intel i7-6700HQ CPU @ 2.6GHz and 8GB RAM, with
MATLAB R2016b.

In the second considered case, as it can be seen fromFig. 6, the proposed RANSAC-
based approach produced significantly better results. This can be explained by the fact
that BDSP is adapted for specific impulsive disturbances in audio signals of the form of
’clicks’, which appear in a very small percent of samples. In the second case, the initial
MSE was −25.16dB. BDSP produced false detection/increase of the disturbance
at certain positions, producing MSE increase to −17.43dB, while RANSAC-based
denoising produced significantly better results: MSE is now decreased to −47.90dB
close to the first case with a smaller percent of impulsive disturbances. Execution times
were 34.30s for RANSAC-based approach, and 19.11s for the BDSP, meaning that the
computational ratio is the same as in the first case. The RANSAC-based approach can
produce high quality output even if the percent of impulsive disturbances is further
increased.

We have compared RANSAC-based approach with our earlier algorithm, from
[7]. RANSAC introduced mild improvement in the MSE, but there is a significant
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(a)

(b)

(c)

(d)

Fig. 5 Removal of impulsive noise from recorded audio signal with 1% of corrupted samples. a Original
(non-corrupted) audio signal. b Signal with 1% samples corrupted by an impulsive disturbance. c Signal
recovered using advanced bidirectional signal processing technique for the removal of clicks. d Signal
recovered using the presented RANSAC-based methodology

difference in the computational complexity: RANSAC executes tens of times faster
than our earlier approach.

5 Conclusion

Inspired by recent advances in compressive sensing and sparse signal processing, we
have developed a RANSAC-based methodology for the detection of disturbances.
Upon detecting disturbance-free samples, a compressive sensing algorithm is used
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(a)

(b)

(c)

(d)

Fig. 6 Removal of impulsive noise from recorded audio signal with 8% of corrupted samples. a Original
(non-corrupted) audio signal. b Signal with 8% samples corrupted by an impulsive disturbance. c Signal
recovered using advanced bidirectional signal processing technique for the removal of clicks. d Signal
recovered using the presented RANSAC-based methodology

for the recovery of the disturbed samples, which are considered as unavailable. The
presentedmethodology is general—no specific assumptions have beenmade regarding
the range of values or statistical behavior of the disturbance. The presented approach
exploits the fact that disturbances degrade signal sparsity. It has been only assumed
that the signals of interest exhibit sparsity in a known transformation domain. The
theory has been verified on numerical examples.
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B Ljubiša Stanković
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