
Data Analytics on Graphs

Other titles in

Computational Optimal Transport
Gabriel Peyre and Marco Cuturi
ISBN: 978-1-68083-550-2

An Introduction to Deep Reinforcement Learning
Vincent Francois-Lavet, Peter Henderson, Riashat Islam,
Marc G. Bellemare and Joelle Pineau
ISBN: 978-1-68083-538-0

An Introduction to Wishart Matrix Moments
Adrian N. Bishop, Pierre Del Moral and Angele Niclas
ISBN: 978-1-68083-506-9

A Tutorial on Thompson Sampling
Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband
and Zheng Wen
ISBN: 978-1-68083-470-3

Data Analytics on Graphs

Ljubiša Stanković
University of Montenegro
Montenegro
ljubisa@ucg.ac.me

Danilo Mandic
Imperial College London
UK
d.mandic@imperial.ac.uk

Miloš Daković
University of Montenegro
Montenegro
milos@ucg.ac.me

Miloš Brajović
University of Montenegro
Montenegro
milosb@ucg.ac.me

Bruno Scalzo
Imperial College London
UK
bruno.scalzo-dees12@imperial.ac.uk

Shengxi Li
Imperial College London
UK
shengxi.li17@imperial.ac.uk

Anthony G. Constantinides
Imperial College London
UK
a.constantinides@imperial.ac.uk

Boston — Delft

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

L. Stanković, D. Mandic, M. Daković, M. Brajović, B. Scalzo and A. G. Constantinides.
Data Analytics on Graphs. , vol. 13, no. 1, pp. 1–157, 2020.

ISBN: 978-1-68083-982-1
© 2021 L. Stanković, D. Mandic, M. Daković, M. Brajović, B. Scalzo and A. G.
Constantinides

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Volume 13, Issue 1, 2020
Editorial Board

Editor-in-Chief
Michael Jordan
University of California, Berkeley
United States

Editors

Peter Bartlett
UC Berkeley

Yoshua Bengio
Université de Montréal

Avrim Blum
Toyota Technological
Institute

Craig Boutilier
University of Toronto

Stephen Boyd
Stanford University

Carla Brodley
Northeastern University

Inderjit Dhillon
Texas at Austin

Jerome Friedman
Stanford University

Kenji Fukumizu
ISM

Zoubin Ghahramani
Cambridge University

David Heckerman
Amazon

Tom Heskes
Radboud University

Geoffrey Hinton
University of Toronto

Aapo Hyvarinen
Helsinki IIT

Leslie Pack Kaelbling
MIT

Michael Kearns
UPenn

Daphne Koller
Stanford University

John Lafferty
Yale

Michael Littman
Brown University

Gabor Lugosi
Pompeu Fabra

David Madigan
Columbia University

Pascal Massart
Université de Paris-Sud

Andrew McCallum
University of
Massachusetts Amherst

Marina Meila
University of Washington

Andrew Moore
CMU

John Platt
Microsoft Research

Luc de Raedt
KU Leuven

Christian Robert
Paris-Dauphine

Sunita Sarawagi
IIT Bombay

Robert Schapire
Microsoft Research

Bernhard Schoelkopf
Max Planck Institute

Richard Sutton
University of Alberta

Larry Wasserman
CMU

Bin Yu
UC Berkeley

Editorial Scope
Topics

Information for Librarians

Contents

I Graphs and Spectra on Graphs 1

1 Introduction 3

2 Graph Definitions and Properties 7
2.1 Basic Definitions . 7
2.2 Some Frequently Used Graph Topologies 14
2.3 Properties of Graphs and Associated Matrices 19

3 Spectral Decomposition of Graph Matrices 29
3.1 Eigenvalue Decomposition of the Adjacency Matrix 29
3.2 Spectral Graph Theory 32
3.3 Eigenvalue Decomposition of the Graph Laplacian 39

4 Vertex Clustering and Mapping 49
4.1 Clustering Based on Graph Topology 50
4.2 Spectral Methods for Graph Clustering 58
4.3 Spectral Clustering Implementation 75
4.4 Vertex Dimensionality Reduction Using the

Laplacian Eigenmaps . 91
4.5 Pseudo-Inverse of Graph Laplacian-Based Mappings 104

4.6 Summary of Embedding Mappings 116

5 Graph Sampling Strategies 119
5.1 Graph Down-Sampling Strategies 119
5.2 Graph Sparsification . 121
5.3 Graph Coarsening . 127
5.4 Kron Reduction of Graphs 134

6 Conclusion 135

II Signals on Graphs 137

7 Introduction 139

8 Problem Statement: An Illustrative Example 143

9 Signals and Systems on Graphs 155
9.1 Adjacency Matrix and Graph Signal Shift 158
9.2 Systems Based on Graph Shifted Signals 160
9.3 Graph Fourier Transform (GFT), Adjacency

Matrix Based Definition 163
9.4 System on a Graph in the GFT Domain 164
9.5 Graph Signal Filtering in the Spectral Domain of the

Adjacency Matrix . 166
9.6 Graph Fourier Transform Based on the Laplacian 178
9.7 Ordering and Filtering in the Laplacian Spectral Domain . 180
9.8 Systems on a Graph Defined Using the Graph Laplacian . . 184
9.9 Convolution of Signals on a Graph 186
9.10 The z-Transform of a Signal on a Graph 188
9.11 Shift Operator in the Spectral Domain 192
9.12 Parseval’s Theorem on a Graph 193
9.13 Optimal Denoising . 193
9.14 Summary of Shift Operators for Systems on a Graph . . . 197

10 Subsampling, Compressed Sensing, and Reconstruction 199
10.1 Subsampling of Bandlimited Graph Signals 199

10.2 Subsampling of Sparse Graph Signals 203
10.3 Measurements as Linear Combinations of Samples 211
10.4 Aggregate Sampling . 212
10.5 Random Sampling with Optimal Strategy 215

11 Filter Bank on a Graph 221

12 Time-Varying Signals on Graphs 231
12.1 Diffusion on Graph and Low Pass Filtering 232
12.2 Taubin’s α− β Algorithm 233

13 Random Graph Signal Processing 237
13.1 Review of WSS and Related Properties for Random Signals

in Standard Time Domain 238
13.2 Adjacency Matrix Based Definition of GWSS 239
13.3 Wiener Filter on a Graph 240
13.4 Spectral Domain Shift Based Definition of GWSS 241
13.5 Isometric Shift Operator 242

14 Vertex-Frequency Representations 243
14.1 Localized Graph Fourier Transform (LGFT) 245
14.2 Inversion of the LGFT . 283
14.3 Uncertainty Principle for Graph Signals 288
14.4 Graph Spectrogram and Frames 290
14.5 Vertex-Frequency Energy Distributions 294

15 Conclusion 305

III Machine Learning on Graphs, from Graph Topology to Ap-
plications 307

16 Introduction 309

17 Geometrically Defined Graph Topologies 313

18 Graph Topology Based on Signal Similarity 323

19 Learning of Graph Laplacian from Data 331
19.1 Imposing Sparsity on the Connectivity Matrix 334
19.2 Smoothness Constrained Learning of Graph Laplacian . . . 339
19.3 Graph Topology Estimation with the Graph Laplacian

Energy Condition . 342
19.4 Learning of Generalized Laplacian-Graphical LASSO 343
19.5 Graph Topology Learning Based on the Eigenvectors . . . 352

20 From Newton Minimization to Graphical
LASSO, via LASSO 363
20.1 Newton Method . 363
20.2 Standard LASSO . 365
20.3 Graphical LASSO . 368

21 Physically Well Defined Graphs 375
21.1 Resistive Electrical Circuits 375
21.2 Heat Transfer . 383
21.3 Spring-Mass Systems . 383
21.4 Social Networks and Linked Pages 385
21.5 PageRank . 386
21.6 Random Walk . 389
21.7 Hitting and Commute Time 393
21.8 Relating Gaussian Random Signal to Electric Circuits . . . 397

22 Graph Learning from Data and External Sources 399

23 Random Signal Simulation on Graphs 405

24 Summary of Graph Learning from Data Using
Probabilistic Generative Models 409
24.1 Basic Gaussian Models 410
24.2 Gaussian Graphical Model 412
24.3 Diffusion Models . 419

25 Graph Neural Networks 425
25.1 Basic Graph Elements Related to GCNs 427
25.2 Gradient Descent as a Diffusion Process 430

25.3 Label Propagation as a Diffusion Process with
External Sources . 431

25.4 GNNs of a Recurrent Style 433
25.5 Spatial GCNs via Localization of Graphs 436
25.6 Spectral GCNs via Graph Fourier Transform 438
25.7 Link Prediction via Graph Neural Nets 444

26 Tensor Representation of
Lattice-Structured Graphs 453
26.1 Tensorization of Graph Signals in High-Dimensional Spaces 454
26.2 Tensor Decomposition . 455
26.3 Connectivity of a Tensor 457
26.4 DFT of a Tensor . 460
26.5 Unstructured Graphs . 461
26.6 Tensor Representation of Multi-Relational Graphs 462
26.7 Multi-Graph Tensor Networks 464

27 Metro Traffic Modeling Through Graphs 471
27.1 Traffic Centrality as a Graph-Theoretic Measure 472
27.2 Modeling Commuter Population from Net Passenger Flow 474

28 Portfolio Cuts 481
28.1 Structure of Market Graph 483
28.2 Minimum Cut Based Vertex Clustering 484
28.3 Spectral Bisection Based Minimum Cut 486
28.4 Repeated Portfolio Cuts 488
28.5 Graph Asset Allocation Schemes 490
28.6 Numerical Example . 491

29 Conclusion 495

Appendices 497

A Power Method for Eigenanalysis 499

B Algorithm for Graph Laplacian Eigenmaps 503

C Other Graph Laplacian Forms 505
C.1 Graph Laplacian for Directed Graphs 505
C.2 Signed Graphs and Signed Graph Laplacian 507
C.3 Graph p-Laplacian . 508

Acknowledgments 511

References 513

Index 540

Part I

Graphs and Spectra on
Graphs

1
Introduction

Data analytics on graphs is a multidisciplinary research area, of which
the roots can be traced back to the 1970s (Afrati and Constantinides,
1978; Christofides, 1975; Morris et al., 1986), one that is witnessing
significant rapid growth. The recent developments, in response to the
requirements posed by radically new classes of data sources, typically
embark upon the classical results on “static” graph topology optimiza-
tion, to treat graphs as irregular data domains, which make it possible
to address completely new paradigms of “information processing on
graphs” and “signal processing on graphs”. This has already resulted
in advanced and physically meaningful solutions in manifold applica-
tions (Grady and Polimeni, 2010; Jordan, 1998; Krim and Hamza, 2015;
Marques et al., 2017; Ray, 2012). For example, while the emerging
areas of Graph Machine Learning (GML) and Graph Signal Process-
ing (GSP) do comprise the classic methods of optimization of graphs
themselves (Bapat, 1996; Bunse-Gerstner and Gragg, 1988; Fujiwara,
1995; Grebenkov and Nguyen, 2013; Jordan et al., 2004; Maheswari
and Maheswari, 2016; O’Rourke et al., 2016), significant progress has
been made towards redefining basic data analysis objectives (spectral
estimation, probabilistic inference, filtering, dimensionality reduction,

3

4 Introduction

clustering, statistical learning), to make them amenable for direct es-
timation of signals on graphs (Chen et al., 2014; Ekambaram, 2014;
Gavili and Zhang, 2017; Hamon et al., 2016b; Moura, 2018; Sandryhaila
and Moura, 2013, 2014a,b; Shuman et al., 2013; Vetterli et al., 2014;
Wainwright et al., 2008). Indeed, this is a necessity in numerous practi-
cal scenarios where the signal domain is not designated by equidistant
instants in time or a regular grid in a space or a transform domain.
Examples include modern Data Analytics for e.g., social network mod-
eling or in smart grid – data domains which are typically irregular
and, in some cases, not even related to the notions of time or space,
where ideally, the data sensing domain should also reflect domain-
specific properties of the considered system/network; for example, in
social or web related networks, the sensing points and their connec-
tivity may be related to specific individuals, objectives, or topics, and
their relations, whereby the processing on irregular domains requires
the consideration of data properties other than time or space relation-
ships. In addition, even for the data sensed in well-defined time and
space domains, the new contextual and semantic-related relations be-
tween the sensing points, introduced through graphs, promise to equip
problem definition with physical relevance, and consequently provide
new insights into analysis and can lead to enhanced data processing
results.

In applications which admit the definition of the data domain as a
graph (such as social networks, power grids, vehicular networks, and
brain connectivity), the role of classic temporal/spatial sampling points
is assumed by graph vertices – the nodes – where the data values
are observed, while the edges between vertices designate the existence
and nature of vertex connections (directionality, strength). In this way,
graphs are perfectly well equipped to exploit the fundamental relations
among both the measured data and the underlying graph topology;
this inherent ability to incorporate physically relevant data properties
has made GSP and GML key technologies in the emerging field of Big
Data Analytics (BDA). Indeed, in applications defined on irregular
data domains, Graph Data Analytics (GDA) has been shown to offer a
quantum step forward from the classical time (or space) series analyses
(Brouwer and Haemers, 2012; Cvetković and Doob, 1985; Cvetković

5

and Gutman 2011; Cvetković et al., 1980; Chung, 1997; Jones, 2013;
Mejia et al., 2017; Stanković et al., 2017b, 2019), including the following
aspects.

• Graph-based data processing approaches can be applied not only
to technological, biological, and social networks, but also they
can lead to both improvements of the existing and even to the
creation of radically new methods in classical signal processing and
machine learning (Dong et al., 2012; Hamon et al., 2016a; Horaud,
2009; Lu et al., 2014; Masoumi and Hamza, 2017; Masoumi et al.,
2016; Stanković et al., 2017a, 2018).

• The involvement of graphs makes it possible for the classical
sensing domains of time and space (which may be represented as
a linear or circular graph) to be structured in a more advanced
way, e.g., by considering the connectivity of sensing points from a
signal similarity or sensor association point of view.

The first step in graph data analytics is to decide on the properties of
the graph as a new signal/information domain. However, while the data
sensing points (graph vertices) may be well-defined by the application
itself, that is not the case with their connectivity (graph edges), where:

• In the case of the various computer, social, road, transportation
and electrical networks, the vertex connectivity is often naturally
defined, resulting in an exact underlying graph topology.

• In many other cases, the data domain definition in a graph form
becomes part of the problem definition itself, as is the case with,
e.g., graphs for sensor networks, in finance or smart cities. In such
cases, a vertex connectivity scheme needs to be determined based
on the properties of the sensing positions or from the acquired data,
as e.g., in the estimation of the temperature field in meteorology
(Stankovic et al., 2019a).

This additional aspect of the definition of an appropriate graph struc-
ture is of crucial importance for a meaningful and efficient application
of the GML and GSP approaches.

6 Introduction

With that in mind, this monograph was written in response to
the urgent need of multidisciplinary data analytics communities for a
seamless and rigorous transition from classical data analytics to the
corresponding paradigms which operate directly on irregular graph
domains. To this end, we start our approach from a review of basic
definitions of graphs and their properties, followed by a physical intuition
and step-by-step introduction of graph spectral analysis (eigen-analysis).
Particular emphasis is on eigendecomposition of graph matrices, an area
which serves as a basis for mathematical formalisms in graph signal
and information processing. As an example of the ability of GML and
GSP to generalize standard methodologies for graphs, we elaborate in a
step-by-step way the introduction of Graph Discrete Fourier Transform
(GDFT), and show that it simplifies into standard Discrete Fourier
Transform (DFT) for directed circular graphs; this also exemplifies the
generic nature of graph approaches. Finally, spectral vertex analysis
and spectral graph segmentation are used as the basis for understanding
relations among distinct but physically meaningful regions in graphs; this
is demonstrated through examples of regional infrastructure modeling,
brain connectivity, clustering, and dimensionality reduction.

2
Graph Definitions and Properties

Graph theory has been established for almost three centuries as a branch
in mathematics, and has become a staple methodology in science and
engineering areas including chemistry, operational research, electrical
and civil engineering, social networks, and computer sciences. The
beginning of graph theory applications in electrical engineering can be
traced back to the mid-19th century with the introduction of Kirchoff’s
laws. Fast forward two centuries or so, the analytics of data acquired
on graphs has become a rapidly developing research paradigm in Signal
Processing and Machine Learning (Grady and Polimeni, 2010; Krim
and Hamza, 2015; Marques et al., 2017; Ray, 2012).

2.1 Basic Definitions

Definition: A graph G = {V,B} is defined as a set of vertices, V , which
are connected by a set of edges, B ⊂ V×V , where the symbol × denotes
a direct product operator.

Examples of graph topologies with N = 8 vertices, with

V = {0, 1, 2, 3, 4, 5, 6, 7}

7

8 Graph Definitions and Properties

0 1

2

3

4

56
7

(a)

0 1

2

3

4

56
7

(b)

Figure 2.1: Basic graph structures. (a) Undirected graph and (b) Directed graph.

are presented in Figure 2.1, along with the corresponding edges. The
vertices are usually depicted as points (circles) and the edges as lines
that connect the vertices. More formally, a line between the vertices
m and n indicates the existence of an edge between vertices m and n,
that is, (m,n) ∈ B, so that, for example, the graph from Figure 2.1(b)
can be described as

V = {0, 1, 2, 3, 4, 5, 6, 7}
B ⊂ {0, 1, 2, 3, 4, 5, 6, 7} × {0, 1, 2, 3, 4, 5, 6, 7}
B = {(0, 1), (1, 2), (2, 0), (2, 3), (2, 4), (2, 7), (3, 0),

(4, 1), (4, 2), (4, 5), (5, 7), (6, 3), (6, 7), (7, 2), (7, 6)}.

Regarding the directionality of vertex connections, a graph can be
undirected and directed, as illustrated respectively in Figures 2.1(a)
and (b).

2.1. Basic Definitions 9

Definition: A graph is undirected if the edge connecting a vertex m to
a vertex n also connects the vertex n to the vertex m, for all m and n.

In other words, for an undirected graph, if (n,m) ∈ B then also
(m,n) ∈ B, as in the case, for example, with edges (1, 2) and (2, 1) in
Figure 2.1(a). For directed graphs, in general, this property does not
hold, as shown in Figure 2.1(b). Observe, for example, that the edge
(2, 1) does not exist, although the edge (1, 2) connects vertices 1 and 2.
Therefore, undirected graphs can be considered as a special case of
directed graphs.

For a given set of vertices and edges, a graph can be formally
represented by its adjacency matrix, A, which describes the vertex
connectivity; for N vertices A is an N ×N matrix.

Definition: The elements Amn of the adjacency matrix A assume values
Amn ∈ {0, 1}. The value Amn = 0 is assigned if the vertices m and
n are not connected with an edge, and Amn = 1 if these vertices are
connected, that is

Amn
def=

1, if (m,n) ∈ B
0, if (m,n) /∈ B.

Therefore, the respective adjacency matrices, Aun and Adir, for the
undirected and directed graphs from Figures 2.1(a) and (b) are given by

Aun =

0
1
2
3
4
5
6
7

0 1 1 1 0 0 0 0
1 0 1 0 1 0 0 0
1 1 0 1 1 0 0 0
1 0 1 0 0 0 1 0
0 1 1 0 0 1 0 1
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 0

0 1 2 3 4 5 6 7

, (2.1)

10 Graph Definitions and Properties

Adir =

0
1
2
3
4
5
6
7

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 1
1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0

. (2.2)

Adjacency matrices not only fully reflect the structure arising from
the topology of data acquisition, but also they admit analysis through
linear algebra, and can be sparse, or exhibit some other interesting and
useful matrix properties.
Remark 1: The adjacency matrix of an undirected graph is symmetric,
that is,

A = AT .

Since a graph is fully determined by its adjacency matrix, defined
over a given set of vertices, any change in vertex ordering will cause the
corresponding changes in the adjacency matrix.
Remark 2: Observe that a vertex indexing scheme does not change
the graph itself (graphs are isomorphic domains), so that the relation
between adjacency matrices of the original and renumerated graphs, A1
and A2 respectively, is straightforwardly defined using an appropriate
permutation matrix, P, in the form

A2 = P A1PT . (2.3)

Recall that each row and each column of a permutation matrix has
exactly one nonzero element equal to unity.

In general, in the context of an application the edges can also
convey information about a relative importance about the vertices they
interconnect, through a weighted graph.
Remark 3: The set of weights, W, corresponds morphologically to
the set of edges, B, so that a weighted graph represents a generic
extension of an unweighted graph. It is commonly assumed that edge

2.1. Basic Definitions 11

0 1

2

3

4

56
7

0.23

0.74
0.
24 0.35 0

.2
3

0.26 0.24
0
.3
2

0.510.1
4

0.150.32

Figure 2.2: Example of a weighted graph.

weights are nonnegative real numbers; therefore, if weight 0 is associated
with a nonexisting edge, then the graph can be described by a weight
matrix, W, similar to the description by the adjacency matrix A.

Definition: A nonzero element in the weight matrix W, Wmn ∈ W,
designates both an edge between the vertices m and n and the corre-
sponding weight. The value Wmn = 0 indicates no edge connecting the
vertices m and n. The elements of a weight matrix are nonnegative real
numbers.

Figure 2.2 shows an example of a weighted undirected graph, with
the corresponding weight matrix given by

W =

0
1
2
3
4
5
6
7

0 0.23 0.74 0.24 0 0 0 0
0.23 0 0.35 0 0.23 0 0 0
0.74 0.35 0 0.26 0.24 0 0 0
0.24 0 0.26 0 0 0 0.32 0

0 0.23 0.24 0 0 0.51 0 0.14
0 0 0 0 0.51 0 0 0.15
0 0 0 0.32 0 0 0 0.32
0 0 0 0 0.14 0.15 0.32 0

.

0 1 2 3 4 5 6 7

(2.4)

In this sense, the adjacency matrix, A, can be considered as a special
case of the weight matrix, W, whereby all nonzero weights are equal to
unity. It then follows that the weight matrix of undirected graphs is
also symmetric

W = WT , (2.5)
while, in general, for directed graphs this property does not hold.

12 Graph Definitions and Properties

Definition: A degree matrix, D, of an undirected graph is a diagonal
matrix with elements, Dmm, which are equal to the sum of weights of
all edges connected to the vertex m, that is, the sum of elements in the
m-th row of the weight matrix, W,

Dmm
def=

N−1∑
n=0

Wmn.

Remark 4: For an unweighted and undirected graph, the value of the
element Dmm is equal to the number of edges connected to the m-th
vertex.

The degree matrices for directed graphs will be consider in the
Appendix on the Laplacian of directed graphs.

Vertex degree centrality. The degree centrality of a vertex is defined
as the number of vertices connected to the considered vertex with a
single edge, and in this way it models the importance of a given vertex.
For undirected and unweighted graphs, the vertex degree centrality of
a vertex m is equal to the element, Dmm, of the degree matrix.
Example 1: For the undirected weighted graph from Figure 2.2, the
degree matrix is given by

D =

0
1
2
3
4
5
6
7

1.21 0 0 0 0 0 0 0
0 0.81 0 0 0 0 0 0
0 0 1.59 0 0 0 0 0
0 0 0 0.82 0 0 0 0
0 0 0 0 1.12 0 0 0
0 0 0 0 0 0.66 0 0
0 0 0 0 0 0 0.64 0
0 0 0 0 0 0 0 0.61

.

0 1 2 3 4 5 6 7

(2.6)

Another important descriptor of graph connectivity is the graph
Laplacian matrix, L, which combines the weight matrix and the degree
matrix.

Definition: The graph Laplacian matrix is defined as

L def= D−W, (2.7)

2.1. Basic Definitions 13

where W is the weight matrix and D the diagonal degree matrix
with elements Dmm = ∑

nWmn. The elements of a Laplacian matrix
are therefore nonnegative real numbers at the diagonal positions, and
nonpositive real numbers at the off-diagonal positions.

For an undirected graph, the Laplacian matrix is symmetric, that
is, L = LT . For example, the graph Laplacian for the weighted graph
from Figure 2.2 is given by

L =

1.21 −0.23 −0.74 −0.24 0 0 0 0
−0.23 0.81 −0.35 0 −0.23 0 0 0
−0.74 −0.35 1.59 −0.26 −0.24 0 0 0
−0.24 0 −0.26 0.82 0 0 −0.32 0

0 −0.23 −0.24 0 1.12 −0.51 0 −0.14
0 0 0 0 −0.51 0.66 0 −0.15
0 0 0 −0.32 0 0 0.64 −0.32
0 0 0 0 −0.14 −0.15 −0.32 0.61

. (2.8)

For practical reasons, it is often advantageous to use the normalized
Laplacian, defined as

LN
def= D−1/2(D−W)D−1/2 = I−D−1/2WD−1/2. (2.9)

Remark 5: For undirected graphs, the normalized Laplacian matrix is
symmetric, and has all diagonal values equal to 1, with its trace equal
to the number of vertices N .

Other interesting properties, obtained through Laplacian normaliza-
tion, shall be described later in the various application contexts.

One more form of the graph Laplacian is the so called random-walk
Laplacian, defined as

LRW
def= D−1L = I−D−1W. (2.10)

The random-walk graph Laplacian is rarely used, since it has lost the
symmetry property of the original graph Laplacian for undirected graphs,
LRW 6= LTRW .

Vertex-weighted graphs. Most of the applications of graph theory
are based on edge-weighted graphs, where edge-weighting is designated
by the weight matrix, W. Note that weighting can be also introduced
into graphs based on vertex-weighted approaches (although rather

14 Graph Definitions and Properties

rarely), whereby a weight is assigned to each vertex of a graph. To this
end, we can use a diagonal matrix, V, to define the vertex weights vi,
i = 0, 1, . . . , N − 1, with one possible (Chung and Langlands, 1996)
version of the vertex-weighted graph Laplacian, given by

LV
def= V1/2LV1/2. (2.11)

Observe that for V = D−1, the vertex-weighted graph Laplacian in
(2.11) reduces to the standard edge-weighted normalized graph Laplacian
in (2.9).

2.2 Some Frequently Used Graph Topologies

When dealing with graphs, it is useful to introduce a taxonomy of graph
topologies, as follows.

1. Complete graph. A graph is complete if there exists an edge
between every pair of its vertices. Therefore, the adjacency matrix
of a complete graph has elements Amn = 1 for all m 6= n, and
Amm = 0, that is, no self-connections are present. Figure 2.3(a)
gives an example of a complete graph.

2. Bipartite graph. A graph for which the vertices, V, can be
partitioned into two disjoint subsets, E and H, whereby V = E ∪H
and E ∩ H = ∅, such that there are no edges between the vertices
within the same subset E or H, is referred to as a bipartite graph.
Figure 2.3(b) gives an example of a bipartite undirected graph
with E = {0, 1, 2} and H = {3, 4, 5, 6}, whereby all edges designate
only connections between the sets E and H. Observe also that
the graph in Figure 2.3(b) is a complete bipartite graph, since all
possible edges between the sets E and H are present.
For convenience of mathematical formalism, if vertex ordering
is performed in a such way that all vertices belonging to E are
indexed before the vertices belonging to H, then the resulting
adjacency matrix can be written in a block form

A =
[

0 AEH
AHE 0

]
, (2.12)

2.2. Some Frequently Used Graph Topologies 15

0 1

2

3

45

6

7
0

1

2

3

4

5

6

0 1

2

3

45

6

7

0

1

2

3

45

6

7

0

1

2

3

4

0 1

2

3

45

6

7

0 1

2

3

45

6

7

4

3

2

1

0

(a) Complete graph (b) Bipartite graph

(c) Regular graph (d) Star graph

(f) Path graph(e) Circular graph
(h) Directed
path graph

(g) Directed
circular graph

Figure 2.3: Special graph topologies. (a) Complete graph with 8 vertices. (b) Com-
plete bipartite graph. (c) Regular graph whereby each vertex is connected to 4 vertices.
(d) Star graph. (e) Circular graph. (f) Path graph. (g) Directed circular graph. (h) Di-
rected path graph.

16 Graph Definitions and Properties

where the submatrices AEH and AHE define the respective connec-
tions between the vertices belonging to the disjoint sets E and H.
Observe that for an undirected bipartite graph, AEH = AT

HE .
Bipartite graphs are also referred to as Kuratowski graphs, de-
noted by KNE ,NH , where NE and NH are the respective numbers
of vertices in the sets E and H. It is important to mention that a
complete bipartite graph with three vertices in each of the sets,
H and E , is referred to as the first Kuratowski graph, denoted
by K3,3, which may be used to define conditions for a graph to
be planar (more detail is given in the sequel).
Multipartite graph. A generalization of the concept of bipartite
graph is a multipartite (M -partite) graph for which the vertices
are partitioned into M subsets, whereby each edge connects only
vertices that belong to different subsets.

3. Regular graph. An unweighted graph is said to be regular (or J -
regular) if all its vertices exhibit the same degree of connectivity, J ,
which is defined as the number of edges connected to each vertex.
An example of a regular graph with J = 4 is given in Figure 2.3(c).
From (2.7) and (2.9), the Laplacian and the normalized Laplacian
of a J -regular graph are

L = J I−A and LN = I− 1
J

A. (2.13)

4. Planar graph. A graph that can be drawn on a two-dimensional
plane without the crossing of any of its edges is called planar.
For example, if the edges (0, 2), (2, 4), (4, 6), and (6, 0) in the
regular graph from Figure 2.3(c) are plotted as arches outside the
circle defined by the vertices, all instances of edge crossing will be
avoided and such graph presentation will be planar. The graphs
shown in Figures 2.3(d)–(h) are examples of planar graphs.

5. Star graph. This type of graph has one central vertex that is
connected to all other vertices, with no other edges present. An
example of star graph is given in Figure 2.3(d). Observe that
a star graph can be considered as a special case of a complete

2.2. Some Frequently Used Graph Topologies 17

bipartite graph, with only one vertex in the first set, E . The vertex
degree centrality for the central vertex of a star graph with N

vertices is therefore N − 1.

6. Circular (ring) graph. A graph is said to be circular if the
degree of its every vertex is J = 2. This graph is also a regular
graph with J = 2. An example of a circular graph with 8 vertices
is given in Figure 2.3(e).

7. Path graph. A series of connected vertices defines a path graph,
whereby the first and the last vertex are of connectivity degree
J = 1, while all other vertices are of the connectivity degree
J = 2. An example of a path graph with 5 vertices is presented
in Figure 2.3(f).

8. Directed circular graph. A directed graph is said to be circular
if each vertex is related to only one predecessor vertex and only
one successor vertex. An example of a directed circular graph with
8 vertices is given in Figure 2.3(g), with the adjacency matrix

A =

0
1
2
3
4
5
6
7

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7

. (2.14)

Remark 6: The adjacency matrix of any directed or undirected
circular graph is a circulant matrix.

9. Directed path graph. A directed path graph consists of a series
of vertices connected in only one direction, whereby the first and
the last vertex do not have a respective predecessor or successor.

18 Graph Definitions and Properties

An example of a directed path graph with 5 vertices is presented
in Figure 2.3(h).

Remark 7: Path and circular graphs (directed and undirected)
are of particular interest in Data Analytics, since their domain
properties correspond to classical time or space domains. There-
fore, any graph signal processing or machine learning paradigm
which is developed for path and circular graphs is equivalent to its
corresponding standard time and/or spatial domain paradigm.

10. Erdös-Renyi graph model. This is an N -vertex graph model,
denoted by G(N, p) and introduced by Gilbert, which is formed
in such a way that the presence of an edge between any two
vertices m and n is designated with a probability p. Since the
number of edges in a complete graph is N(N − 1)/2, the expected
number of edges in this graph model is pN(N − 1)/2. A variant
of this model, denoted by G(N,M), is obtained when exactly M
randomly chosen edges are used in a graph with N vertices.
These two closely related graph models are commonly used within
probabilistic approaches, for example, to demonstrate that a cer-
tain property holds for almost all graphs.

11. Stochastic block graph model. Here, the N vertices of a
graph are grouped into K communities, each comprising sets
of vertices that behave similarly (we shall later refer to these
groups as clusters of vertices). The vertices are then randomly
connected with edges, typically with denser connections within
one community, than between the different communities. The
probabilities of the existence of an edge connection between the
community i and the community k are denoted by pik, where
i, k = 1, 2, . . . ,K are the community indices; this means that
commonly pkk > pik for i 6= k. If pik is constant, then this model
reduces to a special case of the Erdös-Renyi model, since there is no
inter-community preference on the probability for edge existence.

12. Preferential attachment model. In graphs that model real-
world social and other networks, it is not uncommon that the

2.3. Properties of Graphs and Associated Matrices 19

number of vertices (representing the users) increases over time.
Consider a graph with N vertices, and assume that a new,
(N + 1)th vertex, is added. In the preferential attachment graph
model, this new vertex, (N + 1), is connected with other ver-
tices, n, with a probability proportional to their degrees, pn =
Dnn/

∑N
m=1Dmm, calculated before the new vertex is added. In

this way, the more connected vertices accumulate more new edges
(connections).

2.3 Properties of Graphs and Associated Matrices

The notions from graph analysis that are most relevant to the processing
of data on graphs are as follows.

M1: Symmetry: For an undirected graph, the matrices A, W, and L
are all symmetric.

M2: A walk between a vertex m and a vertex n is a connected sequence
of edges and vertices that begins at the vertex m and ends at the
vertex n. Edges and vertices can be included in a walk more than
once. There is also more than one walk between vertices m and n.
The length of a walk is equal to the number of included edges in
unweighted graphs. The number of walks of length K, between a
vertexm and a vertex n, is equal to the value of themn-th element
of the matrix AK , which can be proved through mathematical
induction, as follows (Duncan, 2004).
(i) The elements, Amn, of the adjacency matrix A, by definition,
indicate the existence of a walk of length K = 1 (an edge, in this
case) between the vertices m and n in a graph.
(ii) Assume that the elements of matrix AK−1 are equal to the
number of walks of length K − 1, between two arbitrary vertices
m and n.
(iii) The number of walks of length K between two vertices, m
and n, is then equal to the number of all walks of length K − 1,
between the vertex m and an intermediate vertex s, s ∈ V , which
itself is indicated by the element at the position ms of the matrix

20 Graph Definitions and Properties

AK−1, according to (ii), for all s for which there is an edge from
vertex s to the destination vertex n. If an edge between the
intermediate vertex s and the final vertex n exists, then Asn = 1.
This means that the number of walks of length K between the
vertices m and n is obtained as the inner product of the m-th row
of AK−1 with the n-th column in A, to yield the element mn of
matrix AK−1A = AK .

Example 2: Consider the vertex 0 and the vertex 4 in the graph
from Figure 2.4, and only the walks of lengthK = 2. The adjacency
matrix for this graph is given in (2.1). There are two such walks
(0→ 1→ 4 and 0→ 2→ 4), so that the element A2

04 in the first
row and the fifth column of matrix A2, is equal to 2, as designated
in bold font in the matrix A2 below,

A2 =

0
1
2
3
4
5
6
7

3 1 2 1 2 0 1 0
1 3 2 2 1 1 0 1
2 2 4 1 1 1 1 1
1 2 1 3 1 0 0 1
2 1 1 1 4 1 1 1
0 1 1 0 1 2 1 1
1 0 1 0 1 1 2 0
0 1 1 1 1 1 0 3

,

0 1 2 3 4 5 6 7

(2.15)

thus indicating K = 2 walks between these vertices.

M3: The number of walks of length not higher than K, between the
vertices m and n, is given by the mn-th element of the matrix

BK = A + A2 + · · ·+ AK , (2.16)

that is, by a value in its m-th row and n-th column. In other
words, the total number of walks is equal to the sum of all walks,
which are individually modeled by Ak, k = 1, 2, . . . ,K, as stated
in property M2.

M4: The K-neighborhood of a vertex is defined as a set of vertices that
are reachable from this vertex in walks whose length is up to K.

2.3. Properties of Graphs and Associated Matrices 21

0 1

2

3

4

56
7

Figure 2.4: Walks of length K = 2 from vertex 0 to vertex 4 (thick blue and brown
lines).

For a vertex m, based on the property M3, the K-neighborhood is
designated by the positions and the numbers of non-zero elements
in the m-th row of matrix BK in (2.16). The K-neighborhoods of
vertex 0 for K = 1 and K = 2 are illustrated in Figure 2.5.

M5: A path is a special kind of walk whereby each vertex can be
included only once, whereby the number of edges included in a
path is referred to as the path cardinality or path length, while the
path weight is defined as the sum of weights along these edges.
An Euler path is a graph path that uses every edge of a graph
exactly once. An Euler path for an unweighted graph does exist if
and only if at most two of its vertices are of an odd degree. An
Euler path which starts and ends at the same vertex is referred to
as an Euler circuit, and it exists if and only if the degree of every
vertex is even.
A Hamiltonian path is a graph path between two vertices of a graph
that visits each vertex in a graph exactly once, while a cycle that
uses every vertex in a graph exactly once is called a Hamiltonian
cycle.

M6: The distance, rmn, between two vertices m and n in an unweighed
graph is equal to the minimum path length between these two
vertices. For example, for the graph in Figure 2.4, the distance
between vertex 1 and vertex 5 is r15 = 2.

22 Graph Definitions and Properties

0 1

2

3

4

56
7

(a)

0 1

2

3

4

6 5
7

(a)

Figure 2.5: The K-neighborhoods of vertex 0 for the graph from Figure 2.4, where:
(a) K = 1 and (b) K = 2. The neighboring vertices are shaded.

M7: The diameter, d, of a graph is equal to the largest distance
(number of edges) between all pairs of its vertices, that is, d =
maxm,n∈V rmn. For example, the diameter of a complete graph is
d = 1, while the diameter of the graph in Figure 2.4 is d = 3, with
one of the longest paths being 6→ 3→ 2→ 1.

M8: Vertex closeness centrality. The farness (remoteness) of a vertex is
equal the sum of its distances to all other vertices, fn = ∑

m 6=n rnm.
The vertex closeness is defined then as an inverse to the farness,
cn = 1/fn, and can be interpreted as a measure of how long it
will take for data to sequentially shift from the considered vertex
to all other vertices. For example, the vertex farness and closeness

2.3. Properties of Graphs and Associated Matrices 23

for the vertices n = 2 and n = 5 in Figure 2.1(a) are respectively
f2 = 10, f5 = 14, and c2 = 0.1, c5 = 0.071.

M9: Vertex or edge betweenness. Vertex/edge betweenness of a vertex n
or edge (m,n) is equal to the number of times that this vertex/edge
acts as a bridge along the shortest paths between any other two
vertices.

M10: Spanning tree and minimum spanning tree. The spanning tree
of a graph is a subgraph that is tree-shaped and connects all
its vertices together. A tree does not have cycles and cannot be
disconnected. The cost of the spanning tree represents the sum of
the weights of all edges in the tree. The minimum spanning tree is
a spanning tree for which the cost is minimum among all possible
spanning trees in a graph. Spanning trees are typically used in
graph clustering analysis.
In the classical literature on graph theory, it is commonly assumed
that the values of edge weights in weighted graphs are proportional
to the standard vertex distance, rmn. However, this is not the
case in data analytics on graphs, where the edge weights are
typically defined as a function of vertex distance, for example,
through a Gaussian kernel, Wmn ∼ exp(−r2

mn), or some other
data similarity metric. The cost function to minimize for the
Minimum Spanning Tree (MST) can then be defined as a log-sum
of distances, rmn = −2 lnWmn. A spanning tree for the graph from
Figure 2.2 is shown in Figure 2.6. The cost for this spanning tree,
calculated as a sum of all distances (log-weights), rmn, is 15.67.

M11: An undirected graph is called connected if there exists a walk
between each pair of its vertices.

M12: If the graph is not connected, then it consists of two or more
disjoint but locally connected subgraphs (graph components). Back
to mathematical formalism, such disjoint graphs impose a block-
diagonal form on the adjacency matrix, A, and the Laplacian, L.
ForM disjoint components (subgraphs) of a graph, these matrices

24 Graph Definitions and Properties

0 1

2

3

4

6 5
7 (a)

0 1

2

3

4

56
7

0.23

0.74
0.
24 0.35 0

.2
3

0.26 0.24

0
.3
2

0.510.1
4

0.150.32

(b)

Figure 2.6: Concept of the spanning tree for graphs. (a) A spanning tree for the
unweighted graph from Figure 2.1(a). (b) A spanning tree for the weighted graph
from Figure 2.2, designated by thick blue edges. The graph edges in thin blue lines
are not included in this spanning tree.

take the form

A =

A1 0 · · · 0
0 A2 · · · 0
...

...
0 0 · · · AM

 (2.17)

L =

L1 0 · · · 0
0 L2 · · · 0
...

...
0 0 · · · LM

 . (2.18)

Note that this block diagonal form is obtained only if the vertex
numbering follows the subgraph structure.

2.3. Properties of Graphs and Associated Matrices 25

0 1

2

3

4

56
7

Figure 2.7: A disconnected graph which consists of two sub-graphs.

Example 3: Consider a graph derived from Figure 2.1(a) by
removing some edges, as shown in Figure 2.7. The adjacency
matrix for this graph is given by

A =

0
1
2
3
4
5
6
7

0 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 0

0 1 2 3 4 5 6 7

(2.19)

with the corresponding Laplacian in the form

L =

3 −1 −1 −1 0 0 0 0
−1 2 −1 0 0 0 0 0
−1 −1 3 −1 0 0 0 0
−1 0 −1 2 0 0 0 0

0 0 0 0 2 −1 0 −1
0 0 0 0 −1 2 0 −1
0 0 0 0 0 0 1 −1
0 0 0 0 −1 −1 −1 3

. (2.20)

Observe that, as elaborated above, these matrices are in a block-
diagonal form with the two constituent blocks clearly separated.

26 Graph Definitions and Properties

Therefore, for an isolated vertex in a graph, the corresponding
row and column of the matrices A and L will be zero-valued.

M13: For two graphs defined on the same set of vertices, with the
corresponding adjacency matrices A1 and A2, the summation
operator produces a new graph, for which the adjacency matrix
is given by

A = A1 + A2.

To maintain the binary values in the resultant adjacency matrix,
Amn ∈ {0, 1}, a logical (Boolean) summation rule, e.g., 1 + 1 = 1,
may be used for matrix addition. In this monograph, the arithmetic
summation rule is assumed in data analytics algorithms, as for
example, in Equation (2.16) in property M3.

M14: The Kronecker (tensor) product of two disjoint graphs G1 =
(V1,B1) and G2 = (V2,B2) yields a new graph G = (V,B) where
V = V1 × V2 is a direct product of the sets V1 and V2, and
((n1,m1), (n2,m2)) ∈ B only if (n1, n2) ∈ B1 and (m1,m2) ∈ B2.
The adjacency matrix A of the resulting graph G is then equal to
the Kronecker product of the individual adjacency matrices A1
and A2, that is

A = A1 ⊗A2.

An illustration of the Kronecker product for two simple graphs is
given in Figure 2.8.

M15: The Cartesian product (graph product) of two disjoint graphs G1 =
(V1,B1) and G2 = (V2,B2) gives a new graph G = G1�G2 = (V,B),
where V = V1 × V2 is a direct product of the sets V1 and V2, and
((m1, n1), (m2, n2)) ∈ B, only if

m1 = m2 and (n1, n2) ∈ B2 or
n1 = n2 and (m1,m2) ∈ B1.

The adjacency matrix of a Cartesian product of two graphs is
then given by the Kronecker sum

A = A1 ⊗ IN2 + IN1 ⊗A2
def= A1 ⊕A2,

2.3. Properties of Graphs and Associated Matrices 27

0

1

2

3

4

⊗ a b =

0a

1a

2a

3a

4a

0b

1b

2b

3b

4b

Figure 2.8: Kronecker (tensor) product of two graphs.

where A1 and A2 are the respective adjacency matrices of graphs
G1, G2, while N1 and N2 are the corresponding numbers of vertices
in G1 and G2, with IN1 and IN2 being the identity matrices of
orders N1 and N2. The Cartesian product of two simple graphs is
illustrated in Figure 2.9. Notice that a Cartesian product of two

1

2

3

4

5

a b c =

1a

2a

3a

4a

5a

1b

2b

3b

4b

5b

1c

2c

3c

4c

5c

Figure 2.9: Cartesian product of two graphs.

28 Graph Definitions and Properties

graphs that reside in a two-dimensional space can be considered
as a three-dimensional structure of vertices and edges (cf. tensors
Saito et al., 2018).

3
Spectral Decomposition of Graph Matrices

As a prerequisite for the optimization and data analytics on graphs,
we next introduce several intrinsic connections between standard linear
algebraic tools and graph topology (Bapat, 1996; Brouwer and Haemers,
2012; Chung, 1997; Cvetković et al., 1980; Fujiwara, 1995; Jones, 2013;
Maheswari and Maheswari, 2016; O’Rourke et al., 2016).

3.1 Eigenvalue Decomposition of the Adjacency Matrix

Like any other general matrix, graph description matrices can be ana-
lyzed using eigenvalue decomposition. In this sense, a column vector u
is an eigenvector of the adjacency matrix A if

Au = λu, (3.1)
where the constant λ, that corresponds to the eigenvector u, is called
the eigenvalue.

The above relation can be equally written as (A− λI)u = 0, and a
nontrivial solution for u does exist if

det |A− λI| = 0.
In other words, the problem turns into that of finding zeros of det |A−λI|
as roots of a polynomial in λ, called the characteristic polynomial of

29

30 Spectral Decomposition of Graph Matrices

matrix A, which is given by

P (λ) = det |A− λI| = λN + c1λ
N−1 + c2λ

N−2 + · · ·+ cN . (3.2)

Remark 8: The order of the characteristic polynomial of graphs has
the physical meaning of the number of vertices, N , within a graph while
the eigenvalues represent the roots of the characteristic polynomial,
that is, P (λ) = 0.

In general, for a graph with N vertices, its adjacency matrix has N
eigenvalues, λ0, λ1, . . . , λN−1. Some eigenvalues may also be repeated,
which indicates that zeros of algebraic multiplicity higher than one
exist in the characteristic polynomial. The total number of roots of a
characteristic polynomial, including their multiplicities, must be equal
to its degree, N , whereby

• the algebraic multiplicity of an eigenvalue, λk, is equal to its multi-
plicity when considered as a root of the characteristic polynomial;

• the geometric multiplicity of an eigenvalue, λk, represents the
number of linearly independent eigenvectors that can be associated
with this eigenvalue.

The geometric multiplicity of an eigenvalue is always equal or lower
than its algebraic multiplicity.

Denote the distinct eigenvalues in (3.2) by µ1, µ2, . . . , µNm , and their
corresponding algebraic multiplicities by p1, p2, . . . , pNm , where p1+p2+
· · ·+pNm = N is equal to the order of the considered matrix/polynomial
and Nm ≤ N is the number of distinct eigenvalues. The characteristic
polynomial can now be rewritten in the form

P (λ) = (λ− µ1)p1(λ− µ2)p2 · · · (λ− µNm)pNm .

Definition: The minimal polynomial of the considered adjacency ma-
trix, A, is obtained from its characteristic polynomial by reducing the
algebraic multiplicities of all eigenvalues to unity, and has the form

Pmin(λ) = (λ− µ1)(λ− µ2) · · · (λ− µNm).

3.1. Eigenvalue Decomposition of the Adjacency Matrix 31

3.1.1 Properties of the Characteristic and Minimal Polynomial

P1: The degree of the characteristic polynomial is equal to the number
of vertices in the considered graph.

P2: For λ = 0, P (0) = det(A) = −λ0(−λ1) · · · (−λN−1).

P3: The sum of all the eigenvalues is equal to the sum of the diagonal
elements of the adjacency matrix, A, that is, its trace, tr{A}. For
the characteristic polynomial of the adjacency matrix, P (λ), this
means that the value of c1 in (3.2) is c1 = tr{A} = 0.

P4: The coefficient c2 in P (λ) in (3.2) is equal to the number of edges
multiplied by −1.
This property, together with P3, follows from the Faddeev–Le-
Verrier algorithm to calculate the coefficients of the characteristic
polynomial of a square matrix, A, as c1 = −tr{A}, c2 =
−1

2(tr{A2} − (tr{A})2), and so on. Since tr{A} = 0 and the
diagonal elements of A2 are equal to the number of edges con-
nected to each vertex (vertex degree), the total number of edges
is equal to tr{A2}/2 = −c2.

P5: The degree of the minimal polynomial, Nm, is strictly larger than
the graph diameter, d.

Example 4: Consider a connected graph with N vertices and
only two distinct eigenvalues, λ0 and λ1. The order of minimal
polynomial is then Nm = 2, while the diameter of this graph is
d = 1, which indicates a complete graph.

Example 5: For the graph from Figure 2.1(a), the characteristic poly-
nomial of its adjacency matrix, A, defined in (2.1), is given by

P (λ) = λ8 − 12λ6 − 8λ5 + 36λ4 + 36λ3 − 22λ2 − 32λ− 8,

with the eigenvalues

λ ∈ {−2,−1.741,−1.285,−0.677,−0.411, 1.114, 1.809, 3.190}.

32 Spectral Decomposition of Graph Matrices

With all the eigenvalues different, the minimal polynomial is equal to
the characteristic polynomial, Pmin(λ) = P (λ).

Example 6: The adjacency matrix for the disconnected graph from
Figure 2.7 is given in (2.19), and its characteristic polynomial has the
form

P (λ) = λ8 − 9λ6 − 6λ5 + 21λ4 + 26λ3 + 3λ2 − 4λ

with the eigenvalues

λ ∈ {−1.5616,−1.4812,−1,−1, 0, 0.3111, 2.1701, 2.5616}.

Observe that the eigenvalue λ = −1 is of multiplicity higher than
1 (multiplicity of 2), so that the corresponding minimal polynomial
becomes

Pmin(λ) = λ7 − λ6 − 8λ5 + 2λ4 + 19λ3 + 7λ2 − 4λ.

Although this graph is disconnected, the largest eigenvalue of its adja-
cency matrix, λmax = 2.5616, is of multiplicity 1. Relation between the
graph connectivity and the multiplicity of eigenvalues will be discussed
later.

3.2 Spectral Graph Theory

If all the eigenvalues of A are distinct (of algebraic multiplicity 1), then
the N equations in the eigenvalue problem in (3.1), that is, Auk = λkuk,
k = 0, 1, . . . , N − 1, can be written in a compact form as one matrix
equation with respect to the adjacency matrix, as

AU = UΛ

or
A = UΛU−1, (3.3)

where Λ = diag(λ0, λ1, . . . , λN−1) is the diagonal matrix with the eigen-
values on its diagonal and U is a matrix composed of the eigenvectors,
uk, as its columns. Since the eigenvectors, u, are obtained by solving
a homogeneous system of equations, defined by (3.1) and in the form
(A − λI)u = 0, one element of the eigenvector u can be arbitrarily

3.2. Spectral Graph Theory 33

chosen. The common choice is to enforce unit energy, ‖uk‖22 = 1, for
every k = 0, 1, . . . , N − 1.
Remark 9: For an undirected graph, the adjacency matrix A is sym-
metric, that is A = AT . Any symmetric matrix (i) has real-valued
eigenvalues; (ii) is diagonalizable; and (iii) has orthogonal eigenvectors,
and hence

U−1 = UT .

Remark 10: For directed graphs, in general, A 6= AT .
Recall that a square matrix is diagonalizable if all its eigenvalues are

distinct (this condition is sufficient, but not necessary) or if the algebraic
multiplicity of each eigenvalue is equal to its geometrical multiplicity.

For some directed graphs, the eigenvalues of their adjacency matrix
may be with algebraic multiplicity higher than one, and the matrix A
may not be diagonalizable. In such cases, the algebraic multiplicity of
the considered eigenvalue is higher than its geometric multiplicity and
the Jordan normal form may be used in decomposition.

Definition: The set of the eigenvalues of an adjacency matrix is called
the graph adjacency spectrum.
Remark 11: The spectral theory of graphs studies properties of graphs
through the eigenvalues and eigenvectors of their associated adjacency
and graph Laplacian matrices.
Example 7: For the graph presented in Figure 2.1(a), the graph ad-
jacency spectrum is given by λ ∈ {−2,−1.741,−1.285,−0.677,−0.411,
1.114, 1.809, 3.190}, and is shown in Figure 3.1(top).

Example 8: The vertices of the graph presented in Figure 2.1(a) are
randomly reordered, as shown in Figure 3.2. Observe that the graph
adjacency spectrum, given in the same figure, retains the same values,
with vertex indices of the eigenvectors reordered in the same way as the
graph vertices, while the eigenvalues (spectra) retain the same order
as in the original graph in Figure 3.1. By a simple inspection we see
that, for example, the eigenvector elements at the vertex index position
n = 0 in Figure 3.1 are now at the vertex index position n = 3 in all
eigenvectors in Figure 3.2.

34 Spectral Decomposition of Graph Matrices

0 1 2 3 4

5 6 7

0

1 2 3

4

5

6

7

0
1

2
3 4

5

6 7

0

1 2

3 4

5 6

7

0
1

2
3 4

5

6 7

0

1

2

3 4 5 6

7

0
1

2
3 4

5

6 7

0 1

2 3 4

5 6 7

0
1

2
3 4

5

6 7

0

1

2 3

4

5

6 7

0
1

2
3 4

5

6 7

0

1 2

3

4 5

6 7

0
1

2
3 4

5

6 7

0 1 2 3

4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3 4 5 6 7

0
1

2
3 4

5

6 7

Figure 3.1: Eigenvalues, λk, for spectral indices (eigenvalue numbers) k =
0, 1, . . . , N − 1, and elements of the corresponding eigenvectors, uk(n), as a function
of the vertex index n = 0, 1, . . . , N−1, for the adjacency matrix, A, of the undirected
graph presented in Figure 2.1(a). The distinct eigenvectors are shown both on the
vertex index axis, n, (left) and on the graph itself (right).

3.2. Spectral Graph Theory 35

0 1 2 3 4

5 6 7

0

1

2

3

4 5

6

7

3
2

4
5 1

0

6 7

0

1

2

3

4

5

6

7

3
2

4
5 1

0

6 7

0 1 2

3 4

5 6

7

3
2

4
5 1

0

6 7

0

1

2 3

4 5

6 7

3
2

4
5 1

0

6 7

0

1 2

3 4 5

6 7

3
2

4
5 1

0

6 7

0 1 2

3

4

5 6 7

3
2

4
5 1

0

6 7

0 1

2 3 4 5

6 7

3
2

4
5 1

0

6 7

0 1 2 3 4 5 6 7

3
2

4
5 1

0

6 7

Figure 3.2: Eigenvalues, λk, for spectral indices (eigenvalue numbers) k =
0, 1, . . . , N − 1, and elements of the corresponding eigenvectors, uk(n), as a function
of the vertex index n = 0, 1, . . . , N−1, for the adjacency matrix, A, of the undirected
graph presented in Figure 2.1(a) with index reordering according to the scheme
[0, 1, 2, 3, 4, 5, 6, 7]→ [3, 2, 4, 5, 1, 0, 6, 7]. The distinct eigenvectors are shown both on
the vertex index axis, n, (left) and on the graph itself (right). Compare with the
results for the original vertex ordering in Figure 3.1.

36 Spectral Decomposition of Graph Matrices

Remark 12: A unique feature of graphs is that vertex reindexing does
not alter the eigenvalues of the adjacency matrix, while the correspond-
ing eigenvectors of the reindexed adjacency matrix contain the same
elements as the original eigenvectors, but reordered according to the
vertex renumbering. This follows from the properties of the permutation
matrix, as in Equation (2.3).

3.2.1 The DFT Basis Functions as a Special Case of Eigenvectors
of the Adjacency Matrix

For continuity with standard spectral analysis, we shall first consider
directed circular graphs, as this graph topology encodes the standard
time and space domains.

Eigenvalue decomposition for the directed circular graph in
Figure 2.3(g), assuming N vertices, follows from the definition Auk =
λkuk, and the form of the adjacency matrix in (2.14). Then, the elements
of vector Auk are uk(n− 1), as effectively matrix A here represents a
shift operator, while the elements of vector λkuk are λkuk(n), to give

uk(n− 1) = λkuk(n), (3.4)

where uk(n) are the elements of the eigenvector uk for given vertex
indices n = 0, 1, . . . , N − 1, and k is the index of an eigenvector, k =
0, 1, . . . , N − 1. This is a first-order linear difference equation, whose
general form for a discrete signal x(n) is x(n) = ax(n− 1), for which
the solution is

uk(n) = 1√
N
ej2πnk/N and λk = e−j2πk/N , (3.5)

with k = 0, 1, . . . , N −1. It is straightforward to verify that this solution
satisfies the difference equation (3.4). Since the considered graph is
circular, the eigenvectors also exhibit circular behavior, that is, uk(n) =
uk(n+N). For convenience, a unit energy condition is used to find the
constants within the general solution of this first-order linear difference
equation. Observe that the eigenvectors in (3.5) correspond exactly to
the standard harmonic basis functions in DFT.
Remark 13: Classic DFT analysis may be obtained as a special case of
the graph spectral analysis in (3.5), when considering directed circular

3.2. Spectral Graph Theory 37

graphs. Observe that for circular graphs, the adjacency matrix plays the
role of a shift operator, as seen in (3.4), with the elements of Auk equal
to uk(n− 1). This property will be used to define the shift operator on
a graph in the following sections.

3.2.2 Decomposition of Graph Product Adjacency Matrices

We have already seen in Figures 2.8 and 2.9 that complex graphs, for
example those with a three-dimensional vertex space, may be obtained
as a Kronecker (tensor) product or a Cartesian (graph) product of
two disjoint graphs G1 and G2. Their respective adjacency matrices, A1
and A2, are correspondingly combined into the adjacency matrices of
the Kronecker graph product, A⊗ = A1 ⊗A2 and the Cartesian graph
product, A⊕ = A1 ⊕A2, as described in properties M14 and M15.

Graph Kronecker product. For the eigendecomposition of the
Kronecker product of matrices A1 and A2, the following holds

A⊗ = A1 ⊗A2 = (U1Λ1UH
1)⊗ (U2Λ2UH

2)
= (U1 ⊗U2)(Λ1 ⊗Λ2)(U1 ⊗U2)H ,

or in other words, the eigenvectors of the adjacency matrix of the
Kronecker product of graphs are obtained by a Kronecker product of
the eigenvectors of the adjacency matrices of individual graphs, as
uk+lN1 = u(A1)

k ⊗ u(A2)
l , k = 0, 1, 2, . . . , N1 − 1, l = 0, 1, 2, . . . , N2 − 1.

Remark 14: The eigenvectors of the individual graph adjacency ma-
trices, u(A1)

k and u(A2)
k , are of much lower dimensionality than those of

the adjacency matrix of the resulting graph Kronecker product. This
property can be used to reduce computational complexity when analyz-
ing data observed on this kind of graph. Recall that the eigenvalues of
the resulting graph adjacency matrix are equal to the product of the
eigenvalues of adjacency matrices of the constituent graphs, G2 and G2,
that is,

λk+lN1 = λ
(A1)
k λ

(A2)
l .

Graph Cartesian product. The eigendecomposition of the adjacency
matrix of the Cartesian product of graphs, whose respective adjacency

38 Spectral Decomposition of Graph Matrices

matrices are A1 and A2, is of the form

A⊕ = A1 ⊕A2 = (U1 ⊗U2)(Λ1 ⊕Λ2)(U1 ⊗U2)H . (3.6)

with uk = u(A1)
k ⊗ u(A2)

k and λk+lN1 = λ
(A1)
k + λ

(A2)
l , k = 0, 1, 2, . . . ,

N1 − 1, l = 0, 1, 2, . . . , N2 − 1 (Barik et al., 2015).
Remark 15: The Kronecker product and the Cartesian product of
graphs share the same eigenvectors, while their spectra (eigenvalues)
are different.
Example 9: The basis functions of classic two-dimensional (image)
2D-DFT follow from the spectral analysis of a Cartesian graph product
which is obtained as a product the circular directed graph from Figure 2.3
with itself. Since from (3.5), the eigenvector elements of each graph
are uk(n) = ej2πnk/N/

√
N , then the elements of the resulting basis

functions are given by

uk+lN (m+ nN) = 1
N
ej2πmk/Nej2πnl/N ,

for k = 0, 1, . . . , N − 1, l = 0, 1, . . . , N − 1, m = 0, 1, . . . , N − 1, and
n = 0, 1, . . . , N − 1. Figure 3.3 illustrates the Cartesian product of two
circular undirected graphs with N1 = N2 = 8.
Remark 16: Cartesian products of graphs may be used for multidi-
mensional extensions of vertex spaces and graph data domains, whereby

Figure 3.3: Graph Cartesian product of two planar circular unweighted graphs,
with N = 8 vertices, produces a three-dimensional torus topology.

3.3. Eigenvalue Decomposition of the Graph Laplacian 39

the resulting eigenvectors (basis functions) can be efficiently calcu-
lated using the eigenvectors of the original graphs, which are of lower
dimensionality.

3.2.3 Decomposition of Matrix Powers and Polynomials

From the eigendecomposition of the adjacency matrix A in (3.3), eigen-
value decomposition of the squared adjacency matrix, AA = A2, is
given by

A2 = UΛU−1UΛU−1 = UΛ2U−1,

under the assumption that U−1 exists. For an arbitrary natural num-
ber, m, the above result generalizes straightforwardly to

Am = UΛmU−1. (3.7)

Further, for any matrix function, f(A), that can be written in a poly-
nomial form, given by

f(A) = h0A0 + h1A1 + h2A2 + · · ·+ hN−1AN−1,

its eigenvalue decomposition is, in general, given by

f(A) = Uf(Λ)U−1.

This is self-evident from the properties of eigendecomposition of matrix
powers, defined in (3.7), and the linearity of the matrix multiplication
operator, U(h0A0 + h1A1 + h2A2 + · · ·+ hN−1AN−1)U−1.

3.3 Eigenvalue Decomposition of the Graph Laplacian

Spectral analysis for graphs can also be performed based on the graph
Laplacian, L, defined in (2.7). For convenience, we here adopt the same
notation for the eigenvalues and eigenvectors of the graph Laplacian, as
we did for the adjacency matrix A, although the respective eigenvalues
and eigenvectors are not directly related. The Laplacian of an undirected
graph can be therefore written as

L = UΛUT or LU = UΛ,

40 Spectral Decomposition of Graph Matrices

where Λ = diag(λ0, λ1, . . . , λN−1) is a diagonal matrix of Laplacian
eigenvalues and U is the orthonormal matrix of its eigenvectors (in
columns), with U−1 = UT . Note that the Laplacian of an undirected
graph is always diagonalizable, since its matrix L is real and symmetric.

Then, every eigenvector, uk, k = 0, 1, . . . , N − 1, of a graph Lapla-
cian, L, satisfies

Luk = λkuk. (3.8)

Definition: The set of the eigenvalues, λk, k = 0, 1, . . . , N − 1, of the
graph Laplacian is referred to as the graph spectrum or graph Laplacian
spectrum (cf. graph adjacency spectrum based on A).
Example 10: The Laplacian spectrum of the undirected graph from
Figure 2.2, is given by

λ ∈ {0, 0.29, 0.34, 0.79, 1.03, 1.31, 1.49, 2.21},

and shown in Figure 3.4, along with the corresponding eigenvectors.
The Laplacian spectrum of the disconnected graph from Figure 3.5, is
given by

λ ∈ {0, 0, 0.22, 0.53, 0.86, 1.07, 1.16, 2.03},

and is illustrated in Figure 3.6. The disconnected nature of this graph
is indicated by the zero-valued eigenvalue of algebraic multiplicity 2,
that is, λ0 = λ1 = 0.

Remark 17: Observe that when graph-component (sub-graph) based
vertex indexing is employed, then even though the respective graph
spectra for the connected graph in Figure 3.4 and the disconnected
graph Figure 3.6 are similar, for a given spectral index, the eigenvectors
of a disconnected graph take nonzero values on only one of the individual
disconnected graph components.

3.3.1 Properties of Laplacian Eigenvalue Decomposition

L1: The graph Laplacian matrix is defined in (2.7) in such a way
that the sum of elements in its each row (column) is zero. As
a consequence, this enforces the inner products of every row
of L with any constant vector, u, to be zero-valued, that is,

3.3. Eigenvalue Decomposition of the Graph Laplacian 41

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3

4 5 6 7

0
1

2
3 4

5

6 7

0

1

2 3

4 5

6 7

0
1

2
3 4

5

6 7

0 1 2

3 4 5 6

7

0
1

2
3 4

5

6 7

0

1

2 3

4 5 6

7

0
1

2
3 4

5

6 7

0

1

2

3 4

5 6

7

0
1

2
3 4

5

6 7

0 1

2

3

4

5

6

7

0
1

2
3 4

5

6 7

0 1

2

3 4

5 6 7

0
1

2
3 4

5

6 7

Figure 3.4: Eigenvalues, λk, for spectral indices (eigenvalue number) k =
0, 1, . . . , N − 1, and elements of the corresponding eigenvectors, uk(n), as a function
of the vertex index n = 0, 1, . . . , N −1, for the Laplacian matrix, L, of the undirected
graph presented in Figure 2.2. The distinct eigenvectors are shown both on the
vertex index axis, n, (left) and on the graph itself (right). A comparison with the
eigenvectors of the adjacency matrix in Figure 3.1, shows that for the adjacency
matrix the smoothest eigenvector corresponds to the largest eigenvalue, while for the
graph Laplacian the smoothest eigenvector corresponds to the smallest eigenvalue, λ0.

42 Spectral Decomposition of Graph Matrices

0 1

2

3

4

56
7

0.23

0.74
0.
24 0.35

0.26

0.510.1
4

0.150.32

Figure 3.5: A disconnected weighted graph which consists of two sub-graphs.

Lu = 0 = 0 · u, for any constant vector u. This means that
at least one eigenvalue of the Laplacian is zero, λ0 = 0, and
its corresponding constant unit energy eigenvector is given by
u0 = [1, 1, . . . , 1]T /

√
N = 1/

√
N .

L2: The multiplicity of the eigenvalue λ0 = 0 of the graph Lapla-
cian is equal to the number of connected components (connected
subgraphs) in the corresponding graph.
This property follows from the fact that the Laplacian matrix of
disconnected graphs can be written in a block diagonal form, as
in (2.18). The set of eigenvectors of a block-diagonal matrix is
obtained by grouping together the sets of eigenvectors of individual
block submatrices. Since each subgraph of a disconnected graph
behaves as an independent graph, then for each subgraph λ0 = 0
is the eigenvalue of the corresponding block Laplacian submatrix,
according to property L1. Therefore, the multiplicity of the eigen-
value λ0 = 0 corresponds to the number of disjoint components
(subgraphs) within a graph.
This property does not hold for the adjacency matrix, since there
are no common eigenvalues in the adjacency matrices for the
blocks (subgraphs) or arbitrary graphs, like in the case of λ0 = 0
for the graph Laplacian matrix and any graph. In this sense, the
graph Laplacian matrix carries more physical meaning than the
corresponding adjacency matrix.

3.3. Eigenvalue Decomposition of the Graph Laplacian 43

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3 4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3

4 5

6 7

0
1

2
3 4

5

6 7

0 1 2

3 4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3

4 5 6

7

0
1

2
3 4

5

6 7

0

1

2

3

4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3

4

5 6

7

0
1

2
3 4

5

6 7

0 1

2

3

4 5 6 7

0
1

2
3 4

5

6 7

Figure 3.6: Eigenvalues, λk, for spectral indices (eigenvalue number) k =
0, 1, . . . , N − 1, and elements of the corresponding eigenvectors, uk(n), as a function
of the vertex index n = 0, 1, . . . , N −1, for the Laplacian matrix, L, of the undirected
graph presented in Figure 3.5. The distinct eigenvectors are shown both on the vertex
index axis, n, (left) and on the graph itself (right). This graph is characterized with
the zero eigenvalue of algebraic multiplicity 2, that is, λ0 = λ1 = 0. Observe that for
every spectral index, k, the corresponding eigenvectors take nonzero values on only
one of the disconnected graph components.

44 Spectral Decomposition of Graph Matrices

Remark 18: If λ0 = λ1 = 0, then the graph is not connected.
If λ2 > 0, then there are exactly two individually connected but
globally disconnected components in this graph. If λ1 6= 0 then
this eigenvalue may be used to describe the so called algebraic
connectivity of a graph, whereby very small values of λ1 indicate
that the graph is weakly connected. This can be used as an
indicator of the possibility of graph segmentation, as elaborated
in Section 4.2.3.

L3: As with any other matrix, the sum of the eigenvalues of the Lapla-
cian matrix is equal to its trace. For the normalized Laplacian,
the sum of its eigenvalues is equal to the number of vertices, N ,
if there are no isolated vertices.

L4: The coefficient, cN , in the characteristic polynomial of the graph
Laplacian matrix

P (λ) = det |L− λI| = λN + c1λ
N−1 + · · ·+ cN−1λ+ cN

is equal to 0, since λ = 0 is an eigenvalue for the Laplacian matrix.
For unweighted graphs, the coefficient c1 is equal to the number of
edges multiplied by −2. This is straightforward to show following
the relations from property P4 which state that c1 = −tr{L}.
For unweighted graphs, the diagonal elements of the Laplacian
are equal to the corresponding vertex degrees (number of edges).
Therefore, the number of edges in an unweighted graph is equal
to −c1/2.

Example 11: The characteristic polynomial of the Laplacian for
the graph from Figure 2.1(a) is given by

P (λ) = λ8 − 24λ7 + 238λ6 − 1256λ5 + 3777λ4

− 6400λ3 + 5584λ2 − 1920λ

with the eigenvalues λ ∈ {0, 1, 1.4384, 3, 4, 4, 5, 5.5616}. Observe
that the eigenvalue λ = 4 is of multiplicity higher than one. The
minimal polynomial therefore becomes Pmin(λ) = λ7 − 20λ6 +
158λ5 − 624λ4 + 1281λ3 − 1276λ2 + 480λ.

3.3. Eigenvalue Decomposition of the Graph Laplacian 45

For the disconnected graph in Figure 2.7, the characteristic poly-
nomial of the Laplacian is given by

P (λ) = λ8 − 18λ7 + 131λ6 − 490λ5 + 984λ4 − 992λ3 + 384λ2,

with the eigenvalues λ ∈ {0, 0, 1, 2, 3, 4, 4, 4}. The eigenvalue λ = 0
is of algebraic multiplicity 2 and the eigenvalue λ = 4 of algebraic
multiplicity 3, so that the minimal polynomial takes the form

Pmin(λ) = λ5 − 10λ4 + 35λ3 − 50λ2 + 24λ.

Since the eigenvalue λ = 0 is of algebraic multiplicity 2, property
L2 indicates that this graph is disconnected, with two disjoint
sub-graphs as its constituent components.

L5: Graphs with identical spectra are called isospectral or cospectral
graphs. However, isospectral graphs are not necessary isomorphic,
and construction of isospectral graphs that are not isomorphic is
an important topic in graph theory.

Remark 19: A complete graph is uniquely determined by its
Laplacian spectrum (Van Dam and Haemers, 2003). The Laplacian
spectrum of a complete unweighted graph, with N vertices, is
λk ∈ {0, N,N, . . . , N}. Therefore, two complete isospectral graphs
are also isomorphic.

L6: For a J -regular graph, as in Figure 2.3(c), the eigenvectors of the
graph Laplacian and the adjacency matrices are identical, with
the following relation for the eigenvalues,

λ
(L)
k = J − λ(A)

k ,

where the superscript L designates the Laplacian and superscript
A the corresponding adjacency matrix. This follows directly from
UTLU = UT (J I−A)U.

L7: The eigenvalues of the normalized graph Laplacian, LN = I −
D−1/2AD−1/2, are nonnegative and upper-bounded by

0 ≤ λ ≤ 2.

46 Spectral Decomposition of Graph Matrices

The equality for the upper bound holds if and only if the graph is
a bipartite graph, as in Figure 2.3(b). This will be proven within
the next property.

L8: The eigenvalues and eigenvectors of the normalized Laplacian of a
bipartite graph, with the disjoint sets of vertices E and H, satisfy
the relation, referred to as the graph spectrum folding, given by

λk = 2− λN−k (3.9)

uk =
[
uE
uH

]
and uN−k =

[
uE
−uH

]
, (3.10)

where uk designates the k-th eigenvector of a bipartite graph, uE
is its part indexed on the first set of vertices, E , while uH is the
part of the eigenvector uk indexed on the second set of vertices, H.
In order to prove this property, we shall write the adjacency
and the normalized Laplacian matrices of an undirected bipartite
graph in their block forms

A =
[

0 AEH
AT
EH 0

]
and LN =

[
I LEH

LTEH I

]
.

The eigenvalue relation, LNuk = λkuk, can now be evaluated as

LNuk =
[
uE + LEHuH
LTEHuE + uH

]
= λk

[
uE
uH

]
.

From there, we have uE + LEHuH = λkuE and LTEHuE + uH =
λkuH, resulting in LEHuH = (λk−1)uE and LTEHuE = (λk−1)uH,
to finally yield

LN
[

uE
−uH

]
= (2− λk)

[
uE
−uH

]
.

This completes the proof.
Since for the graph Laplacian λ0 = 0 always holds (see the prop-
erty L1), from λk = 2 − λN−k in (3.9), it then follows that the
largest eigenvalue is λN = 2, which also proves the property L7
for a bipartite graph.

3.3. Eigenvalue Decomposition of the Graph Laplacian 47

3.3.2 Fourier Analysis as a Special Case of the Laplacian Spectrum

Consider the undirected circular graph from Figure 2.3(e). Then, from
the property L1, the eigendecomposition relation for the Laplacian of
this graph, Lu = λu, admits a simple form

−u(n− 1) + 2u(n)− u(n+ 1) = λu(n). (3.11)

This is straightforward to show by inspecting the Laplacian for the
undirected circular graph from Figure 2.3(e), with N = 8 vertices for
which the eigenvalue analysis is based on

Lu =

2 −1 0 0 0 0 0 −1
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
−1 0 0 0 0 0 −1 2

u(0)
u(1)
u(2)
u(3)
u(4)
u(5)
u(6)
u(7)

. (3.12)

This directly gives the term −u(n−1)+2u(n)−u(n+1), while a simple
inspection of the values u(0) and u(N) illustrates the circular nature
of the eigenvectors; see also Remark 6. The solution to the second
order difference equation in (3.11) is uk(n) = cos(2πkn

N + φk), with
λk = 2(1− cos(2πk

N)). Obviously, for every eigenvalue, λk (except for λ0
and for the last eigenvalue, λN−1, for an even N), we can choose to have
two orthogonal eigenvectors with, for example, φk = 0 and φk = π/2.
This means that most of the eigenvalues are of algebraic multiplicity 2,
i.e., λ1 = λ2, λ3 = λ4, and so on. This eigenvalue multiplicity of two
can be formally expressed as

λk =

2− 2 cos(π(k + 1)/N), for odd k = 1, 3, 5, . . . ,
2− 2 cos(πk/N), for even k = 2, 4, 6,

(3.13)

For an odd N , λN−2 = λN−1, whereas for an even N we have λN−1 = 2
which is of algebraic multiplicity 1.

48 Spectral Decomposition of Graph Matrices

The corresponding eigenvectors u0,u1, . . . ,uN−1, then have the form

uk(n) =

sin(π(k + 1)n/N), for odd k, k < N − 1
cos(πkn/N), for even k
cos(πn), for odd k, k = N − 1,

(3.14)

where k = 0, 1, . . . , N − 1 and n = 0, 1, . . . , N − 1.

Relation between graph Fourier analysis based on the graph
adjacency matrix and graph Laplacian matrix. Recall that an
arbitrary linear combination of eigenvectors u2k−1 and u2k, 1 ≤ k <

N/2, is also an eigenvector since the corresponding eigenvalues are equal
(in this case both their algebraic and geometric multiplicities are equal
to 2, see Equation (3.13)). With this in mind, we can rewrite the full
set of eigenvectors in an alternative compact form, given by

uk(n) =

1, for k = 0
ejπ(k+1)n/N = ej2πrn/N , for odd k = 2r − 1, k < N − 1
e−j2πkn/N = e−j2πrn/N , for even k = 2r, k > 0
cos(πn), for odd k, k = N − 1,

where j2 = −1. The above eigenvectors are assumed to be normalized. It
is now clear that, as desired, this set of eigenvectors is also orthonormal,
so that the individual eigenvectors, uk, correspond to the harmonic
basis functions within the standard temporal/spatial DFT obtained by
the directed circular graph adjacency matrix decomposition.

If the vertices correspond to the pixels of a two-dimensional N ×N
image in a stacked-column representation, then the edge weights for a
given vertex, n, are wmn = 1, m ∈ {n−N,n− 1, n+ 1, n+N}, while
the degree of every vertex, n, is equal to 4. The corresponding graph
Laplacian now becomes a discrete approximation of second-order partial
derivatives, and is used as a standard tool in image processing for edge
detection, while two-dimensional Fourier analysis can be defined using
eigenvalue decomposition of this Laplacian. Notice that the Laplacians
in the graph Cartesian product exhibit similar relations to those for the
adjacency matrix in Equation (3.6) and Figure 3.3.

4
Vertex Clustering and Mapping

An important task for data analytics on graphs is to identify groups of
vertices which exhibit similar behavior, referred to as vertex clustering.
This is of particular importance in machine learning for data on irregular
domains, while vertex clustering also represents a basis for collaborative
data processing. Spectral domain analysis for vertex clustering may be
performed based on several measures appropriate to the task at hand
including the graph Laplacian, normalized graph Laplacian, general-
ized Laplacian eigenvectors, principal component analysis of the graph
Laplacian, commute time (effective resistance) spectral vectors, the
diffusion spectral vectors or other factors.

Definition: Vertex clustering is a type of graph learning which aims to
group together vertices from the set V into multiple disjoint subsets, Vi,
called clusters. Vertices which are clustered into a subset of vertices,
Vi, are expected to exhibit a larger degree of within-cluster mutual
similarity (in some sense) than with the vertices in other subsets, Vj ,
j 6= i.

While the clustering of graph vertices refers to the process of identi-
fying and arranging the vertices of a graph into nonoverlapping vertex
subsets, with data in each subset expected to exhibit relative similarity

49

50 Vertex Clustering and Mapping

in some sense, the segmentation of a graph refers to its partitioning into
nonoverlapping graph segments (components).

The notion of vertex similarity metrics and their use to accordingly
cluster the vertices into sets, Vi, of “related” vertices in graphs, has
been a focus of significant research effort in machine learning and
pattern recognition; this has resulted in a number of established vertex
similarity measures and corresponding methods for graph clustering
(Schaeffer, 2007b). These can be considered within two main categories
(i) clustering based on graph topology and (ii) spectral (eigenvector-based)
methods for graph clustering.

Notice that in traditional clustering, a vertex is assigned to one
cluster only. The type of clustering where a vertex may belong to more
than one cluster is referred to as fuzzy clustering (Mordeson and Nair,
2012; Schaeffer, 2007b), an approach that is not yet widely accepted in
the context of graphs.

4.1 Clustering Based on Graph Topology

Among many such existing methods, the most popular ones are based on:
• Finding the minimum set of edges whose removal would disconnect

a graph in some “optimal” or “least disturbance” way (minimum
cut based clustering).

• Designing clusters within a graph based on the disconnection of
vertices or edges which belong to the highest numbers of shortest
paths in the graph (vertex betweenness and edge betweenness based
clustering).

• The minimum spanning tree of a graph has been a basis for a
number of widely used clustering methods (Kleinberg and Tardos,
2006; Morris et al., 1986).

• Analysis of highly connected subgraphs (HCS) (Khuller, 1998)
has also been used for graph clustering.

• Finally, graph data analysis may be used for machine learned
graph clustering, like for example, the k-means based clustering
methods (Dhillon et al., 2004; Jain, 2010).

4.1. Clustering Based on Graph Topology 51

4.1.1 Minimum Graph Cut

We shall first briefly review the notion of graph cuts, as spectral methods
for graph clustering may be introduced and interpreted based on the
analysis and approximation of the (graph topology-based) minimum
cut clustering.

Definition: Consider an undirected graph which is defined by a set of
vertices, V , and the corresponding set of edge weights, W . Assume next
that the vertices are grouped into k = 2 disjoint subsets of vertices,
E ⊂ V and H ⊂ V, with E ∪ H = V and E ∩ H = ∅. A cut of this
graph, for the given subsets of vertices, E and H, is equal to a sum
of all weights that correspond to the edges which connect the vertices
between the subsets, E and H, that is

Cut(E ,H) =
∑
m∈E
n∈H

Wmn.

Remark 20: For clarity, we shall focus on the case with k = 2 disjoint
subsets of vertices. However, the analysis can be straightforwardly
generalized to k ≥ 2 disjoint subsets of vertices and the corresponding
minimum k-cuts.
Example 12: Consider the graph in Figure 2.2, and the sets of vertices
E = {0, 1, 2, 3} and H = {4, 5, 6, 7}, shown in Figure 4.1. Its cut into
the two components (sub-graphs), E and H, involves the weights of
all edges which exist between these two sets, that is, Cut(E ,H) =
0.32 + 0.24 + 0.23 = 0.79. Such edges are shown by thin red lines in
Figure 4.1.
Definition: A cut which exhibits the minimum value of the sum of
weights between the disjoint subsets E and H, considering all possible
divisions of the set of vertices, V, is referred to as the minimum cut.
Finding the minimum cut of a graph in this way is a combinatorial
problem.
Remark 21: The number of all possible combinations to split an even
number of vertices, N , into two disjoint subsets is given by

C =
(
N

1

)
+
(
N

2

)
+ · · ·+

(
N

N/2− 1

)
+
(
N

N/2

)/
2.

52 Vertex Clustering and Mapping

0 1

2

3

4

56
7

0.23

0.74
0.
24 0.35

0.510.1
4

0.150.32

0.26

0
.2
3

0.24
0
.3
2

E = {0, 1, 2, 3}

H = {4, 5, 6, 7}

Cut(E,H) = 0.79

Figure 4.1: A cut for the weighted graph from Figure 2.2, with the disjoint subsets
of vertices defined by E = {0, 1, 2, 3} and H = {4, 5, 6, 7}. The edges between the
sets E and H are designated by thin red lines. The cut, Cut(E ,H), is equal to the
sum of the weights that connect sets E and H, and has the value Cut(E ,H) =
0.32 + 0.24 + 0.23 = 0.79.

To depict the computational burden associated with this “brute force”
graph cut approach, even for a relatively small graph with N = 50
vertices, the number of combinations to split the vertices into two
subsets is C = 5.6 · 1014.
Example 13: The minimum cut for the graph from Figure 4.1 is

Cut(E ,H) = 0.32 + 0.14 + 0.15 = 0.61

for E = {0, 1, 2, 3, 4, 5} and H = {6, 7}. This can be confirmed by
considering all

(8
1
)

+
(8
2
)

+
(8
3
)

+
(8
4
)
/2 = 127 possible cuts, that is, all

combinations of the subsets E and H for this small size graph or by
using, for example, the Stoer-Wagner algorithm (Stoer and Wagner,
1997).

4.1.2 Maximum-Flow Minimum-Cut Approach

This approach to the minimum cut problem employs the framework of
flow networks.
Definition: A flow network is a directed graph with an arbitrary num-
ber of vertices, N ≥ 3, but which involves two given vertices (nodes)
called the source vertex, s, and the sink vertex, t, whereby the capacity

4.1. Clustering Based on Graph Topology 53

of edges (arcs) is defined by their weights. The flow (of information,
water, traffic, . . .) through an edge cannot exceed its capacity (the value
of edge weight). For any vertex in the graph the sum of all input flows
is equal to the sum of all its output flows (except for the source and
sink vertices).

Problem formulation. The maximum-flow minimum-cut solution to
the graph partitioning aims to find the maximum value of flow that can
be passed through the graph (network flow) from the source vertex, s, to
the sink vertex, t. The solution is based on the max-flow min-cut theorem
which states that the maximum flow through a graph from a given source
vertex, s, to a given sink vertex, t, is equal to the minimum cut, that is,
the minimum sum of those edge weights (capacities) which, if removed,
would disconnect the source, s from the sink, t (minimum cut capacity)
(Kleinberg and Tardos, 2006; Kron, 1963). Physical interpretation of
this theorem is obvious, since the maximum flow is naturally defined
by the graph flow bottleneck between the source and sink vertices.
The capacity of the bottleneck (maximum possible flow) will then be
equal to the minimum capacity (weight values) of the edges which, if
removed, would disconnect the graph into two parts, one containing
vertex s and the other containing vertex t. Therefore, the problem of
maximum flow is equivalent to the minimum cut (capacity) problem,
under the assumption that the considered vertices, s and t, must belong
to different disjoint subsets of vertices E and H. This kind of cut, with
predefined vertices s and t, is called the (s, t) cut.
Remark 22: In general, if the source and sink vertices are not given,
the maximum flow algorithm should be repeated for all combinations
of the source and sink vertices in order to find the minimum cut of a
graph.

The most widely used approach to solve the minimum-cut maximum-
flow problem is the Ford–Fulkerson method (Kleinberg and Tardos, 2006;
Kron, 1963).
Example 14: Consider the weighted graph from Figure 2.2, with
the assumed source and sink vertices, s = 0 and t = 6, as shown in
Figure 4.2(a). The Ford–Fulkerson method is based on the analysis of
paths and the corresponding flows between the source and sink vertex.

54 Vertex Clustering and Mapping

1

2

3

4

5
7

0

6

0.08

0.74
0.
24 0.35 0

.0
8

0.26 0.24

0
.3
2

0.32
0.360.1

4

0.15

00.17

s

t (a)

1

2

3

4

5
7

0

6

0.08

0.520 0.35 0
.0
8

0.18 0.10

0 0.36

0

00.03

E = {0, 1, 2, 3, 4, 5}

H = {6, 7}

Cut(E,H) = 0.61

s

t

(b)

1

2

3

4

5
7

0

6

0.08

0.38

0.
08

0.
38

0.36

0.66

0.17

0.47

0

0.30

s

t (c)

0.51

0
.2
3

0.23

Figure 4.2: Principle of the maximum flow minimum cut method. (a) The weighted
graph from Figure 2.2, with the assumed source vertex s = 0 and sink vertex t = 6,
and a path between these two vertices for which the maximum flow is equal to the
minimum capacity (weight) along this path, W57 = 0.15. This maximum flow value,
W57 = 0.15, is then subtracted from all the original edge capacities (weights) to yield
the new residual edge capacities (weights) which are shown in red. (b) The final edge
capacities (weights) after the maximum flows are subtracted for all paths 0→ 3→ 6,
0→ 2→ 4→ 7→ 6, and 0→ 2→ 3→ 6, between vertices s = 0 and t = 6, with the
resulting minimum cut now crossing only the zero-capacity (zero-weight) edges with
its value equal to the sum of their initial capacities (weights), shown in Panel (a) in
black. (c) A directed form of the undirected graph from (a), with the same path and
the residual capacities (weights) given for both directions.

4.1. Clustering Based on Graph Topology 55

One such possible path between s and t, 0→ 1→ 4→ 5→ 7→ 6, is
designated by the thick line in Figure 4.2(a). Recall that the maximum
flow, for a path connecting the vertices s = 0 and t = 6, is restricted
by the minimum capacity (equal to the minimum weight) along the
considered path. For the considered path 0→ 1→ 4→ 5→ 7→ 6 the
maximum flow from s = 0 to t = 6 is therefore equal to

max-flow
0→1→4→5→7→6

= min{0.23, 0.23, 0.51, 0.15, 0.32} = 0.15,

since the minimum weight along this path is that connecting vertices 5
and 7, W57 = 0.15. The value of this maximum flow is then subtracted
from each capacity (weight) in the considered path, with the new
residual edge capacities (weights) designated in red in the residual graph
in Figure 4.2(a). The same procedure is repeated for the remaining
possible paths 0 → 3 → 6, 0 → 2 → 4 → 7 → 6, and 0 → 2 → 3 → 6,
with appropriate corrections to the capacities (edge weights) after
consideration of each path. The final residual form of the graph, after
zero-capacity edges are obtained in such a way that no new path with
nonzero flow from s to t can be defined, is given in Figure 4.2(b). For
example, if we consider the path 0 → 1 → 2 → 3 → 6 (or any other
path), in the residual graph, then its maximum flow would be 0, since
the residual weight in the edge 3→ 6 is equal to 0. The minimum cut has
now been obtained as that which separates the sink vertex, t = 6, and its
neighborhood from the the source vertex, s = 0, through the remaining
zero-capacity (zero-weight) edges. This cut is shown in Figure 4.2(b),
and separates the vertices H = {6, 7} from the rest of vertices by cutting
the edges connecting vertices 3 → 6, 4 → 7, and 5 → 7. The original
total weights of these edges are Cut(E ,H) = 0.32 + 0.14 + 0.15 = 0.61.

We have so far considered an undirected graph, but since the
Ford–Fulkerson algorithm is typically applied to directed graphs, notice
that an undirected graph can be considered as a directed graph with
every edge being split into a pair of edges having the same weight
(capacity), but with opposite directions. After an edge is used in one
direction (for example, edge 5–7 in Figure 4.2(a)) with a flow equal
to its maximum capacity of 0.15 in the considered direction, the other
flow direction (sister edge) becomes 0.30, as shown in Figure 4.2(c).
The edge with opposite direction could be used (up the algebraic sum

56 Vertex Clustering and Mapping

of flows in both directions being equal to the total edge capacity) to
form another path (if possible) from the source to the sink vertex. More
specifically, the capacity of an edge (from the pair) in the assumed
direction is reduced by the same value of the considered flow, while the
capacity of the opposite-direction edge (from the same pair) is increased
by the same flow, and can be used to send the flow in reverse direction
if needed. All residual capacities for the path from Figure 4.2(a) are
given in Figure 4.2(c). For clarity, the edge weights which had not been
changed by this flow are not shown in Figure 4.2(c).

Ratio Minimum Cut

A number of optimization approaches may be employed to enforce
some desired properties on graph clusters. One such approach is the
ratio minimum cut, which is commonly used in graph theory, and is
introduced by penalizing the value of Cut(E ,H) by an additional term
(cost) to enforce the subsets E and H to be simultaneously as large as
possible. An obvious form of the ratio cut is given by Hagen and Kahng
(1992b)

CutN(E ,H) =
(1
NE

+ 1
NH

) ∑
m∈E
n∈H

Wmn, (4.1)

where NE and NH are the respective numbers of vertices in the sets E
and H. Since NE +NH = N , the term 1

NE
+ 1

NH
reaches its minimum

for NE = NH = N/2.
Example 15: Consider again Example 12, and the graph from
Figure 4.1. For the sets of vertices, E = {0, 1, 2, 3} and H = {4, 5, 6, 7},
the ratio cut is calculated as CutN(E ,H) = (1/4 + 1/4)0.79 = 0.395.
This cut also represents the minimum ratio cut for this graph; this
can be confirmed by checking all possible cut combinations of E and
H in this (small) graph. Figure 4.3 illustrates the clustering of vertices
according to the minimum ratio cut. Notice, however, that in general
the minimum cut and the minimum ratio cut do not produce the same
vertex clustering into E and H.
Graph separability. Relevant to this section, the minimum cut value
admits a physical interpretation as a measure of graph separability.

4.1. Clustering Based on Graph Topology 57

0 1

2

3

4

56
7

Figure 4.3: A clustering scheme based on the minimum ratio cut of the vertices in
the graph from Figure 2.2 into two vertex clusters, E = {0, 1, 2, 3} and H = {4, 5, 6, 7}.
This cut corresponds to the arbitrarily chosen cut presented in Figure 4.1.

An ideal separability is possible if the minimum cut is equal to zero,
meaning that there are no edges between subsets E and H. In Example
15, the minimum cut value was CutN(E ,H) = 0.395, which is not
close to 0, and indicates that the segmentation of this graph into two
subgraphs would not yield a close approximation of the original graph.

4.1.3 Volume Normalized Minimum Cut

A more general form of the normalized cut may also involve vertex
weights when designing the size of subsets E and H. By defining, respec-
tively, the volumes of these sets as VE = ∑

n∈E Dnn and VH = ∑
n∈HDnn,

and using these volumes instead of the numbers of vertices NE and NH
in the definition of the ratio cut in (28.7), we arrive at Shi and Malik
(2000)

CutV(E ,H) =
(1
VE

+ 1
VH

) ∑
m∈E
n∈H

Wmn, (4.2)

where Dnn = ∑
m∈VWmn is the degree of a vertex n. The vertices with

a higher degree, Dnn, are considered as structurally more important
than the vertices with lower degrees.

The above discussion shows that finding the normalized minimum
cut is also a combinatorial problem, for which an approximative spectral-
based solution will be discussed later in this section.

58 Vertex Clustering and Mapping

4.1.4 Other Forms of the Normalized Cut

In addition to the two presented forms of the normalized cut, based on
the number of vertices and volume, other frequently used forms are:

1. The sparsity of a cut which is defined as

ρ(E) = 1
NENV−E

∑
m∈E
n∈V−E

Wmn, (4.3)

where V −E is the set difference of V and E . The sparsity of a cut,
ρ(E), is related to the ratio cut as Nρ(E) = CutN(E ,H), since
H = V − E and NE +NV−E = N . The sparsity of a graph is then
defined as the minimum sparsity of a cut. It then follows that the
cut which exhibits minimum sparsity and the minimum ratio cut
in (28.7) produce the same set E .

2. The edge expansion of a subset, E ⊂ V, is defined by

α(E) = 1
NE

∑
m∈E
n∈V−E

Wmn, (4.4)

with NE ≤ N/2. Observe a close relation of edge expansion to the
ratio cut in (28.7).

3. The Cheeger ratio of a subset, E ⊂ V, is defined as

φ(E) = 1
min{VE , VV−E}

∑
m∈E
n∈V−E

Wmn. (4.5)

The minimum value of φ(E) is denoted by φ(V) and called the
Cheeger constant or conductance of a graph (Mohar, 1989). This
form is closely related to the volume normalized cut in (4.2).

4.2 Spectral Methods for Graph Clustering

This class of methods is a modern alternative to the classical direct
graph topology analysis, whereby vertex clustering is based on the
eigenvectors of the graph Laplacian. Practical spectral methods for

4.2. Spectral Methods for Graph Clustering 59

graph clustering typically employ several smoothest eigenvectors of the
graph Laplacian.

Simplified algorithms for vertex clustering may even employ only one
eigenvector, namely the second (Fiedler, 1973b) eigenvector of the graph
Laplacian, u1, to yield a quasi-optimal clustering or partitioning scheme
on a graph. These are proven to be efficient in a range of applications,
including data processing on graphs, machine learning, and computer
vision (Malik et al., 2001). Despite their simplicity, such algorithms
are typically quite accurate, and a number of studies show that graph
clustering and cuts based on the second eigenvector, u1, give a good
approximation to the optimal cut (Ng et al., 2002; Spielman and Teng,
2007b; Von Luxburg, 2007). Using more than one smooth eigenvector
in graph clustering and partitioning will increase the number of degrees
of freedom to consequently yield more physically meaningful clustering,
when required for practical applications in data analytics.

For an enhanced insight we shall next review the smoothness index,
before introducing the notions of graph spectral vectors and their
distance, followed by the notions of similarity and clustering of vertices.

4.2.1 Smoothness of Eigenvectors on Graphs

Definition: The smoothness of an eigenvector, uk, is introduced through
its quadratic Laplacian form, uTk Luk, with the smoothness index equal
to the corresponding eigenvalue, λk, that is

uTk (Luk) = uTk (λkuk) = λk. (4.6)

To demonstrate physical intuition behind the use of quadratic form,
uTkLuk, as a smoothness metric of uk, consider

uTkLuk = uTk (D−W)uk.

Then, an n-th element of the vector Luk is given by
N−1∑
m=0

Wnmuk(n)−
N−1∑
m=0

Wnmuk(m),

60 Vertex Clustering and Mapping

since Dnn = ∑N−1
m=0 Wnm. Therefore,

uTkLuk =
N−1∑
m=0

uk(m)
N−1∑
n=0

Wmn(uk(m)− uk(n))

=
N−1∑
m=0

N−1∑
n=0

Wmn(u2
k(m)− uk(m)uk(n)). (4.7)

Owing to the symmetry of the weight matrix, W (as shown in (2.5)),
we can use Wnm = Wmn to replace the full summation of u2

k(n) over m
and n with a half of the summations for both u2

k(m) and u2
k(n), over

all m and n. The same applies for the term u(m)u(n). With that, we
can write

uTkLuk = 1
2

N−1∑
m=0

N−1∑
n=0

Wmn(u2
k(m)− uk(m)uk(n))

+ 1
2

N−1∑
m=0

N−1∑
n=0

Wmn(u2
k(n)− uk(n)uk(m))

= 1
2

N−1∑
m=0

N−1∑
n=0

Wmn(uk(n)− uk(m))2 ≥ 0. (4.8)

Obviously, a small uTkLuk = λk implies that all terms Wnm(uk(n)−
uk(m))2 ≤ 2λk are also small, thus indicating close values of uk(m)
and uk(n) for vertices m and n with significant connections, Wmn. The
eigenvectors corresponding to a small λk are therefore slow-varying and
smooth on a graph.
Example 16: An exemplar of eigenvectors with a small, a moderate and
a large smoothness index, λk, is given on the three graphs in Figure 4.4.

In order to illustrate the interpretation of the smoothness index
in classical time-domain data processing, the time-domain form of the
eigenvectors/basis functions in the real-valued Fourier analysis (3.14) is
also shown in Figure 4.4 (middle). In this case, the basis functions can
be considered as the eigenvectors of a directed circular graph, where
the vertices assume the role of time instants.

Observe that in all three graphs the smooth eigenvectors, u0 and u1,
have similar elements on the neighboring vertices (in the case of a path
graph – time instants), and thus may be considered as smooth data on

4.2. Spectral Methods for Graph Clustering 61

(a)

(b)

(c)

Figure 4.4: Illustration of the concept of smoothness of the graph Laplacian
eigenvectors for three different graphs: The graph from Figure 2.2 (left), a path
graph corresponding to classic temporal data analysis (middle), and an example of a
more complex graph with N = 64 vertices (right). (a) Constant eigenvector, u0(n),
shown on the three considered graphs. This is the smoothest possible eigenvector
for which the smoothness index is λ0 = 0. (b) Slow-varying Fiedler eigenvector (the
smoothest eigenvector whose elements are not constant), u1(n), for the three graphs
considered. (c) Fast-varying eigenvectors, for k = 5 (left), and k = 30 (middle and
right). Graph vertices are denoted by black circles, and the values of elements of the
eigenvectors, uk(n), by red lines, for n = 0, 1, . . . , N − 1. The smoothness index, λk,
is also given for each case.

the corresponding graph domains. Such similarity does not hold for the
fast-varying eigenvectors, u5 (left of Figure 4.4) and u30 (middle and
right of Figure 4.4), which exhibit a much higher smoothness index.

Remark 23: The eigenvector of the graph Laplacian which corresponds
to λ0 = 0 is constant (maximally smooth for any vertex ordering) and
is therefore not appropriate as a template for vertex ordering. The next
smoothest eigenvector is u1, which corresponds to the eigenvalue λ1.

Ordering of vertices for smoothest Fiedler vector. It is natural to
order vertices within a graph in such a way so that the presentation of

62 Vertex Clustering and Mapping

the sequence of elements of the smoothest eigenvector, u1, as a function
of the vertex index, n, is also maximally smooth. This can be achieved
by sorting (rank ordering) the elements of the Fiedler vector, u1, in a
nondecreasing order. Recall from Remark 12 that the isomorphic nature
of graphs means that the reindexing of vertices does not change any
graph property. The new order of graph vertices in the sorted u1 then
corresponds to the smoothest sequence of elements of this vector along
the vertex index line.

A unique feature of graphs, which renders them indispensable in mod-
ern data analytics on irregular domains, is that the ordering of vertices
of a graph can be arbitrary, an important difference from classical data
analytics where the ordering is inherently sequential and fixed (Stankovic
et al., 2019a). Therefore, in general, any change in data ordering (index-
ing) would cause significant changes in the results of classical methods,
while when it comes to graphs, owing to their topological invariance (as
shown in Figures 3.1 and 3.2 in the previous section), reordering of ver-
tices would automatically imply the corresponding reordering of indices
within each eigenvector, with no implication on the analysis results.
However, the presentation of data sensed at the graph vertices, along a
line of vertex indices, as in Figure 3.1(left), a common case for practical
reasons, would benefit from an appropriate vertex ordering. Notice that
vertex ordering in a graph is just a one-dimensional simplification of
an important paradigm in graph analysis, known as graph clustering
(Dong et al., 2012; Horaud, 2009; Hamon et al., 2016a; Lu et al., 2014;
Masoumi and Hamza, 2017; Masoumi et al., 2016; Mejia et al., 2017).

4.2.2 Spectral Space and Spectral Similarity of Vertices

For a graph with N vertices, the orthogonal eigenvectors of its graph
Laplacian form the basis of an N -dimensional space, called the spec-
tral space. In this way, the elements, uk(n), of every eigenvector uk,
k = 0, 1, 2, . . . , N − 1, are assigned to the corresponding vertices,
n = 0, 1, 2, . . . , N − 1, as shown in Figure 4.5(a). This, in turn, means
that a set of elements, u0(n), u1(n), u2(n), . . . , uN−1(n), is assigned to
every vertex n, as shown in Figure 4.5(b). For every vertex, n, we can

4.2. Spectral Methods for Graph Clustering 63

Figure 4.5: Illustration of spectral vectors for the graph from Figure 2.2, with N = 8
vertices. For an intuitive analogy with the classical Discrete Fourier Transform, notice
that the complex harmonic basis functions within the DFT would play the role of
eigenvectors in graph spectral representation, uk, k = 0, 1, . . . , 7. Then, the spectral
vectors, qn, n = 0, 1, . . . , 7, would be analogous to the basis functions of the inverse
Discrete Fourier transform (excluding the first constant element).

then group these elements into an N -dimensional spectral vector

qn
def= [u0(n), u1(n), . . . , uN−1(n)],

which is associated with the vertex n. Since the elements of the first
eigenvector, u0, are constant, they do not convey any spectral difference
to the graph vertices. Therefore, the elements of u0 are commonly

64 Vertex Clustering and Mapping

omitted from the spectral vector for vertex n, to yield

qn = [u1(n), . . . , uN−1(n)], (4.9)

as illustrated in Figure 4.5(b).

Vertex dimensionality in the spectral space. Now that we have
associated a unique spectral vector qn in (4.9), to every vertex n =
0, 1, . . . , N − 1, it is important to note that this (N − 1)-dimensional
representation of every vertex in a graph (whereby the orthogonal
graph Laplacian eigenvectors, u1,u2, . . . ,uN−1, serve as a basis of that
representation) does not affect the graph itself; this just means that
the additional degrees of freedom introduced through spectral vectors
facilitate more sophisticated and efficient graph analysis. For example,
we may now talk about vertex similarity in the spectral space, or about
the spectrum based graph cut, segmentation, and vertex clustering.

An analogy with classical signal processing would be to assign a
vector of harmonic basis function values at a time instant (vertex) n, to
“describe” this instant, that is, to assign the n-th column of the Discrete
Fourier transform matrix to the instant n. This intuition is illustrated
in Figures 4.5(a) and (b).

The spectral vectors shall next be used to define spectral similarity
of vertices.

Definition: Two vertices, m and n, are called spectrally similar if their
distance in the spectral space is within a small predefined threshold.
The spectral similarity between vertices m and n is typically measured
through the Euclidean norm of their spectral space distance, given by

dmn
def= ‖qm − qn‖2.

Spectral manifold. Once graph is characterized by the original
(N − 1)-dimensional spectral vectors, the so obtained vertex positions
in spectral vertex representation may reside near some well defined
surface (commonly a hyperplane) called a spectral manifold which is of
a reduced dimensionality M < (N −1). The aim of spectral vertex map-
ping is then to map each spectral vertex representation from the original
N -dimensional spectral vector space to a new spectral manifold which
lies in a reduced M -dimensional spectral space, to a position closest

4.2. Spectral Methods for Graph Clustering 65

to its original (N − 1)-dimensional spectral position. This principle is
related to the Principal Component Analysis (PCA) method, and this
relation will be discussed later in this section. An analogy with classical
Discrete Fourier Transform analysis would imply a restriction of the
spectral analysis from the space of N harmonics to the reduced space of
the M slowest-varying harmonics (excluding the constant one).

These spectral dimensionality reduction considerations suggest to
restrict the definition of spectral similarity to only a few lower-order
(smooth) eigenvectors in the spectral space of reduced dimensionality.
For example, if the spectral similarity is restricted to the two smoothest
eigenvectors, u1 and u2 (omitting the constant u0), then the spectral
vector for a vertex n would become

qn = [u1(n), u2(n)],

as illustrated in Figures 4.5(c) and 4.6(a). If for two vertices, m and n,
the values of u1(m) are close to u1(n) and the values of u2(m) are close
to u2(n), then these two vertices are said to be spectrally similar, that
is, they exhibit a small spectral distance, dmn = ‖qm − qn‖2.

Finally, the simplest spectral description uses only one (smoothest
nonconstant) eigenvector to describe the spectral content of a vertex,
so that the spectral vector reduces to a spectral scalar

qn = [qn] = [u1(n)],

whereby the so reduced spectral space is a one-dimensional line.
Example 17: The two-dimensional and three-dimensional spectral
vectors, qn = [u1(n), u2(n)] and qn = [u1(n), u2(n), u3(n)], of the graph
from Figure 2.2 are shown in Figure 4.6, for n = 2 and n = 6.
Spectral embedding. The mapping from the reduced dimensionality
spectral space back onto the original vertices is referred to as Spectral
embedding.

We can proceed in two ways with the reduced spectral vertex space
representation: (i) to assign the reduced dimension spectral vectors to
the original vertex positions, for example, in the form of vertex coloring,
as a basis for subsequent vertex clustering (Section 4.2.3), or (ii) to
achieve new vertex positioning in the reduced dimensionality space of

66 Vertex Clustering and Mapping

0 1 2 3

4 5 6 7

0 1

2
3

4

56
7

0

1

2 3

4 5

6 7

0 1

2
3

4

5

6
7

(a)

0 1 2 3

4 5 6 7

0 1

2
3

4

56
7

0

1

2 3

4 5

6 7

0 1

2
3

4

5

6
7

0 1 2

3 4 5 6

7

0 1

2
3

4

56
7

(b)

Figure 4.6: Illustration of the spectral vectors, qn = [u1(n), u2(n)] and qn =
[u1(n), u2(n), u3(n)], for the Laplacian matrix of the graph in Figure 2.2. (a) Two-
dimensional spectral vectors, q2 = [u1(2), u2(2)] and q6 = [u1(6), u2(6)]. (b) Three-
dimensional spectral vectors, q2 = [u1(2), u2(2), u3(2)] and q6 = [u1(6), u2(6), u3(6)].
For clarity, the spectral vectors are shown on both the vertex index axis and directly
on graph.

4.2. Spectral Methods for Graph Clustering 67

eigenvectors (reduced spectral space), using eigenmaps (Section 4.4).
Both yield similar information and can be considered as two sides of the
same coin (Belkin and Niyogi, 2003). For visualization purposes, we will
use colors of the RGB system to represent the spectral vector values in
a reduced (one, two, or three) dimensional spectral space. Vertices at
the original graph positions will be colored according to the spectral
vector values.

4.2.3 Indicator Vector

Remark 21 shows that the combinatorial approach to minimum cut
problem is computationally infeasible, as even for a graph with only 50
vertices we have 5.6 · 1014 such potential cuts.

To break this Curse of Dimensionality it would be very convenient
to relate the problem of the minimization of the ratio cut in (28.7)
and (4.2) to that of eigenanalysis of graph Laplacian. To this end, we
shall introduce the notion of indicator vector x on a graph, for which
the elements take subgraph-wise constant values within each disjoint
subset (cluster) of vertices, with these constants taking different values
for different clusters of vertices (subset-wise constant vector). While
this does not immediately reduce the computational burden (the same
number of combinations remains as in the brute force method), the
elements of x now uniquely reflect the assumed cut of the graph into
disjoint subsets E ,H ⊂ V.

Establishing a further link with only the smoothest eigenvector of the
graph Laplacian will convert the original, computationally intractable,
combinatorial minimum cut problem into a manageable algebraic eigen-
value problem, for which the computation complexity is of the O(N3)
order. By casting the problem into the linear algebra framework, com-
plexity of calculation can be additionally reduced through efficient
eigenanalysis methods, such as the Power Method which sequentially
computes the desired number of largest eigenvalues and the correspond-
ing eigenvectors, at an affordable O(N2) computations per iteration, as
shown in the appendix.

However, unlike the indicator vector, x, the smoothest eigenvector
(corresponding to the smallest nonzero eigenvalue) of graph Laplacian

68 Vertex Clustering and Mapping

is not subset-wise constant, and such solution would be approximate,
but computationally feasible.
Remark 24: The concept of indicator vector can be introduced through
the analysis with an ideal minimum cut of a graph, given by

Cut(E ,H) =
∑
m∈E
n∈H

Wmn = 0,

that is, when considering an already disjoint graph for which
Cut(E ,H) = 0 indicates that there exist no edges between the sub-
sets E and H, that is, Wmn = 0 for m ∈ E , and n ∈ H. Obviously, this
ideal case can be solved without resorting to the combinatorial approach,
since this graph is already in the form of two disconnected subgraphs,
defined by the sets of vertices E and H. For such a disconnected graph,
the second eigenvalue of the graph Laplacian is λ1 = 0, as established
by the graph Laplacian property L2. When λ1 = 0, then

2uT1 Lu1 =
N−1∑
m=0

N−1∑
n=0

Wmn(u1(n)− u1(m))2 = 2λ1 = 0,

which follows from (4.6) and (4.8). Since all terms in the last sum are
nonnegative, this implies that they must be zero-valued, that is, the
eigenvector u1 is subset-wise constant, with u1(n) = u1(m) = c1 for
m,n ∈ E and u1(n) = u1(m) = c2 for m,n,∈ H. Since the eigenvector
u1 is orthogonal to the constant eigenvector u0, then

∑N−1
n=0 u1(n) = 0.

A possible solution for u1(n), that satisfies the subset-wise constant
form and has zero mean, is u1(n) = c1 = 1/NE for n ∈ E and u1(n) =
c2 = −1/NH for n ∈ H. We can conclude that the problem of finding
an ideal minimum cut can indeed be solved by introducing an indicator
vector x = u1, such that x(n) = 1/NE for n ∈ E and x(n) = −1/NH
for n ∈ H. The membership of a vertex, n, to either the subset E or
H of the ideal minimum cut is therefore uniquely defined by the sign
of indicator vector x = u1. This form of x is not normalized to unit
energy, as its scaling by any constant would not influence solution for
vertex clustering into subsets E or H.

For a general graph, and following the above reasoning, we here
consider two specific subset-wise constant forms of the indicator vector,
x, which are based on

4.2. Spectral Methods for Graph Clustering 69

(i) the number of vertices in disjoint subgraphs,

x(n) =

1
NE

, for n ∈ E

− 1
NH

, for n ∈ H,
(4.10)

where NE is the number of vertices in E , and NH is the number of
vertices in H, and
(ii) the volumes of the disjoint subgraphs,

x(n) =

1
VE
, for n ∈ E

− 1
VH

, for n ∈ H,
(4.11)

where the volumes of the sets, VE and VH, are defined as the sums of
all vertex degrees, Dnn, in the corresponding subsets, VE = ∑

n∈E Dnn

and VH = ∑
n∈HDnn.

Before proceeding further with the analysis of these two forms of
indicator vector (in the next two remarks), it is important to note that
if we can find the vector x which minimizes the ratio cut, CutN(E ,H)
in (28.7), then the elements of vector x (their signs, sign(x(n)) = 1 for
n ∈ E and sign(x(n)) = −1 for n ∈ H) may be used to decide whether
to associate a vertex, n, to either the set E or H of the minimum ratio
cut.
Remark 25: The ratio cut, CutN(E ,H), defined in (28.7), for the
indicator vector x with the elements x(n) = 1/NE for n ∈ E and
x(n) = −1/NH for n ∈ H, is equal to the Rayleigh quotient of the
matrix L and vector x, that is

CutN(E ,H) = xTLx
xTx . (4.12)

To prove this relation we rewrite (4.8) as

xTLx = 1
2

N−1∑
m=0

N−1∑
n=0

Wmn(x(n)− x(m))2. (4.13)

For all vertices m and n within the same subgraph, that is, such that
m ∈ E and n ∈ E , the elements of vector x are therefore the same

70 Vertex Clustering and Mapping

and equal to x(m) = x(n) = 1/NE . In turn, this means that the terms
(x(n)− x(m))2 in (4.13) are zero-valued. The same holds for any two
vertices belonging to the set H, that is, form ∈ H and n ∈ H. Therefore,
only the terms corresponding to the edges which define the cut, when
m ∈ E and n ∈ H, and vice versa, remain in the sum, and they are
constant and equal to (x(n)− x(m))2 = (1/NE − (−1/NH))2, to yield

xTLx =
(1
NE

+ 1
NH

)2 ∑
m∈E
n∈H

Wmn

=
(1
NE

+ 1
NH

)
CutN(E ,H), (4.14)

where the ratio cut, CutN(E ,H), is defined in (28.7). Finally, from the
energy of the indicator vector, xTx = e2

x,

xTx = ‖x‖22 = e2
x = NE

N2
E

+ NH
N2
H

= 1
NE

+ 1
NH

, (4.15)

which proves (28.9).
The same analysis holds if the indicator vector is normalized to unit

energy, whereby x(n) = 1/(NEex) for n ∈ E and x(n) = −1/(NHex) for
n ∈ H, with ex defined in (4.15) as ex = ‖x‖2.

We can therefore conclude that the indicator vector, x, which solves
the problem of minimization of the ratio cut, is also a solution to (28.9).
This minimization problem, for the unit energy form of the indicator
vector the elements of which are the minimization variables, can also
be written as

min
x
{xTLx} subject to xTx = 1. (4.16)

In general, this is again a combinatorial problem, since all possible combi-
nations of subsets of vertices, E and H, together with the corresponding
indicator vectors, x, must be considered.

For a moment we shall put aside the very specific (subset-wise con-
stant) form of the indicator vector and consider the general minimization
problem in (28.11). This problem can be solved using the method of
Lagrange multipliers, with the corresponding cost function

L(x) = xTLx− λ(xTx− 1).

4.2. Spectral Methods for Graph Clustering 71

From ∂L(x)/∂xT = 0, it follows that Lx = λx, which is precisely the
eigenvalue/eigenvector relation for the graph Laplacian L, the solution
of which is λ = λk and x = uk, for k = 0, 1, . . . , N − 1. In other
words, upon replacing x by uk in the term min{xTLx} above, we
obtain mink{uTk Luk} = mink{λk}. After neglecting the trivial solution
λ0 = 0, since it produces a constant eigenvector u0, we next arrive at
mink{λk} = λ1 and x = u1. Note that this solution yields a general
form of vector x that minimizes (28.9). However, such a form does not
necessarily correspond to a subset-wise constant indicator vector, x.
The fact that the trivial solution (constant vector x) is neglected, is
commonly written as an additional constraint in (28.11), of the form
(see also Part III, Section 13.3),

xT1 = 0.

4.2.4 Bounds on the Minimum Cut

In general, the subset-wise constant indicator vector, x, may be written
as a linear combination of the graph Laplacian eigenvectors, uk, k =
1, 2, . . . , N − 1, to give

x = α1u1 + α2u2 + · · ·+ αN−1uN−1. (4.17)

This kind of vector expansion onto the set of eigenvectors shall be
addressed in more detail in Part II of this monograph. Note that
the constant eigenvector u0 is omitted since the indicator vector is
zero-mean by definition (orthogonal to a constant vector). The cal-
culation of coefficients αi would require the indicator vector (that is,
the sets E and H) to be known, leading again to the combinatorial
problem of vertex set partitioning. It is interesting to note that the
quadratic form of indicator vector, x, given by (4.17) is equal to xTLx =
α2

1λ1+α2
2λ2+· · ·+α2

N−1λN−1, and that it assumes the minimum value for
α1 = 1, α2 = · · · = αN−1 = 0, that is, when x = u1, which corresponds
to imposing the normalized energy condition, xTx = α2

1 + α2
2 + · · · +

α2
N−1 = 1. In other words, we now arrive at a physically meaningful

bound
λ1 ≤ xTLx = CutN(E ,H).

72 Vertex Clustering and Mapping

Observe that this inequality corresponds to the lower Cheeger bound
for the minimum ratio cut in (28.7).
Remark 26: If the space of approximative solutions for the indicator
vector, x, is relaxed to allow for vectors that are not subset-wise constant
(while omitting the constant eigenvector of the graph Laplacian, u0),
the approximative solution becomes x = u1 (as previously shown and
illustrated in Example (18)). The above analysis indicates that this
solution is quasi-optimal, however, despite its simplicity, the graph cut
based on only the second graph Laplacian eigenvector, u1, typically
produces a good approximation to the optimal (minimum ratio) cut.

It has been shown that the value of the true ratio minimum cut in
(28.7), when the indicator vector x is subset-wise constant, is bounded on
both sides (upper and lower) with the constants which are proportional
to the smallest nonzero eigenvalue, uT1 Lu1 = λ1, of the graph Laplacian.
The simplest form of these bounds (Cheeger’s bounds) for the cut
defined by (4.5), has the form (alon1986eigenvalues; Chung, 2005,
chung2007four; Trevisan, 2013)

λ1
2 ≤ φ(V)def= min

E⊂V
{φ(E)} ≤

√
2λ1. (4.18)

This shows that the eigenvalue λ1 is also a good measure of a graph
separability and consequently the quality of spectral clustering in the
sense of a minimum Cheeger’s ratio cut. The value of the minimum
Cheeger’s ratio cut of a graph (also referred to as Cheeger’s constant,
conductivity, or isoperimetric number of a graph) may also be considered
as a numerical measure of the presence of a “bottleneck” in a graph.

4.2.5 Indicator Vector for Normalized Graph Laplacian

We shall now address the cut based on normalized graph Laplacian, in
light of the above analysis.
Remark 27: The volume normalized cut, CutV (E ,H), defined in (4.2),
is equal to

CutV(E ,H) = xTLx
xTDx , (4.19)

4.2. Spectral Methods for Graph Clustering 73

where the corresponding, subset-wise constant, indicator vector has the
values x(n) = 1/VE for n ∈ E and x(n) = −1/VH for n ∈ H, while the
volumes of the sets, VE and VH, are defined in (4.2).

The proof is identical to that given in Remark 25. For the normalized
indicator vector, we have xTDx = 1, so that the minimization problem
in (4.19), for finding the elements of x, reduces to

min{xTLx} subject to xTDx = 1. (4.20)

If the solution space is restricted to the space of generalized eigenvectors
of the graph Laplacian, defined by

Luk = λkDuk,

then the solution to (28.16) becomes

x = u1,

where u1 is the generalized eigenvector of the graph Laplacian that
corresponds to the lowest nonzero eigenvalue. The fact that the trivial
solution (constant vector x) is avoided as a solution, can be written in
the form of an additional constraint, xT1 = 0, in (28.16).

The eigenvectors of the normalized Laplacian, LN = D−1/2LD−1/2,
may also be used in optimal cut approximations since the minimization
problem in (4.19) can be rewritten using the normalized Laplacian
through a change of the variable, to yield

x = D−1/2y,

which allows us to arrive at the following form Ng et al. (2002)

min{yTD−1/2LD−1/2y} = min{yTLNy},
subject to yTy = 1. (4.21)

If the space of solutions to this minimization problem is relaxed to the
eigenvectors, vk, of the normalized graph Laplacian, LN , then y = v1.
For more detail on the various forms of the eigenvalues and eigenvectors
of graph Laplacian, we refer to Table 4.1.

It is obvious now from (28.16) and (4.21) that the relation of the form
x = D−1/2y also holds for the corresponding eigenvectors of the nor-
malized graph Laplacian, vk, and the generalized eigenvectors of the

74 Vertex Clustering and Mapping

T
ab

le
4.

1:
Su

m
m
ar
y
of

gr
ap

h
em

be
dd

in
g
m
ap

pi
ng

s.
T
he

G
ra
ph

La
pl
ac
ia
n
m
ap

pi
ng

,t
he

G
en

er
al
iz
ed

ei
ge
nv

ec
to
rs

of
th
e
La

pl
ac
ia
n

m
ap

pi
ng

,t
he

N
or
m
al
iz
ed

La
pl
ac
ia
n
m
ap

pi
ng

,t
he

C
om

m
ut
e
tim

e
m
ap

pi
ng

,t
he

D
iff
us
io
n
m
ap

pi
ng

,a
nd

th
e
C
um

ul
at
iv
e
di
ffu

si
on

m
ap

pi
ng

.

M
ap

pi
ng

E
ig
en

-A
na

ly
si
s
R
el
at
io
n

R
ed

uc
ed

D
im

en
si
on

al
it
y
Sp

ec
tr
al

V
ec
to
r

G
ra
ph

La
pl
ac
ia
n
m
ap

pi
ng

Lu
k

=
λ
k
u k

q n
=

[u
1(
n

),
u

(2
),
..
.,
u
M

(n
)]

G
en
er
al
iz
ed

ei
ge
nv

ec
to
rs

of
La

pl
ac
ia
n
m
ap

pi
ng

Lu
k

=
λ
k
D

u k
q n

=
[u

1(
n

),
u

(2
),
..
.,
u
M

(n
)]

N
or
m
al
iz
ed

La
pl
ac
ia
n
m
ap

pi
ng

(D
−

1/
2 L

D
−

1/
2)

u k
=
λ
k
u k

q n
=

[u
1(
n

),
u

(2
),
..
.,
u
M

(n
)]

C
om

m
ut
e
tim

e
m
ap

pi
ng

Lu
k

=
λ
k
u k

q n
=

[u
1
(n

)
√
λ

1
,
u

2
(n

)
√
λ

2
,.
..
,
u

M
(n

)
√
λ

M
]

D
iff
us
io
n
(r
an

do
m

wa
lk
)
m
ap

pi
ng

Lu
k

=
λ
k
D

u k
q n

=
[u

1(
n

)(
1
−
λ

1)
t
,.
..
,u
M

(n
)(

1
−
λ
M

)t
]

C
um

ul
at
iv
e
di
ffu

sio
n
m
ap

pi
ng

Lu
k

=
λ
k
D

u k
q n

=
[u

1
(n

)
λ

1
,
u

2
(n

)
λ

2
,.
..
,
u

M
(n

)
λ

M
]

4.3. Spectral Clustering Implementation 75

Laplacian, vk, that is,
uk = D−1/2vk.

It is important to note that, in general, clustering results based on
the three forms of eigenvectors:

(i) the smoothest graph Laplacian eigenvector,

(ii) the smoothest generalized eigenvector of the Laplacian, and

(iii) the smoothest eigenvector of the normalized Laplacian,

are different. While the method (i) favors the clustering into subsets with
(almost) equal number of vertices, the methods (ii) and (iii) favor subsets
with (almost) equal volumes (defined as sums of the vertex degrees in
the subsets). Also note that the methods (i) and (ii) approximate the
indicator vector in different eigenvector subspaces. All three methods
will produce the same clustering result for unweighted regular graphs,
for which the volumes of subsets are proportional to the number of
their corresponding vertices, while the eigenvectors for all the three
Laplacian forms are the same in regular graphs, as shown in (2.13).
Generalized eigenvectors of the graph Laplacian and eigenvec-
tors of the normalized Laplacian. Recall that the matrix D−1/2

is of a diagonal form, and with positive elements. Then, the solution
to (28.16) which is equal to the generalized eigenvector of the graph
Laplacian, and the solution to (4.21) which is equal to the eigenvec-
tor of the normalized Laplacian, are related as sign(y) = sign(x) or
sign(v1) = sign(u1). This indicates that if the sign of the corresponding
eigenvector is used for the minimum cut approximation (clustering),
both results are the same.

4.3 Spectral Clustering Implementation

Spectral clustering is most conveniently implemented using only low-
dimensional spectral vectors, with the simplest case when only a one-
dimensional spectral vector is used as indicator vector. More degrees of
freedom can be achieved by clustering schemes which use two or three
Laplacian eigenvectors, as discussed next.

76 Vertex Clustering and Mapping

4.3.1 Clustering Based on Only One (Fiedler) Eigenvector

From the analysis in the previous section, we can conclude that only
the smoothest eigenvector, u1, can produce a good (quasi-optimal)
approximation to the problem of minimum ratio cut graph clustering
into two subsets of vertices, E and H. Within the concept of spectral
vectors, presented in Section 4.2.2, this indicates that the simplest form
of spectral vector, qn = u1(n), based on just one (the smoothest) Fiedler
eigenvector, u1, can be used for efficient spectral vertex clustering. Since
the spectral vector qn = u1(n) is used as an approximative solution to
the indicator vector within the minimum ratio cut definition, its values
may be normalized. One such normalization

yn = qn/‖qn‖2 (4.22)

yields a two-level form of the spectral vector

yn = [u1(n)/‖u1(n)‖2] = [sign(u1(n))],

and represents a step before clustering, as proposed in Ng et al. (2002).
This is justified based on the original form of the indicator vector,
whose sign indicates the vertex association to either subset E or H. For
illustrative representation of the normalized spectral vector, we may
use a simple two-level colormap and assign one of two colors to each
vertex. Such a simple algorithm for clustering is given in Algorithm 1
(for an algorithm with more options for clustering and representation
see the appendix (Algorithm 9) and Remarks 30 and 33).
Example 18: Consider the graph from Figure 2.2 and its Laplacian
eigenvector, u1, from Figure 3.4. The elements of this single eigen-
vector, u1, are used to encode the vertex colormap, as shown in
Figure 4.7(a). Here, the minimum element of u1 was used to select
the red color (vertex 7), while the white color at vertex 0 was desig-
nated by the maximum value of this eigenvector. Despite its simplicity,
this scheme immediately allows us to threshold u1 and identify two pos-
sible graph clusters, {0, 1, 2, 3}, and {4, 5, 6, 7}, as illustrated in Figure
4.7(b). The same result would be obtained if the sign of u1 was used to
color the vertices, and this would correspond to the minimum ratio cut
clustering in Figure 4.3.

4.3. Spectral Clustering Implementation 77

Algorithm 1. Clustering using the graph Laplacian.
Input:

• Graph vertices V = {0, 1, . . . , N − 1}
• Graph Laplacian L

1: [U,Λ]← eig(L)
2: yn ← U(2, n)
3: E ← {n | yn > 0}, H ← {n | yn ≤ 0}
Output:

• Vertex clusters E and H

(a)

0 1

2

3
4

56
7

0 1

2

3
4

56
7 (b)

Figure 4.7: Vertex coloring for the graph from Figure 2.2, with its spectrum
shown in Figure 3.4. (a) The eigenvector, u1, of the Laplacian matrix of this
graph, given in (2.8), is normalized and is used to define the red color in-
tensity levels within the colormap for every vertex. For this example, u1 =
[0.42, 0.38, 0.35, 0.15,−0.088,−0.34,−0.35,−0.54]T . The largest element of this eigen-
vector is u1(0) = 0.42 at vertex 0, which indicates that this vertex should be colored
by the lowest red intensity (white), while the smallest element is u1(7) = −0.54, so
that vertex 7 is colored with the strongest red color intensity. (b) Simplified two-level
coloring based on the sign of the elements of eigenvector u1.

The true indicator vector, x, for the minimum ratio cut of this
graph is presented in Figure 4.8(a). This vector is obtained by checking
all the 127 possible cut combinations of E and H in this small graph,
together with the corresponding x(n). The signs of the elements of
this vector indicate the way for optimal clustering into the subsets
E = {0, 1, 2, 3} and H = {4, 5, 6, 7}, while the minimum cut value is

78 Vertex Clustering and Mapping

0 1 2 3 4 5 6 7

-0.5

0

0.5

(a)

0 1 2 3 4 5 6 7

-0.5

0

0.5

(b)

0 1 2 3 4 5 6 7

-0.5

0

0.5

(c)

0 1 2 3 4 5 6 7

-0.5

0

0.5

(d)

Figure 4.8: Principle of the minimum ratio cut based clustering and its spectral
(graph Laplacian eigenvector) based approximation; all vectors are plotted against the
vertex index n. (a) The ideal indicator vector for a minimum ratio cut, CutN(E ,H),
normalized to unit energy. (b) The graph Laplacian eigenvector, u1. (c) The gen-
eralized eigenvector of the Laplacian, u1. (d) The eigenvector of the normalized
Laplacian, v1. The eigenvectors in (c) and (d) are related as u1 = D−1/2v1. In this
case, the signs of the indicator vector and the eigenvectors, sign(x), sign(u1), and
sign(v1) are the same in all the four vectors. The signs of these vectors then all may
be used to define the minimum ratio cut based clustering into E and H, that is, the
association of a vertex, n, to either the subset E or subset H.

4.3. Spectral Clustering Implementation 79

CutN(E ,H) = xTLx = 0.395. Figure 4.8(b) shows an approximation of
the indicator vector within the space of the graph Laplacian eigenvector,
u1. The quadratic form of the eigenvector, u1, is equal to uT1 Lu1 =
λ1 = 0.286. As shown in (4.17), note that the true indicator vector, x,
can be decomposed into the set of all graph Laplacian eigenvectors, uk,
and written as their linear combination.

The generalized Laplacian eigenvector, u1 = [0.37, 0.24, 0.32, 0.13,
−0.31,−0.56,−0.34,−0.58], which is an approximation of the indicator
vector for the minimum volume normalized cut in (4.2), is presented in
Figure 4.8(c). In this case, the generalized eigenvector indicates the same
clustering subsets, E = {0, 1, 2, 3} and H = {4, 5, 6, 7}. The eigenvector
of the normalized Laplacian, v1, is shown in Figure 4.8(d).
Example 19: Consider the graph from Figure 2.2, with the weight
matrix, W, in (2.4), and the graph Laplacian eigenvector u1 (shown in
Figure 3.4, Figure 4.4(b) (left), and Figure 4.8(b)). When this eigen-
vector is thresholded to only two intensity levels, sign(u1), two graph
clusters are obtained, as shown in Figure 4.7(b). In an ideal case, these
clusters may even be considered as independent graphs (graph segmen-
tation being the strongest form of clustering); this can be achieved by
redefining the weights as Wnm = 0, if m and n are in different clusters,
and Wnm = Wnm otherwise (Ng et al., 2002), for the corresponding
disconnected (segmented) graph, whose weight matrix, Ŵ, is given by

Ŵ =

0
1
2
3
4
5
6
7

0 0.23 0.74 0.24 0 0 0 0
0.23 0 0.35 0 0 0 0 0
0.74 0.35 0 0.26 0 0 0 0
0.24 0 0.26 0 0 0 0 0

0 0 0 0 0 0.51 0 0.14
0 0 0 0 0.51 0 0 0.15
0 0 0 0 0 0 0 0.32
0 0 0 0 0.14 0.15 0.32 0

.

0 1 2 3 4 5 6 7

(4.23)

4.3.2 “Closeness” of the Segmented and Original Graphs

The issue of how “close” the behavior of the weight matrix of the
segmented graph, Ŵ, in (4.23) (and the corresponding L̂) is to the

80 Vertex Clustering and Mapping

original W and L, in (2.4) and (2.8), is usually considered within matrix
perturbation theory.

It can be shown that a good measure of the “closeness” is the so-
called eigenvalue gap, δ = λ2−λ1, Ng et al. (2002), that is the difference
between the eigenvalue λ1 associated with the eigenvector u1, which is
used for segmentation, and the next eigenvalue, λ2, in the graph spec-
trum of the normalized graph Laplacian (for additional explanation see
Example 23). For the obvious reason of analyzing the eigenvalue gap at
an appropriate scale, we suggest to consider the relative eigenvalue gap

δr = λ2 − λ1
λ2

= 1− λ1
λ2
. (4.24)

The relative eigenvalue gap value range is within the interval 0 ≤ δr ≤ 1,
since the eigenvalues are nonnegative real-valued numbers sorted into a
nondecreasing order. The value of this gap may be considered as large
if it is close to the maximum eigengap value, δr = 1.
Example 20: The Laplacian eigenvalues for the graph in Figure 4.7 are
λ ∈ {0, 0.29, 0.34, 0.79, 1.03, 1.31, 1.49, 2.21}, with the relative eigenvalue
gap, δr = (λ2−λ1)/λ2 = 0.15, which is not large and indicates that the
segmentation in Example 19 is not “close”.

As an illustration, consider three hypothetical but practically rele-
vant scenarios: (i) λ2 = 0 and λ3 = 1, (ii) λ2 = 0 and λ3 = ε, (iii) λ2 = 1
and λ3 = 1 + ε, where ε is small positive number and close to 0. Ac-
cording to Remark 18, the graph in case (i) consists of exactly two
disconnected components, and the subsequent clustering and segmenta-
tion is appropriate, with δr = 1. For the case (ii), the graph consists of
more than two almost disconnected components and the clustering in
two sets can be performed in various ways, with δr = 1/ε. Finally, in
the last scenario the relative gap is very small, δr = ε, thus indicating
that the behavior of the segmented graph is not “close” to the original
graph, that is, L̂ is not “close” to L, and thus any segmentation into
two disconnected subgraphs would produce inadequate results.

Remark 28: The thresholding of elements of the Fiedler vector, u1,
of the normalized graph Laplacian, LN = D−1/2LD−1/2, performed in
order to cluster the graph is referred to as the Shi–Malik algorithm (Shi
and Malik, 2000; Weiss, 1999). Note that similar results would have been

4.3. Spectral Clustering Implementation 81

obtained if clustering was based on the thresholding of elements of the
smoothest eigenvector corresponding to the second largest eigenvalue of
the normalized weight matrix, WN = D−1/2WD−1/2 (Perona–Freeman
algorithm (Perona and Freeman, 1998; Weiss, 1999)). This becomes
clear after recalling that the relation between the normalized weight
and graph Laplacian matrices is given by

LN = D−1/2LD−1/2 = I−D−1/2WD−1/2,

LN = I−WN . (4.25)

The eigenvalues of these two matrices are therefore related as λ(LN)
k =

1− λ(WN)
k , while they share the same eigenvectors.

Clustering Based on More Than One Eigenvector

More complex clustering schemes can be achieved when using more
than one Laplacian eigenvector. In turn, vertices with similar values
of several slow-varying eigenvectors, uk, would exhibit high spectral
similarity.

The concept of using more than one eigenvector in vertex
clustering and possible subsequent graph segmentation was first intro-
duced by Scott and Longuet-Higgins (1990). They used k eigenvectors
of the weight matrix W to form a new N × k matrix V, for which
a further row normalization was performed. Vertex clustering is then
performed based on the elements of the matrix VVT .

For the normalized weight matrix, WN , the Scott and Longuet-
Higgins algorithm reduces to the corresponding analysis with k eigen-
vectors of the normalized graph Laplacian, LN . Since WN and LN are
related by (4.25), they thus have the same eigenvectors.
Example 21: Consider two independent ratio cuts of a graph, where
the first cut splits the graph into the sets of vertices E1 and H1, and
the second cut further splits all vertices into the sets E2 and H2, and
define this two-level cut as

CutN2(E1,H1, E2,H2) = CutN(E1,H1) + CutN(E2,H2) (4.26)

where both CutN(Ei,Hi), i = 1, 2, are defined by (28.7).

82 Vertex Clustering and Mapping

If we now introduce two indicator vectors, x1 and x2, for the two
respective cuts, then, from (28.9) we may write

CutN2(E1,H1, E2,H2) = xT1 Lx1
xT1 x1

+ xT2 Lx2
xT2 x2

. (4.27)

As mentioned earlier, finding the indicator vectors, x1 and x2, which
minimize (4.27) is a combinatorial problem. However, if the space of
solutions for the indicator vectors is now relaxed from the subset-wise
constant form to the space spanned by the eigenvectors of the graph
Laplacian, then the approximative minimum value of the two cuts,
CutN2(E1,H1, E2,H2), is obtained for x1 = u1 and x2 = u2, since
u1 and u2 are maximally smooth but not constant (for the proof see
(4.31)–(4.32) and for the illustration see Example 22).

For the case of two independent cuts, for convenience, we may form
the indicator N × 2 matrix Y = [x1,x2], so that the corresponding
matrix of the solution (within the graph Laplacian eigenvectors space)
to the two ratio cuts minimization problem, has the form

Q = [u1,u2].

The rows of this matrix, qn = [u1(n), u2(n)], are the spectral vectors
which are assigned to each vertex, n.

The same reasoning can be followed for the cases of three or
more independent cuts, to obtain an N ×M indicator matrix Y =
[x1,x2, . . . ,xM] with the corresponding eigenvector approximation, Q,
the rows of which are the spectral vectors qn = [u1(n), u2(n), . . . , uM (n)].

Remark 29: Graph clustering in the spectral domain may be performed
by assigning the spectral vector,

qn = [u1(n), . . . , uM (n)]

in (4.9), to each vertex, n, and subsequently by grouping the vertices
with similar spectral vectors into the corresponding clusters (Belkin
and Niyogi, 2003; Ng et al., 2002).

Low dimensional spectral vectors (up toM = 3) can be represented by
color coordinates of, for example, standard RGB coloring system. To this

4.3. Spectral Clustering Implementation 83

f

Figure 4.9: Spectral vertex clustering schemes for the graph from Figure 4.4. (a) The
eigenvector, u1, of the Laplacian matrix (plotted in red lines on vertices designated
by black dots) is first normalized and is then used to designate (b) a two-level blue
colormap intensity (through its signs) for every vertex (blue-white circles). (c) The
eigenvector, u2, of the Laplacian matrix is normalized and is then used to provide
(d) a two-level green colormap intensity for every vertex. (e) The eigenvector, u3, of
the Laplacian matrix is normalized and used as (f) a two-level red colormap intensity
for every vertex. (g) Clustering based on the combination of the eigenvectors u1
and u2. (h) Clustering based on the combination of the eigenvectors u1, u2, and
u3. Observe an increase in degrees of freedom with the number of eigenvectors used;
this is reflected in the number of detected clusters, starting from two clusters in (b)
and (d), via four clusters in (g), to 8 clusters in (h).

84 Vertex Clustering and Mapping

end, it is common to use different vertex colors, which represent different
spectral vectors, for the visualization of spectral domain clustering.
Example 22: Figure 4.9 illustrates several spectral vector clustering
schemes for the graph in Figure 4.4 (right), based on the three smoothest
eigenvectors u1, u2, and u3. Clustering based on the eigenvector u1, with
qn = [u1(n)], is shown in Figure 4.9(b), clustering using the eigenvector
u2 only, with qn = [u2(n)], is shown in Figure 4.9(d), while Figure 4.9(e)
illustrates the clustering based on the eigenvectors u3, when qn = [u3(n)].
Clustering based on the combination of the two smoothest eigenvectors
u1, and u2, with spectral vectors qn = [u1(n), u2(n)], is shown in Figure
4.9(g), while Figure 4.9(h) illustrates clustering based on the three
smoothest eigenvectors, u1, u2, and u3, whereby the spectral vector
qn = [u1(n), u2(n), u3(n)]. In all cases, two-level colormaps were used
for each eigenvector. The smallest eigenvalues were λ0 = 0, λ1 = 0.0286,
λ2 = 0.0358, λ3 = 0.0899, λ4 = 0.104, and λ5 = 0.167, so that the largest
relative gap was obtained when u1 and u2 were used for clustering, with
the corresponding eigenvalue gap of δr = 1− λ2/λ3 = 0.6.

Remark 30: k-means algorithm. The above clustering schemes are
based on the quantized levels of spectral vectors. These can be refined
using the k-means algorithm, that is, through postprocessing in the
form of unsupervised learning and in the following way.

(i) After an initial vertex clustering is performed by grouping the
vertices into Vi, i = 1, 2, . . . , k nonoverlapping vertex subsets, a
new spectral vector centroid, ci, is calculated as

ci = meann∈Vi{qn},

for each cluster of vertices Vi.

(ii) Every vertex, n, is then reassigned to its nearest (most similar)
spectral domain centroid, i, where the spectral distance (spectral
similarity) is calculated as ‖qn − ci‖2.

This two-step algorithm is iterated until no vertex changes clusters.
Finally, all vertices in one cluster are colored based on the corresponding
common spectral vector ci (or visually, a color representing ci).

4.3. Spectral Clustering Implementation 85

Clustering refinement using the k-means algorithm is illustrated
later in Example 29.
Example 23: Graphs represent quite a general mathematical formalism,
and we will here provide only one possible physical interpretation of
graph clustering. Assume that each vertex represents one out of the
set of N images, which exhibit both common elements and individual
differences. If the edge weights are calculated so as to represent mu-
tual similarities between these images, then spectral vertex analysis
can be interpreted as follows. If the set is complete and with very
high similarity among all vertices, then Wmn = 1, and λ0 = 0, λ1 =
N,λ2 = N, . . . , λN−1 = N , as shown in Remark 19. The relative eigen-
value gap is then δr = (λ2 − λ1)/λ2 = 0 and the segmentation is not
possible.

Assume now that the considered set of images consists of two con-
nected subsets with the respective numbers of N1 and N2 ≥ N1 of
very similar photos within each subset. In this case, the graph consists
of two complete components (sub-graphs). According to Remarks 18
and 19, the graph Laplacian eigenvalues are now λ0 = 0, λ1 = 0, λ2 =
N1, . . . , λN1 = N1, λN1+1 = N2, . . . , λN−1 = N2. Then, this graph may
be well segmented into two components (sub-graphs) since the relative
eigenvalue gap is now large, δr = (λ2 − λ1)/λ2 = 1. Therefore, this
case can be used for collaborative data processing within each of these
subsets. The analysis can be continued and further refined for cases with
more than one eigenvector and more than two subsets of vertices. Note
that segmentation represents a “hard-thresholding” operation of cutting
the connections between vertices in different subsets, while clustering
refers to just a grouping of vertices, which exhibit some similarity, into
subsets, while keeping their mutual connections.

Example 24: For enhanced intuition, we next consider a real-world
dataset with eight images, shown in Figure 4.10. The connectivity
weights were calculated using the structural similarity index (SSIM),
with an appropriate threshold (Wang et al., 2003). The so obtained

86 Vertex Clustering and Mapping

0.49

0.33

0.29

0.
31

0.32

0.300.
29

0.37

0.
30

0.31

0.3
1

0.
30

0.29

0.40

0.
48

0.64

Figure 4.10: A graph representation of a set of the real-world images which exhibit
an almost constant background but different head orientation, which moves gradually
from the left profile (bottom left) to the right profile (top right). The images
serve as vertices, while the edges and the corresponding weight matrix are defined
through the squared structural similarity index (SSIM) between images, withWmn =
SSIM2

T (m,n), and hard thresholded at 0.28 to account for the contribution of the
background to the similarity index, that is, SSIMT (m,n) = hard(SSIM(m,n), 0.53).

weight matrix, W, is given by

W =

0
1
2
3
4
5
6
7

0 0.49 0.33 0.29 0.31 0 0 0
0.49 0 0.32 0 0.30 0 0 0.29
0.33 0.32 0 0.37 0.30 0 0 0
0.29 0 0.37 0 0.31 0 0 0
0.31 0.30 0.30 0.31 0 0.31 0.30 0.29

0 0 0 0 0.31 0 0.40 0.48
0 0 0 0 0.30 0.40 0 0.64
0 0.29 0 0 0.29 0.48 0.64 0

0 1 2 3 4 5 6 7

. (4.28)

The standard graph form for this real-world scenario in Figure 4.10 is
shown in Figure 4.11, together with the corresponding image/vertex
indexing. Notice the almost constant background in all eight images

4.3. Spectral Clustering Implementation 87

0

1

2

3

4

5

6

7

Figure 4.11: Graph topology for the real-world images from Figure 4.10.

(the photos were taken in the wild by a “hand-held device”), and
that the only differences between the images are in that the model
gradually moved her head position from the left profile (bottom left) to
the right profile (top right). Therefore, the two frontal face positions,
at vertices n = 4 and n = 0, exhibit higher vertex degrees than the
other head orientations, which exemplifies physical meaningfulness of
graph representations. The normalized spectral vectors for this graph,
qn = [u1(n)]/‖[u1(n)]‖2 and qn = [u1(n), u2(n)]/‖[u1(n), u2(n)]‖2 were
obtained as the generalized eigenvectors of the graph Laplacian, and
were used to define the coloring scheme for the graph clustering in
Figure 4.12. Recall that similar vertex colors indicate spectral similarity
of the images assigned to the corresponding vertices.

The eigenvalues of the graph Laplacian for this example are λk ∈ {0,
0.42, 1.12, 1.63, 1.68, 1.89, 2.31, 2.42}. The largest relative eigenvalue gap
is therefore between the eigenvalues λ1 = 0.42 and λ2 = 1.12, and
indicates that the best clustering will be obtained in a one-dimensional
spectral space (with clusters shown in Figure 4.12(a)). However, the
value of such cut would be large, Cut({0, 1, 2, 3, 4}, {5, 6, 7}) = 1.19,
while the value of the ratio cut,

CutN({0, 1, 2, 3, 4}, {5, 6, 7}) = 0.63 ∼ λ1 = 0.42,

88 Vertex Clustering and Mapping

(a) (b)

Figure 4.12: Graph clustering structure for the images from Figure 4.10. (a) Vertices
are clustered (colored) using the row-normalized spectral Fiedler eigenvector to give
the spectral vector u1, qn = [u1(n)]/‖[u1(n)]‖2. (b) Clustering scheme whereby
spectral values of vertices are calculated using the two smoothest eigenvectors,
qn = [u1(n), u2(n)], which are then employed to designate the colormap for the
vertices. Recall that the so obtained similar vertex colors indicate spectral similarity
of the images from Figure 4.10.

indicates that the connections between these two clusters are too sig-
nificant for a segmented graph to produce a “close” approximation of
the original graph with only two components (disconnected subgraphs).
Given the gradual change in head orientation, this again conforms
with physical intuition, and the subsequent clustering based on two
smoothest eigenvectors, u1 and u2, yields three meaningful clusters
of vertices corresponding to the “left head orientation” (red), “frontal
head orientation” (two shades of pink), and “right head orientation”
(yellow).

Example 25: Minnesota roadmap graph. Three eigenvectors of
the graph Laplacian matrix, u2, u3, and u4, were used as the coloring
templates to represent the spectral similarity and clustering in the
benchmark Minnesota roadmap graph, shown in Figure 4.13. The eigen-
vectors u0 and u1 were omitted, since their corresponding eigenvalues
are λ0 = λ1 = 0 (due to an isolated vertex in the graph data which
behaves as a graph component, see Remark 18). The full (nonquantized)
colormap scale was used to color the vertices (that is, represent three-
dimensional spectral vectors). As elaborated above, regions where the
vertices visually assume similar colors are also spectrally similar, and
with similar behavior of the corresponding slow-varying eigenvectors.

4.3. Spectral Clustering Implementation 89

Figure 4.13: Vertex coloring in the benchmark Minnesota road-map graph using the
three smoothest Laplacian eigenvectors {u2,u3,u4}, as coordinates in the standard
RGB coloring system (a three-dimensional spectral space with the spectral vector
qn = [u2(n), u3(n), u4(n)] for every vertex, n). The vertices with similar colors are
therefore also considered spectrally similar. Observe three different clusters, charac-
terized by the shades of predominantly red, green, and blue color, that correspond
to intensities defined by the eigenvectors u2(n), u3(n), and u4(n).

Example 26: Brain connectivity graph. Figure 4.14 shows the
benchmark Brain Atlas connectivity graph (Mijalkov et al., 2017,
Rubinov and Sporns, 2010), for which the data is given in two matrices:
“Coactivation matrix”, Ŵ, and “Coordinate matrix”. The “Coordinate
matrix” contains the vertex coordinates in a three-dimensional Eu-
clidean space, whereby the coordinate of a vertex n is defined by the
n-th row of the “Coordinate matrix”, that is, [xn, yn, zn].

In our analysis, the graph weight matrix, W, was empirically
formed by:

(i) thresholding the “Coactivation matrix”, Ŵ, to preserve only the
strongest connections within this brain atlas, for example, those
greater than 0.1 max{Ŵmn}, as recommended in Rubinov and
Sporns (2010);

(ii) only the edges between the vertices m and n, whose Euclidean
distance satisfies dmn ≤ 20 are kept in the graph representation.

90 Vertex Clustering and Mapping

Figure 4.14: Brain atlas (top) and its graph (bottom), with vertex coloring based
on the three smoothest generalized eigenvectors, u1, u2, and u3, of graph Laplacian.
The spectral vector, qn = [u1(n), u2(n), u3(n)] is employed as the coordinates in the
RGB coloring scheme (Mijalkov et al., 2017; Rubinov and Sporns, 2010).

4.4. Vertex Dimensionality Reduction Using the Laplacian 91

The elements, Wmn, of the brain graph weight matrix, W, are
therefore obtained from the corresponding elements, Ŵmn, of the “Coac-
tivation matrix” as

Wmn =

Ŵmn, if Ŵmn > 0.1 max{Ŵmn} and dmn ≤ 20
0, elsewhere.

(4.29)

The brain connectivity graph with the so defined weight matrix, W,
is shown in Figure 4.14(bottom).

The three smoothest generalized eigenvectors, u1, u2 and u3, of the
corresponding graph Laplacian matrix, L = D−W, were next used to
define the spectral vectors

qn = [u1(n), u2(n), u3(n)]

for each vertex, n = 0, 1, . . . , N − 1. The elements of this spectral
vector, qn, were then used to designate the corresponding RGB coordi-
nates for the coloring of the vertices of the brain graph, as shown in
Figure 4.14.

4.4 Vertex Dimensionality Reduction Using the
Laplacian Eigenmaps

We have seen that graph clustering can be used for collaborative pro-
cessing on the set of data which is represented by the vertices within a
cluster. In general, any form of the presentation of a graph and its corre-
sponding vertices, that employs the eigenvectors of the graph Laplacian
may be considered as a Laplacian eigenmap. The idea which underpins
eigenmap-based approaches presented here is to employ spectral vec-
tors, qn, to define the new positions of the original vertices in such
a “transform-domain” space so that spectrally similar vertices appear
spatially closer than in the original vertex space.
Remark 31: The Laplacian eigenmaps may be employed for vertex
dimensionality reduction, while at the same time preserving the local
properties and natural connections within the original graph (Belkin
and Niyogi, 2003).

Consider a vertex n, n = 0, 1, . . . , N − 1, which resides in an
L-dimensional space RL, at the position defined by the L-dimensional

92 Vertex Clustering and Mapping

vector rn. A spectral vector for vertex n is then defined in a new lower-
dimensional (M -dimensional) space, with M < N , by keeping the M
smoothest eigenvectors of graph Laplacian, u0,u1, . . . ,uM . Upon omit-
ting the constant eigenvector, u0, this gives the new basis designated
by the spectral vector

qn = [u1(n), . . . , uM (n)]. (4.30)

Since M < L, this provides the desired dimensionality reduction of the
vertex space. The concepts of spectral vector-based vertex dimensionality
reduction, and physical meaning associated with the spectral vector
space representation are illustrated in the next example.
Example 27: Vertex dimensionality reduction. Consider a set of
N = 70 students and their marks in 40 lecture courses. Every student
can be considered as a vertex located in the original L = 40 dimensional
space at the position rn, where rn(k) is a mark for the n-th student
at k-th course. Assume that the marks are within the set {2, 3, 4, 5}
and that some students have affinity to certain subsets of courses
(for example, social sciences, natural sciences and skills). This set-up
can be represented in a tabular (70× 40) compact matrix form as in
Figure 4.15(a), where the columns contain the marks for every student
(the marks are color coded).

The average marks per student and per course are shown in
Figures 4.15(b) and (c). Observe the limitations of this representa-
tion, as for example, the average marks cannot be used to determine
student affinities to the subsets of their courses.

We can now create a graph representation by connecting with edges
students with similar marks. In our example, the edge weights were
determined through a distance in the 40-dimensional feature (marks)
space, as

Wmn =

e−‖rm−rn‖22/70, for ‖rm − rn‖2 ≥ 7
0, otherwise.

With the so obtained connectivity, this graph is presented in
Figure 4.15(d), whereby the vertices (students) are randomly posi-
tioned in a plane and connected with edges. We shall now calculate the

4.4. Vertex Dimensionality Reduction Using the Laplacian 93

10 20 30 40 50 60 70

student (vertex)

5

10

15

20

25

30

35

40

co
ur

se
 in

de
x

2

3

4

5

0 10 20 30 40 50 60 70
2

3

4

5

0 5 10 15 20 25 30 35 40
2

3

4

5

 1

 11

 54

 4

 43

 60

 35 42

 51

 1
 4

-0.2

0.2

0

0.2

 35

0.1

0

 42

 54

0.150.1

 11

-0.1 0.05

 43

0

 51

-0.05-0.1-0.15-0.2

 60

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 1

 11

 54

 4

 43

 60

 35

 42 51

111 54 4 4360 3542 51

 1

 11

 54

 4

 43

 60

 35

 42 51

Figure 4.15: Illustration of spectral dimensionality reduction through an example of
exam marks for a cohort of students. (a) Each of the 70 columns (students) represents
a 40-dimensional vector with student marks. Therefore the dimensionality of the
original representation space is L = 40. (b) Average mark per student. (c) Average
mark per course. (d) Two-dimensional graph representation of the matrix in (a),
where the individual students are represented by randomly positioned vertices in
the plane. To perform vertex (student) dimensionality reduction we can use spectral
vectors to reduce their original L = 40 dimensional representation space to (e)M = 3,
(f) M = 2, and (g) M = 1 dimensional spectral representation spaces. (h) Vertices
from path graph (g) positioned on a circle (by connecting the ends of the line) which
allows us to also show the edges.

94 Vertex Clustering and Mapping

normalized Laplacian eigenvectors and remap the vertices according to
the three-dimensional, two-dimensional and one-dimensional spectral
vectors, qn, defined by (4.30) that is, for M = 3, M = 2, and M = 1. In
this way, the vertex dimensionality is reduced from the original L = 40
to a much lower M � L. The corresponding graph representations are
respectively shown in Figures 4.15(e)–(g). ForM = 2 andM = 3 we can
now clearly divide students into the three affinity groups (designated
by the red, blue, and black). Although the obtained groups (clusters)
are logically ordered even in the one-dimensional case in Figure 4.15(g),
observe that we cannot use M = 1 for precise grouping since there is
no enough gap between the groups. However, even in this case, if we
re-cast the vertices on a circle instead on a line (by connecting two
ends of a line), and draw the connecting edges (the same edges as in
Figures 4.15(d)–(f)) we can see the benefit of a graph representation
even after such a radical dimensionality reduction.

The dimensionality reduction principle can also be demonstrated
based on Example 24, whereby each vertex is a 640× 480 RGB color
image which can be represented as a vector in the L = 640× 480× 3 =
921600 dimensional space. Indeed, using spectral vectors with M = 2,
this graph can be presented in a two-dimensional space as in Figure 4.10.

Within the Laplacian eigenmaps method, we may use any of the
three forms of graph Laplacian eigenvectors introduced in Section 4.2.3.
The relations among these three presentations are explained in Sec-
tion 4.2.3 and Table 4.1. A unified algorithm for all three variants of
the Laplacian eigenmaps, and the corresponding clustering methods, is
given in Algorithm 9 in the appendix.
Remark 32: The Laplacian eigenmaps are optimal in the sense that
they minimize an objective function which penalizes for the distance
between the neighboring vertices in the spectral space. This ensures that
if the vertices at the positions rm and rn in the original high-dimensional
L-dimensional space are “close” in the sense of some data association
metric, then they will also be close in the Euclidean sense in the reduced
M -dimensional spectral space, where their positions are defined by the
corresponding spectral vectors, qm and qn.

4.4. Vertex Dimensionality Reduction Using the Laplacian 95

4.4.1 Euclidean Distances in the Space of Spectral Vectors

We shall prove the “distance preserving” property of the above spectral
mapping in an inductive way. Assume that a graph is connected, i.e.,
λ1 6= 0. The derivation is based on the quadratic form in (4.8)

uTkLuk = 1
2

N−1∑
m=0

N−1∑
n=0

(uk(m)− uk(n))2Wmn

which states that uTkLuk is equal to the weighted sum of squared Eu-
clidean distances between the elements of the m-th and n-th eigenvector
at vertices m and n, for all m and n. Recall that uTkLuk is also equal
to λk, by definition (see the elaboration after (4.6)).

Single-dimensional case. To reduce the original L-dimensional ver-
tex space to a single-dimensional path graph with vertex coordinates
qn = uk(n), the minimum sum of the weighted squared distances
between the vertices m and n, that is

1
2

N−1∑
m=0

N−1∑
n=0
‖q(m)− q(n)‖22Wmn

= 1
2

N−1∑
m=0

N−1∑
n=0

(uk(m)− uk(n))2Wmn = λk

will be obtained with the new positions of vertices, designated by
qn = [u1(n)], and for k = 1, since mink,λk 6=0{λk} = λ1 is the smallest
nonzero eigenvalue.

Two-dimensional case. If we desire to reduce the original L-dimensi-
onal vertex representation space to a two-dimensional spectral space,
designated by qn = [uk(n), ul(n)] and defined through any two eigen-
vectors of the graph Laplacian, uk and ul, then the minimum sum of
the weighted squared distances between all vertices, m and n, given by

1
2

N−1∑
m=0

N−1∑
n=0
‖qm − qn‖22Wmn

= 1
2

N−1∑
m=0

N−1∑
n=0

(uk(m)− uk(n))2Wmn

96 Vertex Clustering and Mapping

+ 1
2

N−1∑
m=0

N−1∑
n=0

(ul(m)− ul(n))2Wmn

= uTkLuk + uTl Lul = λk + λl (4.31)

will be obtained with the new spectral positions, qn = [uk(n), ul(n)],
such that qn = [u1(n), u2(n)], since

min
k,l,k 6=l,kl 6=0

{λk + λl} = λ1 + λ2 (4.32)

for nonzero k and l, and keeping in mind that λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤
λN−1. The same reasoning holds for new three- and higher-dimensional
spectral representation spaces for the vertices, which yields (4.30) as the
optimal vertex positions in the reduced M -dimensional vertex space.

The same relations hold for both the generalized eigenvectors of
the Laplacian, defined by Luk = λkDuk, and the eigenvectors of the
normalized Laplacian, defined by D−1/2LD−1/2vk = λkvk. The only dif-
ference is in their respective normalization conditions, uTk Duk and vTk vk.
The relation between the eigenvectors of the normalized graph Lapla-
cian, vk, and the generalized eigenvectors of the graph Laplacian, uk,
in the form uk = D−1/2vk, follows from their definitions (see Re-
mark 27). Since the elements u1(n) and u2(n) are obtained by multi-
plying the elements v1(n) and v2(n) by the same value, 1/Dnn, that is,
[u1(n), u2(n)] = [v1(n), v2(n)]/Dnn, their normalized forms of uk and
vk are identical,

qn
‖qn‖2

= [u1(n), u2(n)]
‖[u1(n), u2(n)]‖2

= [v1(n), v2(n)]
‖[v1(n), v2(n)]‖2

.

4.4.2 Examples of Graph Analysis in the Spectral Space

Example 28: The graph from Figure 2.2, where the vertices re-
side in a two-dimensional plane, is shown in Figure 4.16(a), while
Figure 4.16(b) illustrates the same graph but represented in a reduced
single-dimensional vertex space (a line). The vertex positions on the
line are defined by the spectral vector, qn = [u1(n)], with u1 = [0.42,
0.38, 0.35, 0.15,−0.088,−0.34,−0.35,−0.54]T .

4.4. Vertex Dimensionality Reduction Using the Laplacian 97

0 1

2

3

4

56
7

0.23

0.74
0.
24 0.35 0

.2
3

0.26 0.24

0
.3
2

0.510.1
4

0.150.32

(a)

01234567

(b)

Figure 4.16: Principle of vertex dimensionality reduction based on the spectral
vectors. (a) The weighted graph from Figure 2.2 with its vertices in a two-dimensional
space. (b) The graph from (a) with its vertices located along a line (one-dimensional
vertex space), whereby the positions on the line are defined by the one-dimensional
spectral vector, qn = [u1(n)], with u1 = [0.42, 0.38, 0.35, 0.15,−0.088,−0.34,−0.35,
−0.54]T . Observe that this dimensionality reduction method may be used for clus-
tering, based on the vertex position on the line.

Remark 33: After the vertices are reordered according to the Fiedler
eigenvector, u1, Example 28 indicates the possibility of clustering re-
finement through a recalculation of ratio cuts. For the set of vertices
V = {0, 1, 2, . . . , N −1}, Figure 4.16(b) illustrates their ordering along a
line, with the new order {v1, v2, . . . , vN} = {7, 6, 5, 4, 3, 2, 1, 0}. Instead
of using the sign of u1 to cluster the vertices, we can recalculate the
ratio cuts, CutN(Ep,Hp), with this sequential vertex order, where Ep =
{v1, v2, . . . , vp} and Hp = {vp+1, vp+2, . . . , vN}, for p = 1, 2, . . . , N − 1.
The estimation of the minimum ratio cut then becomes

(Ep,Hp) = arg min
p
{CutN(Ep,Hp)}.

98 Vertex Clustering and Mapping

This approximation of the Cheeger’s cut can also be written using the
thresholding of the eigenvector u1, by a threshold t, as

φ∗(V) = min
t

{ 1
min{NEt , NV−Et}

∑
m∈Et
n∈V−Et

Wmn

}
, (4.33)

where the vertex n belongs to Et if u1(n) > t.
This method is computationally efficient since only (N − 1) cuts,

CutN(Ep,Hp), need to be calculated. In addition, the cuts CutN(Ep,Hp)
can be calculated recursively, using the previous CutN(Ep−1,Hp−1) and
the connectivity parameters (degree, Dpp, and weights,Wpm) of vertex p.
Any normalized cut form presented in Section 4.1 can also be used
instead of CutN(Ep,Hp). When the Cheeger ratio, defined in (4.5), is
used in this minimization, then an upper bound on the cut can be
obtained as Trevisan (2013)

min
p
{φ(Ep)} ≤

√
2λ1 ≤ 2

√
φ(V), (4.34)

where φ(V) denotes the combinatorial (true) minimum cut, with bounds
given in (4.18).
Example 29: We shall now revisit the graph in Figure 4.9 and exam-
ine the clustering schemes based on: (i) standard Laplacian
eigenvectors (Figure 4.17), (ii) generalized eigenvectors of graph Lapla-
cian (Figure 4.18), and (iii) eigenvectors of the normalized Laplacian
(Figure 4.19). Figure 4.17(b) illustrates Laplacian eigenmaps based
dimensionality reduction for the graph from Figure 4.9(g), with the two
eigenvectors, u1 and u2, serving as new vertex coordinates, and using
the same vertex coloring scheme as in Figure 4.9(g). While both the
original and the new vertex space are two-dimensional, we can clearly
see that in the new vertex space the vertices belonging to the same
clusters are also spatially closer, which is both physically meaningful
and exemplifies the practical value of the eigenmaps. Figure 4.17(c)
is similar to Figure 4.17(b) but is presented using the normalized
spectral space coordinates, qn = [u1(n), u2(n)]/‖[u1(n), u2(n)]‖2. In
Figure 4.17(d) the clusters are refined using the k-means algorithm, as
per Remark 30. The same representations are repeated and shown in

4.4. Vertex Dimensionality Reduction Using the Laplacian 99

(a) (b)

(c) (d)

Figure 4.17: Principle of Laplacian eigenmaps and clustering based on the eigenvec-
tors of the graph Laplacian, L. (a) The original graph from Figure 4.9, with the spec-
tral vector qn = [u1(n), u2(n)], defined by the graph Laplacian eigenvectors {u1,u2},
which is used to cluster (color) the vertices. (b) Two-dimensional vertex positions
obtained through Laplacian eigenmaps, with the spectral vector qn = [u1(n), u2(n)]
serving as the vertex coordinates (the 2D Laplacian eigenmap). While both the
original and this new vertex space are two-dimensional, the new eigenmaps-based
space is advantageous in that it emphasizes vertex spectral similarity in a spatial way
(physical closeness of spectrally similar vertices). (c) The graph from (b) but produced
using normalized spectral space coordinates qn = [u1(n), u2(n)]/‖[u1(n), u2(n)]‖2, as
in (4.22). (d) The graph from (c) with clusters refined using the k-means algorithm,
as per Remark 30. The centroids of clusters are designated by squares of the same
color. The complexity of graph presentation is also significantly reduced through
eigenmaps, with most of the edges between strongly connected vertices being very
short and located along a circle.

100 Vertex Clustering and Mapping

(a) (b)

(c) (d)

Figure 4.18: Principle of Laplacian eigenmaps and clustering based on the general-
ized eigenvectors of the graph Laplacian, obtained as a solution to Luk = λkDuk.
Vertex coloring was produced using the same procedure as in Figure 4.17.

Figures 4.18(a)–(d) for the representation based on the generalized eigen-
vectors of the graph Laplacian, obtained as a solution to Luk = λkDuk.
Finally, in Figures 4.19(a)–(d), the Laplacian eigenmaps and cluster-
ing are produced based on the eigenvectors of the normalized graph
Laplacian, LN = D−1/2LD−1/2. As expected, the eigenmaps obtained
using the generalized Laplacian eigenvectors, in Figure 4.19(b), and
the eigenvectors of the normalized Laplacian, in Figure 4.18(b), are
different; however, they reduce to the same eigenmaps after spectral

4.4. Vertex Dimensionality Reduction Using the Laplacian 101

(a) (b)

(c) (d)

Figure 4.19: Principle of Laplacian eigenmaps and clustering based on the eigen-
vectors of the normalized graph Laplacian, LN = D−1/2LD−1/2. Vertex coloring was
performed using the same procedure as in Figure 4.17. The eigenvectors of the nor-
malized graph Laplacian, vk, are related to the generalized eigenvectors of the graph
Laplacian, uk, through uk = D−1/2vk, as stated in Remark 27. This means that the
signs of these two eigenvectors are the same, sign(uk) = sign(vk). Since in order to ob-
tain u1(n) and u2(n), the elements v1(n) and v2(n) are multiplied by the same value,
1/Dnn, then [u1(n), u2(n)]/‖[u1(n), u2(n)]‖2 = [v1(n), v2(n)]/‖[v1(n), v2(n)]‖2, thus
yielding the same graph forms in (c) and (d) in both this figure and in Figure 4.18.

vector normalization, as shown Figure 4.19(c) and Figure 4.18(c). Af-
ter the k-means based clustering refinement was applied, in all three
cases two vertices switched their initial color (cluster), as shown in
Figures 4.17(d), 4.18(d), and 4.19(d).

102 Vertex Clustering and Mapping

Observe that the eigenmaps obtained with the normalized forms of
the generalized eigenvectors of the Laplacian and the eigenvectors of
the normalized Laplacian are the same, and in this case their clustering
performances are similar to those based on the eigenmaps produced
with the eigenvectors of the original Laplacian.

Remark 34: In general, an independent quantization of two smoothest
eigenvectors of the graph Laplacian, u1 and u2, will produce four
clusters. However, that will not be the case if we analyze the graph
with an almost ideal eigenvalue gap (unit value) between λ2 and λ3.
In other words, when the gap δr = 1 − λ2/λ3 tends to 1, that is,
λ2 → 0 and λ1 < λ2 → 0, then this case corresponds to a graph with
exactly three disjoint subgraph components, with vertices belonging
to the disjoint sets E , H, and K. Without loss of generality, assume
NE > NH > NK. The minimum ratio cut, CutN(E ,H ∪ K) is then
obtained with the first indicator vector x1(n) = c11 for n ∈ E and
x1(n) = c12 for n ∈ H ∪ K. The second indicator vector will produce
the next minimum ratio cut, CutN(E ∪ K,H) with x2(n) = c21 for
n ∈ E ∪ K and x2(n) = c22 for n ∈ H. Following the same analysis
as in the case of one indicator vector and the cut of graph into two
disjoint subsets of vertices, we can immediately conclude that the two
smoothest eigenvectors, u1 and u2, which correspond to λ2 → 0 and
λ1 → 0, can be used to form an indicator matrix Y = [x1,x2], so that
the corresponding matrix of the solution (within the graph Laplacian
eigenvector space) to the minimization problem of two ratio cuts, has
the form [sign(u1), sign(u2)]. The elements of these indicator vectors,
[sign(u1(n)), sign(u2(n))], have therefore a subset-wise constant vector
form, assuming exactly three different vector values that correspond to
individual disjoint sets E , H, and K.

This procedure can be generalized up to every individual vertex
becoming a cluster (no clustering). To characterize N independent
disjoint sets we will need (N − 1) spectral vectors, if the constant
eigenvector, u0, is omitted.
Example 30: The two-dimensional Laplacian eigenmap for the bench-
mark Minnesota roadmap graph (with M = 2) is given in Figure 4.20.
In this new space, the spectral vectors qn = [u2(n), u3(n)], are used as

4.4. Vertex Dimensionality Reduction Using the Laplacian 103

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 4.20: Laplacian eigenmaps for the Minnesota road-map graph, produced
based on the new two-dimensional spectral vertex positions defined by the Laplacian
eigenvectors {u2,u3} as the vertex coordinates (the 2D Laplacian eigenmap).

the coordinates of the new vertex positions. Here, two vertices with
similar slow-varying eigenvectors are located close to one another in
the new coordinate system defined by u2 and u3. This illustrates that
the eigenmaps can be considered as a basis for “scale-wise” graph
representation.

Example 31: The Laplacian eigenmaps of the Brain Atlas graph
from Figure 4.14, whose original vertex locations reside in an L = 3
dimensional space, is presented in a new reduced M = 2 dimensional
space which is defined based on the two smoothest eigenvectors, u1

104 Vertex Clustering and Mapping

and u2. This example of vertex dimensionality reduction, with new
vertex locations but with the original edges kept, is shown in Figure 4.21.

The generalized eigenvectors of the graph Laplacian, uk, for k =
1, 2, 3, 4, 5, 6, are shown in Figure 4.22(a) using the standard colormap
in both the original three-dimensional and the reduced two-dimensional
space, as shown in Figure 4.22(b).
Example 32: Vertices of a three-dimensional Swiss roll graph are
shown in Figure 4.24(a). The vertex locations in this original L = 3
dimensional space are calculated as xn = αn cos(αn)/(4π), yn = βn,
and zn = αn sin(αn)/(4π), n = 0, 1, 2, . . . , N − 1, with αn randomly
taking values between π and 4π, and βn from −1.5 to 1.5. The edge
weights are calculated usingWmn = exp(−d2

mn/(2κ2)), where dmn is the
square Euclidean distance between the vertices m and n, and Wmn = 0
if dmn ≥ 0.15 with κ = 0.1. The resulting three-dimensional Swiss
roll graph is shown in Figure 4.24(b), while Figure 4.24(c) shows the
same graph but with vertices colored (clustered) using the normalized
graph Laplacian eigenvectors, u1(n) and u2(n), as a colormap. The
same vectors are then used in Figure 4.24(d) as the new coordinates in
the reduced two-dimensional Laplacian eigenmap vertex space (M = 2)
for the Swiss roll graph.

4.5 Pseudo-Inverse of Graph Laplacian-Based Mappings

The graph Laplacian is a singular matrix (since λ0 = 0) for which an
inverse does not exist. To deal with this issue, the pseudo-inverse of the
graph Laplacian, L+, is defined as a matrix that satisfies the property

LL+ =
[
0 01×(N−1)
0(N−1)×1 I(N−1)×(N−1)

]
, (4.35)

where we assumed that the graph is connected. The eigenvalues of the
graph Laplacian pseudo-inverse are therefore the inverses of the original
eigenvalues, {0, 1/λ1, . . . , 1/λN−1}, while it shares the same eigenvectors
with the original graph Laplacian, u0, u1, . . . , uN−1. The eigenmaps
for which the spectral coordinates are scaled based on the eigenvalues
of the pseudo-inverse of graph Laplacian can be interpreted within the
Principal Component Analysis (PCA) framework in the following way.

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 105

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a)

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.21: Brain atlas representation based on normalized spectral vectors.
(a) A two-dimensional Laplacian eigenmap based on the generalized Laplacian
eigenvectors. The original L = 3 dimensional graph from Figure 4.14 is reduced to
a two-dimensional representation based on the two smoothest eigenvectors, u1(n)
and u2(n), which both serve as spectral coordinates and define color templates
in the colormap, as in Figure 4.14. (b) Eigenmaps from (a) but in the space of
normalized spectral space coordinates, qn = [u2(n), u3(n)]/‖[u2(n), u3(n)]‖2, with
the complexity of graph representation now significantly reduced. Observe that most
edges only exists between strongly connected vertices located along the circle.

106 Vertex Clustering and Mapping

Figure 4.22: Generalized eigenvectors, uk, k = 1, 2, 3, 4, 5, 6, of the graph Laplacian
of the Brain Atlas graph, shown using vertex coloring in the original three-dimensional
vertex space. Each panel visualizes a different uk, k = 1, 2, 3, 4, 5, 6.

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 107

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 1

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 2

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 3

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 4

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 5

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 6

Figure 4.23: Laplacian eigenmaps of the Brain Atlas graph in the reduced two-
dimensional space defined by the two smoothest generalized eigenvectors of the graph
Laplacian, u1 and u2. The panels each visualize a different generalized eigenvector,
uk, k = 1, 2, 3, 4, 5, 6.

108 Vertex Clustering and Mapping

-1

-0.5

0

0.5

1

1
0 10.50-0.5-1 -1 (a)

-1

-0.5

0

0.5

1

1
0 10.50-0.5-1 -1 (b)

(c) (d)

(e) (f)

-0.1 -0.05 0 0.05
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-1

-0.5

0

0.5

1

1
0 10.50-0.5-1 -1

-0.1 -0.05 0 0.05
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-1

-0.5

0

0.5

1

1
0 10.50-0.5-1 -1

Figure 4.24: Laplacian eigenmaps based dimensionality reduction for the Swiss
roll graph. (a) Vertex locations for the Swiss roll graph in the original L = 3
dimensional space with N = 500 points (vertices). (b) The Swiss roll graph with
edges whose weights are calculated based on the Euclidean distances between vertices.
(c) The Swiss roll graph with vertices colored using the normalized graph Laplacian
eigenvectors, u1(n) and u2(n), as a colormap. (d) The same vectors are used as the
new coordinates (spectral vectors) in a reduced two-dimensional Laplacian eigenmap
vertex space (M = 2). The vertices with high similarity (similar values of the
smoothest eigenvectors) are located close to one another, thus visually indicating the
expected similarity of data observed at these vertices. (e) Clustering of the Swiss roll
graph, in the original L = 3 dimensional space, using the two smoothest eigenvectors,
u1(n) and u2(n). (f) Clustering of the Swiss roll graph using the two smoothest
eigenvectors, u1(n) and u2(n), presented in the M = 2 eigenmap space, where for
every vertex its spatial position (quadrant of the coordinate system) indicates the
cluster where it belongs.

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 109

Notice that the M -dimensional eigenmaps based on the pseudo-
inverse of the Laplacian are the same as those for the original graph
Laplacian, since they share the same eigenvectors. If the spectral vectors
qn = [u1(n), u2(n), . . . , uM (n)] are scaled with the square roots of the
eigenvalues of the Laplacian pseudo-inverse, we obtain

qn =
[
u1(n)√
λ1

,
u2(n)√
λ2

, . . . ,
uM (n)√
λM

]
.

The elements of this spectral vector are now equal to the first M
elements (omitting 0 · u0(n)) of the full-dimension spectral vector

qn = [u1(n), u2(n), . . . , uN−1(n)]Λ̄−1/2, (4.36)

where Λ̄ is a diagonal matrix with elements λ1, λ2, . . . , λN−1.

4.5.1 Commute Time Mapping

Physical meaning of the new vector positions in the spectral space,
defined by (4.36), is related to the notion of commute time, which is
a property of a diffusion process on a graph (Horaud, 2009; Qiu and
Hancock, 2007). The commute time, CT (m,n) between vertices m and
n is defined as the expected time for the random walk to reach vertex
n starting from vertex m, and then to return. The commute time is
therefore proportional to the Euclidean distance between these two
vertices, with the vertex positions in the new spectral space defined by
qn in (4.36), that is

CT (m,n) = VV‖qm − qn‖22 = VV

N−1∑
i=1

(qi(m)− qi(n))2, (4.37)

where VV is the volume of the whole graph, VV = ∑N−1
n=0 Dnn.

To put this into perspective, in a graph representation of a resistive
electric circuit/network, for which the edge weights are equal to the
conductances (inverse resistances, see Part III), the commute time,
CT(m,n), is defined as the equivalent resistance between the electric
circuit nodes (vertices) m and n (Chandra et al., 1996).

110 Vertex Clustering and Mapping

The covariance matrix of the scaled spectral vectors in (4.36) is
given by

S = 1
N

N−1∑
n=0

qTnqn = 1
N

Λ̄−1.

In other words, the principal directions in the reduced dimensionality
space of M eigenvectors, u1,u2, . . . ,uM , correspond to the maximum
variance of the graph embedding, since 1/λ1 > 1/λ2 > · · · > 1/λM .
This, in turn, directly corresponds to principal component analysis
(PCA).
Remark 35: Two-dimensional case comparison. The two-dimen-
sional spectral space of the standard graph Laplacian eigenvectors is
defined by u1 and u2, while the spectral vector in this space is given by

qn = [u1(n), u2(n)]. (4.38)

In the case of commute time mapping, the two-dimensional spectral
domain of the vertices becomes

qn =
[
u1(n)√
λ1

,
u2(n)√
λ2

]
, (4.39)

that is, the commute time mapping is related to the graph Laplacian
mapping through axis scaling by 1/

√
λk.

We can conclude that when λ1 ≈ λ2, the two mappings in (4.38)
and (4.39) are almost the same, when normalized.

However, when λ1 � λ2, the relative eigenvalue gap between the
one dimensional and two-dimensional spectral space is large, since
δr = 1− λ1/λ2 is close to 1. This means that the segmentation into two
disjoint subgraphs will be “close” to the original graph, while at the
same time this also indicates that the eigenvector u2 does not contribute
to a new “closer” segmentation (in the sense of Section 4.3.2), since its
gap δr = 1−λ2/λ3 is not small. Therefore, the influence of u2 should be
reduced, as compared to the standard spectral vector of graph Laplacian
where both u1 and u2 employ unit weights to give qn = [u1(n), u2(n)].
Such downscaling of the influence of the almost irrelevant eigenvector,
u2, when λ1 � λ2, is equivalent to the commute time mapping, since
qn = [u1(n)√

λ1
, u2(n)√

λ2
] = 1√

λ1
[u1(n), u2(n)

√
λ1
λ2

] ∼ [u1(n), 0].

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 111

For example, for the graph from Example 29, shown in Figure 4.17(a),
the commute time mapping will produce the same vertex presentation
as in Figure 4.17(b), which is obtained with the eigenvectors of the
graph Laplacian, when the vertical axis, u2, is scaled by√

λ1
λ2

=
√

0.0286
0.0358 = 0.8932.

This eigenmap will also be very close to the eigenmap in Figure 4.17(b),
produced based on the graph Laplacian eigenvectors and the spectral
vector qn = [u1(n), u2(n)].

4.5.2 Diffusion (Random Walk) Mapping

Finally, we shall now relate the commute time mapping to the diffusion
mapping.
Definition: Diffusion on a graph deals with the problem of propagation
along the edges of a graph, whereby at the initial step, t = 0, the
random walk starts at a vertex n. At the next step t = 1, the walker
moves from its current vertex n to one of its neighbors l, chosen at
random from the neighbors of n. The probability of going from vertex
n to vertex l is equal to the ratio of the weight Wnl and the sum of all
possible edge weights from the vertex n, that is

Pnl = Wnl∑
lWnl

= 1
Dnn

Wnl. (4.40)

When considering all vertices together, such probabilities can be written
in a matrix form, within the weight of a random walk matrix, defined
as in (2.10), by

P = D−1W. (4.41)

Diffusion distance. The Diffusion distance between the vertices m
and n, denoted by Df (m,n), is equal to the distance between the vector
(N -dimensional ordered set) of probabilities for a random walk to move
from a vertex m to all other vertices (as in (4.40)), given by

pm = [Pm0, Pm1, . . . , Pm(N−1)]

112 Vertex Clustering and Mapping

and the corresponding vector of probabilities for a random walk to move
from a vertex n to all other vertices, given by

pn = [Pn0, Pn1, . . . , Pn(N−1)],

that is

D2
f (m,n) = ‖(pm − pn)D−1/2‖22VV

=
N−1∑
i=0

(Pmi − Pni)2 1
Dii

VV

where VV = ∑N−1
n=0 Dnn is constant for a given graph, which is equal to

the sum of degrees (volume) of all graph vertices in V.
Example 33: For the graph from Figure 2.2, with its weight matrix, W,
and the degree matrix, D, given respectively in (2.4) and (2.6), the
random walk weight matrix in (4.41) is of the form

P =

p0

p1

p2

p3

p4

p5

p6

p7

0 0.19 0.61 0.20 0 0 0 0
0.28 0 0.43 0 0.28 0 0 0
0.47 0.22 0 0.16 0.15 0 0 0
0.29 0 0.32 0 0 0 0.39 0

0 0.21 0.21 0 0 0.46 0 0.12
0 0 0 0 0.77 0 0 0.23
0 0 0 0.50 0 0 0 0.50
0 0 0 0 0.23 0.25 0.52 0

0 1 2 3 4 5 6 7

(4.42)

with VV = 7.46.
Therefore, the diffusion distance between, for example, the vertices

m = 1 and n = 3, for the t = 1 step, is

Df (1, 3) = ‖(p1 − p3)D−1/2‖2
√
VV = 1.54,

while the diffusion distance between the vertices m = 6 and n = 3 is
Df (6, 3) = 2.85. From this simple example, we can see that the diffusion
distance is larger for vertices m = 6 and n = 3 than for the neighboring
vertices m = 1 and n = 3. This result is in a perfect accordance with
the clustering scheme (expected similarity) in Figure 4.7(b), where the
vertices m = 1 and n = 3 are grouped into the same cluster, while the
vertices m = 6 and n = 3 belong to different clusters.

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 113

The probability vectors, pn, are called the diffusion clouds (in this
case for step t = 1), since they resemble a cloud around a vertex n. The
diffusion distance can then be considered as a distance between the dif-
fusion clouds (sets of data) around a vertex m and a vertex n. If the
vertices are well connected (approaching a complete graph structure)
then this distance is small, while for vertices with long paths between
them, this distance is large.

The diffusion analysis can be easily generalized to any value of the
diffusion step, t, whereby after t steps, the matrix of probabilities in
(4.41) becomes

Pt = (D−1W)t.

The elements of this matrix, denoted by P (t)
mn, are equal to the proba-

bilities that a random walker moves from a vertex m to a vertex n, in
t steps. The t-step diffusion distance between the vertices m and n, is
accordingly defined as

D
(t)
f (m,n) = ‖(p(t)

m − p(t)
n)D−1/2‖2

√
VV ,

where
p(t)
m = [P (t)

m0, P
(t)
m1, . . . , P

(t)
m(N−1)]

and
p(t)
n = [P (t)

n0 , P
(t)
n1 , . . . , P

(t)
n(N−1)].

It can be shown that the diffusion distance is equal to the Euclidean
distance between the considered vertices when they are presented in a
new space of their generalized Laplacian eigenvectors, which are then
scaled by their corresponding eigenvalues; this new space is referred
to as the diffusion map (cf. eigenmaps).

The eigenanalysis relation for the random walk weight matrix for
the state t = 1 now becomes

(D−1W) uk = λ
(P)
k uk.

Since the weight matrix can be written as W = D − L, this yields
D−1(D− L)uk = λ

(P)
k uk, or

(I−D−1L)uk = λ
(P)
k uk,

114 Vertex Clustering and Mapping

to finally produce the generalized graph Laplacian equation,

Luk = λkDuk,

with λk = (1− λ(P)
k). This relation indicates that a one-step diffusion

mapping is directly obtained from the corresponding generalized graph
Laplacian mapping.

After t steps, the random walk matrix (of probabilities) becomes

Pt = (D−1W)t,

for which the eigenvalues are λ(P)t
k = (1− λk)t, while the (right) eigen-

vectors remain the same as for the graph Laplacian, see (3.7).
The spectral space for vertices, for a t-step diffusion process (diffusion

mapping), is then defined based on the spectral vector

qn = [u1(n), u2(n), . . . , uN−1(n)](I− Λ̄)t,

and is equal to the generalized Laplacian spectral space mapping,
whereby the axis vectors qn = [u1(n), u2(n), . . . , uN−1(n)] are mul-
tiplied by the corresponding eigenvalues, (1− λk)t.

It can be shown that the diffusion distance between vertices in the
new diffusion map space is equal to their Euclidean distance (Coifman
and Lafon, 2006), that is

D
(t)
f (m,n) =

√
VV‖qm − qn‖2. (4.43)

Example 34: For the graph from Figure 2.2, whose weight matrix, W,
and the degree matrix, D, are defined in (2.4) and (2.6), the diffusion
distance between the vertices m = 1 and n = 3 can be calculated using
(4.43) as

D
(1)
f (1, 3) =

√
VV‖(q1 − q3)‖2 = 1.54,

where the spectral vectors, q1 = [u1(1)(1− λ1)1, . . . , uN (1)(1− λN)1]
and q3 = [u1(3)(1− λ1)1, . . . , uN (3)(1− λN)1] are obtained using the
generalized graph Laplacian eigenvectors, uk, and the corresponding
eigenvalues, λk, from Luk = λkDuk. This is the same diffusion distance
value, Df (1, 3), as in Example 33.
Dimensionality reduced diffusion maps. Dimensionality of the
vertex representation space can be reduced in diffusion maps by keeping

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 115

only the eigenvectors that correspond to the M most significant eigen-
values, (1− λk)t, k = 1, 2, . . . ,M , in the same way as for the Laplacian
eigenmaps, For example, the two-dimensional spectral domain of the
vertices in the diffusion mapping is defined as

qn = [u1(n)(1− λ1)t, u2(n)(1− λ2)t].

While the analysis and intuition for the diffusion mapping is similar to
that for the commute time mapping, presented in Remark 35, diffusion
maps have an additional degree of freedom, the step t.
Example 35: For the graph in Figure 4.10, which corresponds to a
set of real-world images, the commute time two-dimensional spectral
vectors in (4.39), normalized by the first eigenvector value through a
multiplication of its coordinates by

√
λ1, assume the form

qn =
[
u1(n),

√
λ1√
λ2
u2(n)

]
= [u1(n), 0.62u2(n)].

The corresponding vertex colors designate diffusion-based clustering,
as shown in Figure 4.25(a). Figure 4.25(b) shows the vertices of this
graph, colored with the two-dimensional diffusion map spectral vectors,
which are normalized by (1− λ1), to yield

qn =
[
u1(n), 1− λ2

1− λ1
u2(n)

]
= [u1(n), 0.09u2(n)].

Finally, the sum over all steps, t = 0, 1, 2, . . ., of the diffusion space
yields

qn = [u1(n), u2(n), . . . , uN−1(n)]Λ̄−1,

since the sum of a geometric progression is equal to
∞∑
t=0

(I− Λ̄)t = Λ̄−1.

This mapping also corresponds to the cumulative diffusion distance,
given by

Dc(n, l) =
∞∑
t=0

D
(t)
f (n, l).

116 Vertex Clustering and Mapping

(a) (b)

Figure 4.25: Graph structure for the images from Figure 4.10, with vertex color
embedding which corresponds to the two-dimensional normalized spectral vectors in
(a) the commute time representation, qn = [u1(n), 0.62u2(n)], and (b) the spectral
eigenvectors of the diffusion process, qn = [u1(n), 0.09u2(n)], with t = 1. For the
commute time presentation in (a), the graph Laplacian eigenvectors, u1 and u2, are
used, while for the diffusion process presentation in (b) the generalized Laplacian
eigenvectors, u1 and u2, are used.

The diffusion eigenmaps can be therefore obtained by appropriate
axis scaling of the standard eigenmaps, produced by the generalized
eigenvectors of the graph Laplacian.
Remark 36: The commute time and the diffusion process mappings are
related in the same way as the mappings based on the graph Laplacian
eigenvectors and the generalized eigenvectors of the graph Laplacian.

4.6 Summary of Embedding Mappings

A summary of the considered embedding mappings is given in Table 4.1.
Notice that various normalization schemes may be used to obtain the
axis vectors, yn, from the spectral vectors, qn (see Algorithm 9).

These examples of dimensionality reduction reveal close connections
with spectral clustering algorithms developed in standard machine
learning and computer vision; in this sense, the notions of dimensionality
reduction and clustering can be considered as two sides of the same coin
(Belkin and Niyogi, 2003). In addition to the reduction of dimensionality
for visualization purposes, the resulting spectral vertex space of lower
dimensionality may be used to mitigate the complexity and accuracy
issues experienced with classification algorithms, or in other words to
bypass the course of dimensionality.

4.6. Summary of Embedding Mappings 117

A recent approach to graph dimensionality reduction, called the
Uniform Manifold Approximation and Projection (UMAP), can be
found in McInnes et al. (2018). This dimension reduction technique may
be used for visualization similarly to t-distributed Stochastic Neighbor
Embedding (t-SNE), which employs a probabilistic approach whereby,
with high probability, similar objects are modeled by nearby points and
dissimilar objects by distant points, as in van der Maaten and Hinton
(2008).

5
Graph Sampling Strategies

In the case of extremely large graphs, subsampling and down-scaling of
graphs is a prerequisite for their analysis (Leskovec and Faloutsos, 2006).
For a given large (in general directed) graph, G, with N vertices, its
resampling aims to produce a much simpler graph which retains most of
the properties of the original graph, but is both less complex and more
physically and computationally meaningful. The similarity between the
original large graph G, and the down-scaled graph, S, with M vertices,
where M � N , is defined with respect to the set of parameters of
interest, like for example, the connectivity or distribution on a graph.
Such criteria may also be related to the spectral behavior of graphs.

5.1 Graph Down-Sampling Strategies

Several methods exist for graph down-scaling, of which some are listed
below.

• The simplest method for graph down-sampling is the random
vertex or random node (RN) selection method, whereby a random
subset of vertices is used for the analysis and representation of
large graphs and data observed on such large graphs. Even though

119

120 Graph Sampling Strategies

the vertices are here selected with equal probabilities, this method
produces good results in practical applications.

• Different from the RN method, where the vertices are selected
with a uniform probability, the random degree vertex/node (RDN)
selection method is based on the probability of vertex selection
that is proportional to the vertex degree. In other words, vertices
with more connections, thus having larger Dn = ∑

mWnm, are
selected with higher probability. This makes the RDN approach
biased with respect to highly connected vertices.

• The PageRank method is similar to the RDN, and is based on
the vertex rank. The PageRank is defined by the importance
of the vertices connected to the considered vertex n. Then, the
probability that a vertex n will be used in a down-scaled graph is
proportional to the PageRank of this vertex. This method is also
known as the random PageRank vertex (RPN) selection, and is
biased with respect to the highly connected vertices (with a high
PageRank).

• A method based on a random selection of edges that will remain
in the simplified graph is called the random edge (RE) method.
This method may lead to graphs that are not well connected, and
which exhibit large diameters.

• The RE method may be combined with random vertex selection
to yield a combined RNE method, whereby the initial random
vertex selection is followed by a random selection of one of the
edges that is connected to the selected vertex.

• In addition to these methods, more sophisticated methods based
on random vertex selection and random walk (RW) analysis may
be defined. For example, we can randomly select a small subset
of vertices and form several random walks starting from each
selected vertex. The Random Walk (RW), Random Jump (RJ)
and Forest Fire graph down-scaling strategies are all defined in
this way.

5.2. Graph Sparsification 121

5.2 Graph Sparsification

We now provide an in-depth discussion of graph sparsification, one of
the main graph sampling strategies that approximates a given graph
by a sparse graph (a graph for which the number of the edges is signifi-
cantly smaller than quadratic in the number of vertices). Appropriately
sparsified graphs allow for a simpler analysis of large graphs, while
producing similar results as if the original graphs were analyzed.

Definition: A subgraph or sparsifier, G′, of a graph, G, is a graph
which maintains the same set of vertices, V, but with a fewer edges.
The design of a sparsification strategy should ensure that a desired
property/operation of the original graph is approximately preserved.

5.2.1 Cut-Preserving Sparsification

This approach to the sparsification of graphs aims at preserving (approx-
imately) graph cuts. Consider an unweighted graph G with N vertices.
A new, cut-preserving sparsified graph G′ is then obtained by randomly
pruning the edges of the original graph G with the aim of preserving the
cut values. The set of vertices is the same for both the original and the
resulting graphs. Assume next that the vertices, V, are grouped into
disjoint subsets, E and H, with E ∪ H = V. The aim is to ensure that
every cut of the sparsified graph, G′, with the same set of vertices, V,
and the new edges with weighs W ′mn, denoted by

CutG′(E ,H) =
∑
m∈E
n∈H

W ′mn,

is close to the corresponding cut of the original graph, that is

(1− ε)CutG(E ,H) ≤ CutG′(E ,H) ≤ (1 + ε)CutG(E ,H), (5.1)

where ε is sufficiently small.
To this end, random edge selection is achieved in the following way:

• every edge is kept in the new graph, G′, with an assumed proba-
bility p;

122 Graph Sampling Strategies

• the weight of the edge which is kept in the new graph, G′, is
changed from 1 to 1/p.

In this way, the number of edges, Ne, in the original graph, G, is
reduced to the expected number of edges equal to pNe.

The inequality in (5.1) is satisfied with a certain probability, for a
given ε. Consider an undirected and unweighted graph, with M edges
in one cut. Every edge in this cut is either removed (with probability
(1−p)) or kept with probability p. If the edge is kept, its weight assumes
the value 1/p. For the M edges in a considered cut, the probability that
k of M edges will be kept is equal to

Pk =
(
M

k

)
pk(1− p)M−k.

The resulting value of the new cut is a random variable with Bernoulli
distribution, given by

P

(
CutG′(E ,H) = k

1
p

)
= k

p

(
M

k

)
pk(1− p)M−k.

The mean value of this cut is

E{CutG′(E ,H)} = 1
p

(pM) = M,

while the variance of this Bernoulli distributed random variable is

Var{CutG′(E ,H)} = 1
p2 p(1− p)M = 1− p

p
M.

Having in mind that, for a largeM , the Bernoulli distribution approaches
the Gaussian distribution we can conclude that the relation is satisfied
with a probability of 0.95 for ε = 2

√
(1− p)/(pM), according to the

two-sigma rule for the Gaussian distribution and after the normalization
with CutG(E ,H) = M .

For cuts with a very small number of edges, if all edges are sampled
with the same probability, p, there is a significant probability that
the minimum cut would be destroyed by removing all edges in this
cut. A way to overcome this problem is to slightly adapt the selection
procedure, so that the minimum cut is always kept, and the other edges

5.2. Graph Sparsification 123

are sparsified in the usual way. This simple scheme therefore adopts
the probability of removing the edges related to the number of the
edges in a cut. For example, in cuts with a small number of edges, the
probability of removing the edges should be very small.

5.2.2 Spectral Graph Sparsification

Recent research efforts on spectral graph sparsification focus on definition
of subgraphs or sparsifiers that can robustly preserve the spectrum
(eigenvalues and eigenvectors) of the original graph Laplacian (Imre
et al., 2020).

The criterion for spectral similarity of two graphs is based on the
quadratic Laplacian form

xTLx = 1
2

N−1∑
m=0

N−1∑
n=0

Wmn(x(m)− x(n))2, (5.2)

where x is an arbitrary vector with N elements.

Definition: The graphs, G and G′, with respective graph Laplacians, L
and L′, are σ-spectrally similar if their quadratic forms satisfy

1
σ

xTL′x ≤ xTLx ≤ σxTL′x. (5.3)

The quality of the sparsification can be evaluated through the
condition number, λmax/λmin, of the generalized eigenvalue relation

Lu = λL′u (5.4)

with the constant, σ, satisfying the relation, σ2 ≥ λmax/λmin, where
λmax and λmin are respectively the maximum and minimum generalized
eigenvalue of (5.4). A smaller σ (σ ≈ 1 or λmax ≈ λmin) indicates higher
spectral similarity.

The state-of-art techniques in this area employ an analogy with
effective resistances in circuit theory (Spielman and Srivastava, 2011).
The underpinning idea is as follows; a graph G with N vertices can
be considered as a resistive network with resistances Rmn = 1/Wmn

between the vertices m and n, which are connected by an edge (more
detail on the equivalence between a general graph and the resistive

124 Graph Sampling Strategies

network is given in Part III). For any two vertices, m and n, that
are connected by an edge, the effective resistance can be calculated in
several ways: (1) Using transformations of the corresponding electrical
circuit (including the so-called star-mesh transformations); (2) Injecting
unit current into the vertex, m, and taking the same current out from
the vertex, n. The effective resistance is then equal to the difference
of potentials in the vertices m and n; and (3) Through the eigenvalue
(spectral) decomposition of the corresponding graph. The effective
resistance, Reff(m,n), is then obtained from (4.37) as

CT (m,n) = VV‖qm − qn‖22 = VV

N−1∑
i=1

(qi(m)− qi(n))2 = VVReff (m,n),

(5.5)
where Reff(m,n) denotes the effective resistance between vertices m
and n (this relation will be proven in Part III), and is given by

Reff(m,n) =
N−1∑
i=1

(qi(m)− qi(n))2 = ‖qm − qn‖22. (5.6)

Spectral graph sparsification can now be thought of as a process
of sampling edges from the graph, with probabilities of keeping edges
proportional to their effective resistances. This approach rests upon the
observation that if the effective resistance is small with respect to the
resistance of the edge directly connecting the vertices, m and n, then
these two vertices are well connected via other edges and the considered
direct edge can be removed without significant influence on the whole
graph. In turn, upon this edge is removed, from (5.2) we see that the
total dissipated energy in the circuit corresponding to graph G will not
change significantly, and will remain close to the energy in the electric
network corresponding to the new pruned graph.

Note that if the effective resistance is close to Reff(m,n) ≈ 1/Wmn,
then the other network connections are weak and the considered edge
should be kept.

Such a simplified pruning algorithm can be implemented as follows.
• For the considered graph, find the graph Laplacian, L.

• Calculate the eigenvectors, uk, and the eigenvalues, λk, of the
graph Laplacian, k = 0, 1, 2, . . . , N − 1.

5.2. Graph Sparsification 125

• Form the commute time spectral vectors with elements, qk(n) =
uk(n)/

√
λk, for k = 1, 2, . . . , N − 1.

• Find the effective resistances, Reff(m,n) = ∑N−1
k=1 (qk(m)−qk(n))2.

• For every pair of vertices, m and n, connected by an edge, use
Reff(m,n) as a measure for the probability that the considered
edge should be kept in the graph.
The effective conductance (inverse to the effective resistance)
between the vertices, m and n, is equal to

1
Reff(m,n) = Wmn + Cmn,

where Cmn = 1
Reff(m,n)−Wmn is the effective conductance between

m and n due to all other connections, except for the direct one
defined byWmn. Its relative value, normalized byWmn, is given by

Cmn
Wmn

= 1
WmnReff(m,n) − 1.

We can now state that the influence of indirect connections be-
tween the vertices, m and n, is significant with respect to the
existing direct connection, if

1
WmnReff(m,n) − 1� 1.

The probability of keeping the edge (m,n) becomes

Pmn = Wmn
1

Reff(m,n)
= WmnReff(m,n).

If there are no indirect connections between m and n, then
1/Reff = Wmn and the edge (m,n) must be kept with proba-
bility Pmn = 1. In general, 1/Reff ≥ Wmn holds. By increasing
the number of indirect connections, 1/Reff becomes increasingly
larger than Wmn (cf. Reff increasingly smaller than 1/Wmn), thus
indicating that the probability of keeping this edge should be
decreasing.

126 Graph Sampling Strategies

0 1

2

3

4

56
7

0.23

1.82
0.74

0.97
0.
24

2.
04 0.35

1.52

0
.2
3

2
.3
0

0.26
1.91

0.24

2.10

0
.3
2

2
.4
6

0.51
1.66

0.1
4

2.8
7

0.15

3.23

0.32

2.46

0 1

2

3

4

56
7

0.23

0.74
0.
24 0.35 0

.2
3

0.26 0.24

0
.3
2

0.51

0.150.32

)b()a(

Figure 5.1: Principle of spectral graph sparsification. (a) The graph from Figure 2.2
with the edge weights, Wmn, and the effective resistances, Reff(m,n), for each pair
of connected vertices. (b) The pruned graph from (a) whereby the edge (4, 7),
characterized by the minimum value of WmnReff(m,n), is removed.

Example 36: Consider the graph from Figure 2.2. The effective resis-
tances are calculated using Reff(m,n) = ∑N−1

k=1 (qk(m)− qk(n))2, with
the spectral vectors calculated using the graph Laplacian eigenvectors
as qk(n) = uk(n)/

√
λk, for k = 1, 2, . . . , N − 1. The values of effective

resistances are given in red in Figure 5.1(a). When these resistances
are multiplied by the corresponding edge weights, the lowest product
is obtained for W47Reff(4, 7) = 2.87 · 0.14 = 0.40. Therefore, this is the
candidate for an edge with the lowest probability of being kept, and the
best candidate for pruning. The worst candidate for pruning would be
W45Reff(4, 5) = 0.85. After pruning the edge (4, 7), the pruned graph,
GP , is shown in Figure 5.1(b). Another common criterion for pruning
suggests that the edge with the smallest effective resistance should be
pruned; this criterion would suggest to prune the edge (0, 2).

In that case, the spectral distance between the original and pruned
graphs becomes (Jovanović and Stanić, 2012)

SD(G,GP) =
N−1∑
k=0
|λk − λPk | = 0.28.

Note that if the “worst” edge (4, 5), with the maximum value of
WmnReff(m,n) is pruned, then the spectral distance becomes
SD(G,GP) = 1.02.

A main obstacle for using spectral sparsification is that for large
graphs it is computationally very demanding, as the estimation of edge

5.3. Graph Coarsening 127

effective resistances requires computing the eigenvectors and eigenval-
ues of the graph Laplacian. This topic is currently under intensive
investigation.

5.2.3 Uniform Graph Sparsifier

This sparsification strategy randomly selectsM edges, with replacement,
with probabilities proportional to their weights (Sadhanala et al., 2016).
The sparsified graph is then formed using the same vertices, but with
the selected edges having equal weights, that is

W ′mn = 1
2M

N−1∑
m=0

N−1∑
n=0

Wmn = W

2M .

The so produced random graph maintains its expected energy equal
to the energy in the original graph, and for any x(n), that is

E{xTL′x} = xTLx. (5.7)

To prove this, note that the number of times, NWmn , that an edge
between vertices m and n, with the corresponding weight Wmn, is
selected, is equal to E{NWmn} = Wmn2M/W . Then, the expected
value of the weight W ′mn is E{W ′mn} = E{NWmn

W
2M }, which gives

E{W ′mn} = Wmn, and E{L′} = L.

5.3 Graph Coarsening

We have so far addressed graph sparsification based on a reduction in the
number of edges, while the number of vertices remained unaltered. Note
that the number of vertices defines the size and dimensionality of the
graph, with the analysis quickly becoming computationally prohibitive
for large graphs. Graph coarsening belongs to graph down-sampling
strategies and refers to the reduction in the number of vertices of the
original graph. Graph coarsening is typically used in graph partitioning
and for the visualization of large graphs in a computationally efficient
manner (Tremblay and Loukas, 2020). In general, it can be performed
by grouping the vertices into Nc < N groups, subsequently forming
new vertices, and finally connecting these new vertices (former groups

128 Graph Sampling Strategies

0 1

2

3

4

56
7

0.32

0
.3
2

0.26

0.23

0.
24 0.35

0.1
4

0.15

0.24

0
.2
3

0.74

0.51

1

02

3

45

6
7

0.32

0
.3
2

0.24

1.48

1.02

0
.2
3

0.35
+ 0.23

0.1
4 +

0.1
5

0.26
+ 0.24

)b()a(

Figure 5.2: Graph coarsening. (a) The original graph from Figure 2.2 with the edges
(0, 2) and (4, 5) used for vertex merging and forming “super-vertices” designated by
circles. (b) The coarsened graph with a reduced number of vertices, obtained by form-
ing two “super-vertices” 02 and 45. The resulting edge weights are obtained by
summing up all corresponding edge weights belonging to the “super-vertices”.

of vertices) with the “equivalent weights”, which represent a sum of all
weights between the groups. Groups of vertices are formed using the
matching in graphs (explained below).
Example 37: Consider the graph G from Figure 2.2. To form a coarsened
version, Gc, of this graph, which has a reduced number of vertices, we
shall first form two “super-vertices”. For example, the “super-vertices”
02 and 45 can be formed respectively from the vertices 0 and 2 and
vertices 4 and 5, as in Figure 5.2(a). The “super-edges” connecting these
super-vertices are obtained as cumulative values for the vertex edges
forming the new “super-vertices”. The weight matrix of this coarsened
graph is of dimension Nc = 6, and is given by

Wc =

02
1
3
45
6
7

1.48 0.58 0.50 0.24 0 0
0.58 0 0 0.23 0 0
0.50 0 0 0 0.32 0
0.24 0.23 0 1.02 0 0.29

0 0 0.32 0 0 0.32
0 0 0 0.29 0.32 0

 ,
02 1 3 45 6 7

(5.8)

5.3. Graph Coarsening 129

with the “super-vertices” exhibiting self-loops with the weights equal to
double the value of the removed edge (edge within the “super-vertex”).
In some applications, the self-loops are filtered-out (removed).

The new, reduced-dimension weight matrix, Wc, of the coarsened
graph could be alternatively obtained using the “super-vertex” indicator
matrix P, whose elements are 1 if the vertex in the original graph G
belongs to the considered “super-vertex” and zero elsewhere, that is

P =

02
1
3
45
6
7

1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 .
0 1 2 3 4 5 6 7

(5.9)

The relation between the weight matrix of the coarse graph, Wc,
and that of the original graph, W, is therefore

Wc = PWPT ,

where W is defined in (2.4) and the resulting coarsened graphs is shown
in Figure 5.2(b).
Graph lifting (uncoarsening). Graph lifting is an inverse operation
to graph coarsening, and represents a process of obtaining a larger scale
(fine) graph from a coarsened (smaller) graph. The weight matrix, WL,
of the lifted graph is obtained from the weight matrix of the coarsened
graph, Wc, as

WL = P+Wc(P+)T ,

where P+ is the pseudo-inverse of the indicator matrix, such that
PP+ = I, where I is the identity matrix.

130 Graph Sampling Strategies

For the considered example, the lifted weight matrix is

WL =

0
1
2
3
4
5
6
7

0.37 0.29 0.37 0.25 0.06 0.06 0 0
0.29 0 0.29 0 0.11 0.11 0 0
0.37 0.29 0.37 0.25 0.06 0.06 0 0
0.25 0 0.25 0 0 0 0.32 0
0.06 0.11 0.06 0 0.25 0.25 0 0.14
0.06 0.11 0.06 0 0.25 0.25 0 0.14

0 0 0 0.32 0 0 0 0.32
0 0 0 0 0.14 0.14 0.32 0

.

0 1 2 3 4 5 6 7

(5.10)

The same relations as for the weights hold for the corresponding
graph Laplacian of the original graph, L, graph Laplacian of the coars-
ened graph, Lc, and the graph Laplacian of the lifted graph, LL, that is

Lc = PLPT .

LL = P+Lc(P+)T .

Notice that for the normalized graph Laplacian, the definition of
the indicator matrix should be slightly modified (Jin et al., 2020).

It is of particular interest to consider spectral similarity of the
original large size graph and the corresponding reduced-size graph (or a
lifted graph). If spectral similarity is preserved by graph coarsening, then
instead of operating on the large graph, G, the eigendecomposition is
first performed at a lower computational cost on the smaller dimensional
coarsened graph (Nc � N). Then, spectral analysis is performed by
lifting the graph to the original large dimensionality and refining the
results (Loukas and Vandergheynst, 2018; Tremblay and Loukas, 2020).

Various criteria for spectral similarity exist, including an element-
wise form of (5.3). We here employ as a spectral similarity metric a
simple spectral distance between the original graph, G, and the coarsened
and lifted graph of the same dimension, GL, defined by

SD(G,GL) =
N−1∑
k=0
|λk − λcLk |,

5.3. Graph Coarsening 131

where λk are the eigenvalues of the original graph, and λcLk the eigen-
values of the coarsened and lifted graph. For the considered example,
the spectral distance is SD(G,GL) = 1.48.

Generalization. The process of graph coarsening may be continued
until a desired number of vertices is obtained. For example, the vertex
1 and the “super-vertex” 02 can be grouped into a new “super-vertex”
102. Then, the new edges are calculated using the indicator matrix and
the matrix Wc.

In general, the coarsening involves a sequence of graphs

G = G0 = {V,B,W} = {V0,B0,W0}
G1 = {V1,B1,W1}

...
Gc = {Vc,Bc,Wc},

whereby at every iteration, the coarsened graph, Gl+1 = {Vl+1,Bl+1,

Wl+1}, is obtained from the previous one through a weight matrix
transformation based on the corresponding indicator matrices,

Wl = PlWl−1PT
l ,

while the lifting is performed as Wl−1 = P+
l Wl(P+

l)T .

Matching. In forming the “super-vertices” for graph coarsening, the
notion of matching is commonly used.

Definition: A matching in a graph is a set of edges such that no vertex
belongs to more than one edge.

For example, the edges (0, 2) and (4, 5) form a matching {02, 45} in
the graph from Example 37 given in Figure 5.2, while the edges (0, 2)
and (2, 3) are not a matching, since they are both connected to vertex 2.

Definition: A matching is maximal if no more edges can be added to
this matching.

For example, for the graph from Figure 5.2, the maximal matching
would be the set of edges {02, 45, 36}, as no more edges can be added
to this matching. However, this is not the largest possible number of

132 Graph Sampling Strategies

edges in a matching for this graph, and we can define a matching with a
larger number of edges, like for example, the matching {02, 14, 57, 36}.

Definition: The maximum matching in a graph is a set of edges such
that no vertex belongs to more than one edge, and another matching
with a larger number of edges does not exist.
Example 38: Consider the graph, G, from Figure 2.2. In forming
a coarsened version, G1, of this graph we will create “super-vertices”
using the maximal matching {02, 45, 36}, shown in Figure 5.3(a). The
coarsened version of this graph, using the maximal matching, is given in
Figure 5.3(b); this graph is coarsened again, by forming “super-vertices”
102 and 367, as in Figure 5.3(c); the final form is obtained with only
two “super-vertices”, as shown in Figure 5.3(d).

Notice that the edge weight in the final two-vertex graph is equal
to the original graph cut for E = {9, 1, 2, 3, 6, 7} and H = {4, 5}, that
is, Cut(E ,H) = 0.23 + 0.24 + 0.14 + 0.15 = 0.76.

This example can be repeated by using the maximum matching
{02, 14, 57, 36} in the first step.

Maximal matching strategies for graph coarsening include:

• Random matching, when a vertex n and one of its edges (m,n) are
selected randomly. Next, another neighboring (or any other) vertex
is randomly selected, together with one of its edges. The process
is continued until no new edge can be added to this matching.
The “super-vertices” are formed for each of the selected edges.
After one coarsening level, the process can be repeated, until the
desired number of vertices in a coarsened graph is reached, or a
given number of levels is used.

• Heavy edge matching (HEM) algorithm is similar to the previous
one, with the only difference in that once a vertex is randomly
selected, then its edge with the maximum weight is used for the
matching and “super-vertex” forming. In this way, the edges with
the strongest weights are excluded, since they would probably not
participate in the minimum cut, so that both the original and the
coarsened graph share the same minimum cut.

5.3. Graph Coarsening 133

0 1

2

3

4

56
7

0.26

0.23

0.
24 0.35

0.1
4

0.15

0.24

0
.2
3

0.32

0.74

0.51

0
.3
2

1

02

36

45

7

0.24

0.32

1.48

1.02

0.64 0
.2
3

0.35
+ 0.23

0.1
4 +

0.1
5

0.26
+ 0.24

102

45

367

0.24 +
0.23

2.64

1.02

1.28

0.1
4 +

0.1
5

0
.2
6
+

0
.2
4

102367

45

4.92

1.02

0.76

Figure 5.3: Principle of maximal matching for graph coarsening. (a) The original
graph from Figure 2.2 with (b)–(d) its coarsened graphs obtained in three steps
using the maximal matching, until a two-vertex graph is obtained.

• Sorted Heavy edge matching uses the vertices with the highest
degree first, in defining the matching. Vertices with higher degrees
are also preferred in the subsequent steps.

• Edge weighted random matching chooses an edge with a probability,
Pmn, proportional to its weight, that is

Pmn = Wmn

1
2
∑N−1
m=0

∑N−1
n=0 Wmn

.

The edges with a higher weight are thus more likely to be selected
in each step of the maximal matching procedure.

134 Graph Sampling Strategies

5.4 Kron Reduction of Graphs

A reduction of an electrical network via a Schur complement of the
associated conductance matrix is known as the Kron reduction, due
to the seminal work of Gabriel Kron. It is based on separating the
vertices into two groups: active vertices and inner vertices. The inner
vertices can be eliminated from the graph without changing the electric
network conditions; this is achieved via equivalent transformations, such
as the “star-mesh” transformations (Dorfler and Bullo, 2012). The Kron
reduction of graphs is also relevant in other physical domains, including
computing applications and the reduction of Markov chains. Since this
approach requires quite specific physical interpretation of the active and
inner vertices, it will be discussed in detail in Part III of this monograph.

6
Conclusion

Although within the graph data analytics paradigm, graphs have been
present in various forms for centuries, the advantages of the graph
framework for data analytics, as opposed to the optimization of the
graphs themselves, but for recently has received little attention. In
order to provide a comprehensive and Data Science friendly introduc-
tion to graph data analytics, an overview of graphs from this specific
practitioner-friendly signal processing point of view is a prerequisite.

In this part of our tutorial, we have introduced graphs as irregular
signal domains, together with their properties that are relevant for
data analytics applications which rest upon the estimation of signals
on graphs. This has been achieved in a systematic and example rich
way and by highlighting links with classic matrix analysis and linear
algebra. Spectral analysis of graphs has been elaborated upon in de-
tail, as this is the main underpinning methodology for efficient data
analysis, the ultimate goal in Data Science. Both the adjacency matrix
and the Laplacian matrix have been used in this context, along with
their spectral decompositions. Finally, we have highlighted important
aspects of graph segmentation, Laplacian eigenmaps, graph cuts, graph
sparsification and coarsening, and have emphasized their role as the

135

136 Conclusion

foundation for advances in Data Analytics and unsupervised learning
on graphs.

Part II of this monograph will address theory and methods of
processing data on graphs, while Part III is devoted to unsupervised
graph topology learning, from the observed data, and Machine learning
on graphs.

Part II

Signals on Graphs

7
Introduction

Graphs are structures, often irregular, constructed in a way to represent
the observed data and to account, in a natural way, the specific interre-
lationships between the data sources. However, traditional approaches
have been established outside Machine Learning and Signal Processing,
with which largely focus on analyzing the underlying graphs rather than
dealing with signals on graphs. Moreover, given the rapidly increasing
availability of multisensor and multinode measurements, likely recorded
on irregular or ad-hoc grids, it would be extremely advantageous to
analyze such structured data as “signals on graphs” and thus benefit
from the ability of graphs to account for spatial sensing awareness, phys-
ical intuition and sensor importance, together with the inherent “local
versus global” sensor association. The aim of Part II of this monograph
is therefore to establish a common language between graph signals which
are observed on irregular signal domains, and some of the fundamental
paradigms in Learning Systems, Signal Processing and Data Analytics,
such as spectral analysis, system transfer function, digital filter design,
parameter estimation, and optimal denoising.

In classical Data Analytics and Signal Processing, the signal domain
is determined by equidistant time instants or by a set of spatial sensing

139

140 Introduction

points on a uniform grid. However, increasingly the actual data sensing
domain may not even be related to the physical dimensions of time
and/or space, and it typically does exhibit various forms of irregularity,
as, for example, in social or web-related networks, where the sensing
points and their connectivity pertain to specific objects/nodes and ad-
hoc topology of their links. It should be noted that even for the data
acquired on well defined time and space domains, the introduction of
new relations between the signal samples, through graphs, may yield
new insights into the analysis and provide enhanced data processing (for
example, based on local similarity, through neighborhoods). We therefore
set out to demonstrate that the advantage of graphs over classical
data domains is that graphs account naturally and comprehensively
for irregular data relations in the problem definition, together with
the corresponding data connectivity in the analysis (Chen et al., 2014;
Ekambaram, 2014; Gavili and Zhang, 2017; Hamon et al., 2016b; Moura,
2018; Sandryhaila and Moura, 2013; Shuman et al., 2013; Vetterli et al.,
2014).

To build up the intuition behind the fundamental ideas of sig-
nals/data on graphs, a simple yet general example of multisensor tem-
perature estimation is first considered in Section 8. Basic concepts
regarding the signals and systems on graphs are presented in Section
9, including basic definitions, operations and transforms, which gen-
eralize the foundations of traditional signal processing. Systems on
graphs are interpreted starting from a comprehensive account of the
existing and the introduction of a novel, isometric, graph signal shift
operator. Further, graph Fourier transform is defined based on both the
adjacency matrix and the graph Laplacian and it serves as the basis
to introduce graph signal filtering concepts. Various ideas related to
the sampling of graph signals, and particularly, the challenging topic
of their subsampling, are reviewed in Section 10. Sections 12 and 13
present the concepts of time-varying signals on graphs and introduce
basic definitions related to random graph signals. Localized graph signal
behavior can be simultaneously characterized in the vertex-frequency
domain, which is discussed in Section 14. This section also covers the
important topics of local graph Fourier transform, various forms of its
inversion, relations with the frames and links with the graph wavelet

141

transform. Energy versions of the vertex-frequency representations are
also considered, along with their relations with classical time-frequency
analysis.

8
Problem Statement: An Illustrative Example

Consider a multi-sensor setup for measuring a temperature field in
a region of interest. The temperature sensing locations are chosen
according to the significance of a particular geographic area to local
users, with N = 16 sensing points in total, as shown in Figure 8.1(a).
The temperature field is denoted by {x(n)}, with n as the sensor index,
while a snapshot of its values is given in Figure 8.1(b). Each measured
sensor signal can then be mathematically expressed as

x(n) = s(n) + ε(n), n = 0, 1, . . . , 15, (8.1)

where s(n) is the true temperature that would have been obtained in
ideal measuring conditions and ε(n) comprises the adverse effects of the
local environment on sensor readings or faulty sensor activity, and is
referred to as “noise” in the sequel. For illustrative purposes, in our study
each ε(n) was modeled as a realization of white, zero-mean, Gaussian
process, with standard deviation σε = 2, that is, ε(n) ∼ N (0, 4). It was
added to the signal, s(n), to yield the signal-to-noise ratio in x(n) of
SNRin = 14.2 dB.
Remark 37: Classical data analytics requires a rearrangement of the
quintessentially irregular spatial temperature sensing arrangement in
Figure 8.1(a) into a linear structure shown in Figure 8.1(b). Obviously,

143

144 Problem Statement: An Illustrative Example

(a)

0 2 4 6 8 10 12 14 16

Sensor index

0

10

20

30

40

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (c)

Figure 8.1: Temperature sensing as a classic data analytics problem. (a) Sensing
locations in a geographic region along the Adriatic sea. (b) Temperatures measured
at N = 16 sensing locations. In standard data estimation, the spatial sensor index
is used for the horizontal axis and serves as the data domain. This domain can
be interpreted as a directed path graph structure, shown in the bottom panel (c).
Observe that the consecutive samples (vertices) on this path graph offer no physical
intuition or interpretation, as in this “brute force” arrangement, for example, vertex
6 is located on a high mountain, whereas its neighboring vertices 5 and 7 are located
along the sea; despite the consecutive index numbers these sensors are physically
distant, as indicated by their very different temperature measurements.

145

such “lexicographic” ordering is not amenable to exploiting the in-
formation related to the actual sensor locations, which is inherently
dictated by the terrain. This renders classical analyses of this multi-
sensor temperature field inapplicable (or at best suboptimal), as the
performance critically depends on the chosen sensor ordering scheme.
This exemplifies that even a most routine multisensor measurement
setup requires a more complex estimation structure than the standard
linear one corresponding to the classical signal processing framework,
shown in Figure 8.1(b).

To introduce a “situation-aware” noise reduction scheme for the
temperature field in Figure 8.1, we proceed to explore a graph-theoretic
framework to this problem, starting from a local signal average operator.
In classical analysis, this may be achieved through a moving average
operator, e.g., by averaging across the neighboring data samples, or
equivalently neighboring sensors in the linear data setup in Figure 8.1(b),
and for each sensing point. Physically, such local neighborhood should
include close neighboring sensing points but only those which also exhibit
similar meteorological properties defined by the sensor distance, altitude
difference, and other terrain specific properties. In other words, since
the sensor network in Figure 8.1 measures a set of related temperatures
from irregularly spaced sensors, an effective estimation strategy should
include domain knowledge – not possible to achieve with standard
methods (linear path graph).

To illustrate the advantages of approaches based on local informa-
tion (neighborhood based), consider the neighborhoods for the sensing
points n = 3 (low land), n = 6 (mountains), and 8 (coast), shown in
Figure 8.2(a). The cumulative temperature for each sensing point is
then given by

y(n) =
∑

m at and around n

x(m),

so that the local average temperature for a sensing point n may be
obtained by dividing the cumulative temperature, y(n), with the number
of included sensing points (size of local neighborhood). For example,
for the sensing points n = 3 and n = 6, presented in Figure 8.2(a), the

146 Problem Statement: An Illustrative Example

0
1

2
3

4

5

6

7

8

9

10

11

12

13
14

15

(a)

0
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

(b)

Figure 8.2: Temperature sensing setup as a graph signal estimation problem.
(a) Local neighborhood for the sensing points n = 3, 6, and 8. These neighborhoods
are chosen using “domain knowledge” dictated by the local terrain and by taking into
account the sensor distance and altitude. Neighboring sensors for each of these sensing
locations (vertices) are chosen in a physically meaningful way and their relation is
indicated by the connectivity lines, that is, graph edges. (b) Local neighborhoods
for all sensing vertices, presented in a graph form (thick lines indicate the edges
from (a)).

147

“domain knowledge aware” local estimation takes the form

y(3) = x(3) + x(0) + x(14) + x(15) (8.2)
y(6) = x(6) + x(9) + x(10). (8.3)

For convenience, the full set of relations among the sensing points can
now be arranged into a matrix form, to give

y = x + Ax, (8.4)

where the adjacency matrix A, given in (8.5), indicates the connectiv-
ity structure of the sensing locations; this local connectivity structure
should be involved in the calculation of each y(n).

This simple real-world example can be interpreted within the graph
signal processing framework as follows:

• Sensing points where the signal is measured are designated as the
graph vertices, as in Figure 8.1.

A =

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1
0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0
0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

(8.5)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

148 Problem Statement: An Illustrative Example

W
=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
0

0
0.

97
0.

91
0

0
0

0
0

0
0

0
0.

05
0.

90
0.

94
0

0
0.

03
0

0
0

0
0

0
0.

37
0

0
0

0.
78

0
0

0
0.

03
0

0
0

0.
96

0
0.

95
0.

98
0

0
0

0
0

0
0

0.
97

0
0

0
0

0
0

0
0

0
0

0
0

0
0.

88
0.

96
0.

91
0

0
0

0
0

0
0

0
0

0.
06

0.
01

0.
01

0
0.

94
0

0
0

0.
96

0
0

0
0

0
0.

97
0.

01
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
62

0.
40

0
0

0
0

0
0

0
0.

95
0

0
0

0
0

0.
94

0
0

0
0

0
0

0
0

0
0.

98
0

0
0.

97
0

0.
94

0
0

0
0

0
0

0
0

0
0.

37
0

0
0

0.
01

0.
62

0
0

0
0.

25
0

0
0

0
0

0
0

0
0

0.
06

0
0.

40
0

0
0.

25
0

0
0

0.
85

0
0

0
0

0
0

0.
01

0
0

0
0

0
0

0
0.

92
0

0
0

0
0

0
0

0.
01

0
0

0
0

0
0

0.
92

0
0

0.
01

0
0.

05
0.

78
0

0
0

0
0

0
0

0
0.

85
0

0
0

0
0

0.
90

0
0

0.
88

0.
94

0
0

0
0

0
0

0
0.

01
0

0
0

0.
94

0
0

0.
96

0
0

0
0

0
0

0
0

0
0

0
0

0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

(2.6)

149

L
=

 3.
77

0
0
−

0.
97
−

0.
91

0
0

0
0

0
0

0
0
−

0.
05
−

0.
90
−

0.
94

0
1.

19
−

0.
03

0
0

0
0

0
0
−

0.
37

0
0

0
−

0.
78

0
0

0
−

0.
03

2.
93

0
0
−

0.
96

0
−

0.
95
−

0.
98

0
0

0
0

0
0

0
−

0.
97

0
0

2.
81

0
0

0
0

0
0

0
0

0
0
−

0.
88
−

0.
96

−
0.

91
0

0
0

1.
94

0
0

0
0

0
−

0.
06
−

0.
01
−

0.
01

0
−

0.
94

0
0

0
−

0.
96

0
0

1.
94

0
0
−

0.
97
−

0.
01

0
0

0
0

0
0

0
0

0
0

0
0

1.
02

0
0
−

0.
62
−

0.
40

0
0

0
0

0
0

0
−

0.
95

0
0

0
0

1.
89
−

0.
94

0
0

0
0

0
0

0
0

0
−

0.
98

0
0
−

0.
97

0
−

0.
94

2.
89

0
0

0
0

0
0

0
0
−

0.
37

0
0

0
−

0.
01
−

0.
62

0
0

1.
24
−

0.
25

0
0

0
0

0
0

0
0

0
−

0.
06

0
−

0.
40

0
0
−

0.
25

1.
56

0
0
−

0.
85

0
0

0
0

0
0
−

0.
01

0
0

0
0

0
0

0.
93
−

0.
92

0
0

0
0

0
0

0
−

0.
01

0
0

0
0

0
0
−

0.
92

0.
94

0
−

0.
01

0
−

0.
05
−

0.
78

0
0

0
0

0
0

0
0
−

0.
85

0
0

1.
68

0
0

−
0.

90
0

0
−

0.
88
−

0.
94

0
0

0
0

0
0

0
−

0.
01

0
2.

74
0

−
0.

94
0

0
−

0.
96

0
0

0
0

0
0

0
0

0
0

0
1.

91

(2.7)

150 Problem Statement: An Illustrative Example

• Vertex-to-vertex lines which indicate physically meaningful con-
nectivity among the sensing points become the graph edges, as
in Figure 8.2(a).

• The vertices and edges form a graph, as in Figure 8.2(b), a new
very structurally rich signal domain.

• The graph, rather than a standard vector of sensing points, is
then used for analyzing and processing data, as it exhibits both
spatial and physical domain awareness.

• The measured temperatures are now interpreted as signal sam-
ples on graph, as shown in Figure 8.3.

• Similar to traditional signal processing, this new graph signal
may have many realizations on the same graph and may comprise
noise.

• Through relation (8.4), we have therefore introduced a simple
system on a graph for physically and spatially aware signal
averaging (a linear first-order system on a graph).

To emphasize our trust in a particular sensor (i.e., to model sensor
relevance), a weighting scheme may be imposed, in the form

y(n) = x(n) +
∑
m6=n

Wnmx(m), (2.8)

where Wnm are the elements of the weighting matrix, W.
There are three classes of approaches to the definition of graph edges

and their corresponding weights, Wnm:

• already physically well defined edges and weights,

• definition of edges and weights based on the geometry of vertex
positions,

• data similarity based methods for learning the underlying graph
topology.

151

0
12

3

4

5

6

7

8

9

10

11

12

13
14

15

0
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

SNRin = 14.2 dB

Figure 8.3: From a multi-sensor temperature measurement to a graph signal.
The temperature field is represented on a graph that combines the spatially un-
aware measurements in Figure 8.1(b) and the physically relevant graph topology in
Figure 8.2(b). The graph signal values are represented in two ways: (top) by vertical
lines for which the length is proportional to the signal values, and (bottom) by using
a “hot” colormap to designate the signal values at the vertices.

152 Problem Statement: An Illustrative Example

All the three approaches to define the edge weights are covered in detail
in Part III of this monograph.

Since in our case of geographic temperature measurements, the
graph weights do not belong to the class of obvious and physically
well defined edges and weights, we will employ the “geometry of the
vertices” based approach for the definition of the edges and weights.
In this way, the weight elements, Wnm, for the neighboring vertices
are calculated based on the horizontal vertex distance, rmn, and the
altitude difference, hmn, as

Wmn = e−αrmn−βhmn , (2.9)

where α and β are suitable constants. The so obtained weight matrix,
W, is given in (2.6).

Based on (8.4), a weighted graph signal estimator of cumulative
temperature now becomes

y = x + Wx. (2.10)

In order to produce unbiased estimates, instead of the cumulative sums
in (8.4) and (2.8), the weighting coefficients within the estimate for each
y(n) should sum up to unity. This can be achieved through a normalized
form of (2.10), given by

y = 1
2(x + D−1Wx), (2.11)

where the elements of the diagonal normalization matrix, D, are equal
to the degree matrix elements, Dnn = ∑

mWnm, while D−1W is a
random walk (diffusion) shift operator (Stanković et al., 2018b,
2019).

Now that we have defined the graph vertices and edge weights
we may resort to the data-agnostic clustering approaches, given in
Part I – Section 4.3, to cluster the vertices of this graph based on the
graph topology. Figure 8.4 shows the clustering result based on the
three smoothest eigenvectors, u1, u2, and u3 (excluding the constant
eigenvector, u0), of the graph Laplacian matrix, L = D −W, given
in (2.7). Notice that even such a simple graph clustering scheme was
capable of identifying different physically meaningful geographic regions.

153

0
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

Figure 8.4: Clustering of the graph from Figure 8.2(b) based on the graph Laplacian
eigenvectors, u1, u2, and u3. Observe the correct clustering of the graph into the
clusters that belong to the seaside area (blue), low mountains (red), low land (yellow),
and high mountains (green).

This also means that temperature estimation can roughly be performed
within each cluster, which may even be treated as an independent graph
(see graph segmentation and graph cuts in Part I, Section 4), rather
than over the whole sensor network.

The above-introduced graph data estimation framework is quite
general and admits application to many different scenarios where, after
identifying a suitable graph topology, we desire to perform estimation on
data acquired on such graphs, the subject of this part of the monograph.

9
Signals and Systems on Graphs

In classical data analytics, a signal is sampled at successive, equally
spaced, time instants. This then dictates the ordering of signal samples,
with x(n) being preceded by x(n− 1) and succeeded by x(n+ 1). The
“time distance” between data samples is therefore an inherent parameter
in standard data processing algorithms. The relation between sampling
instants can also be represented in a graph form, whereby the vertices
that correspond to the instants when the signal is sampled and the
corresponding edges define the linear sampling (vertex) ordering. The
equally spaced nature of sampling instants in classical scenarios can then
be represented with equal weights for all edges (for example, normalized
to 1), as shown in Figure 9.1.

Algorithms defined in discrete time (like, for example, those based
on the DFT or other similar data transforms), usually assume peri-
odicity of the analyzed signals, which means that sample x(N − 1) is
succeeded by sample x(0), in a perpetual sequence. Notice that this case
corresponds to the circular graph, shown in Figure 9.2, which allows us
to use this model in many standard data transforms, such as the DFT,
DCT, wavelets, and to define graph-counterparts of other processing
algorithms, based on these transforms.

155

156 Signals and Systems on Graphs

Figure 9.1: Directed path graph representation of a classical time-domain signal
defined on an equidistant discrete-time grid.

Figure 9.2: Graph representation of periodic data. (a) A directed circular graph.
(b) A periodic signal measured on a circular graph. Signal values, x(n), are designated
by vertical lines at the corresponding vertex, n.

A signal on a general (including also circular) undirected graph
is defined by associating real (or complex) data values, x(n), to each
vertex, as shown in Figures 9.3 and 9.4. Such signal values can be
arranged in a vector form

x = [x(0), x(1), . . . , x(N − 1)]T ,

so that a graph may be considered as a generalized signal domain.
This allows, in general, for any linear processing scheme for a graph

signal observed at a vertex, n, to be defined as a linear combination of
the signal value, x(n), at this vertex and the signal samples, x(m), at
the neighboring vertices, that is

y(n) = x(n)h(n, n) +
∑
m∈Vn

x(m)h(m,n), (9.1)

157

Figure 9.3: Undirected circular graph (a) and signal on the graph (b). Signal values,
x(n), are presented as vertical lines at the corresponding vertex, n.

Figure 9.4: Arbitrary undirected graph (a) and signal on graph (b). Signal values,
x(n), are presented as vertical lines at the corresponding vertex, n.

158 Signals and Systems on Graphs

where Vn is the set of vertices in the neighborhood of vertex n, and
h(m,n) are the scaling coefficients.
Remark 38: The estimation form in (9.1) is highly vertex-dependent;
it is vertex-invariant only in a very specific case of regular graphs, where
Vn is a K-neighborhood of the vertex n, with h(n,m) = h(n−m).

We now proceed to define various forms of vertex-invariant filtering
functions, using shifts on a graph. These will then be used to intro-
duce efficient graph signal processing methods (Agaskar and Lu, 2013;
Sandryhaila and Moura, 2014a,b; Segarra and Ribeiro, 2016;
Venkitaraman et al., 2016; Wang et al., 2016; Yan et al., 2017).

9.1 Adjacency Matrix and Graph Signal Shift

Consider a graph signal, x, for which x(n) is the observed sample at
a vertex n. A signal shift on a graph can be defined as movement of
the signal sample, x(n), from its original vertex, n, along all walks of
length one, that is K = 1, that start at vertex n. If the signal shifted
in this way is denoted by x1, then its values can be defined using the
graph adjacency matrix, A, as

x1 = Ax. (9.2)

Example 39: As an illustration of a graph signal and its shifted version,
consider the signal on a circular graph from Figure 9.2(a). The original
signal, x, is shown in Figure 9.5(a), and its shifted version, x1, in
Figure 9.5(b). Another simple signal on the undirected graph from
Figure 9.4(a) is presented in Figure 9.6(a), with its shifted version,
x1 = Ax, shown in Figure 9.6(b).

A signal shifted by two graph shifts is obtained by further shifting
x1 = Ax by one shift. The resulting, twice shifted, graph signal is then
given by

x2 = Ax1 = A(A x) = A2 x.
Therefore, in general, an m times shifted signal on graph is

given by
xm = Axm−1 = Am x.

9.1. Adjacency Matrix and Graph Signal Shift 159

0

1
2

3

4

5
6

7

(a)

0

1
2

3

4

5
6

7

(b)

Figure 9.5: Graph shift operator on a directed graph (classical circular shift).
(a) Elements of a signal, x, shown as red lines on a directed circular graph. (b) The
shifted version, Ax, of the graph signal from (a). The adjacency matrix for this
graph is given in (2.14) in Part I.

Remark 39: Like the standard shift operator, the second order shift
of a graph signal is obtained by shifting the already once shifted
signal. The role of the shift operator is assumed by the adjacency
matrix, A.
Remark 40: While this section considers unweighted graphs with the
adjacency matrix, A, used as a shift operator, all presented results can
be directly applied to the more general class of weighted graphs, where
the shift is implemented by the weight matrix, W. The graph Laplacian
as a shift operator will be considered in the next section. We will also
summarize the various possible shift operators, including those based
on the normalized Laplacian and random walk matrices.

160 Signals and Systems on Graphs

0
1

2
3 4

56 7
(a)

0
1

2
3 4

56 7
(b)

Figure 9.6: Graph signal shift on an undirected graph. (a) A simple signal, x, on
an undirected graph. (b) Shifted version, Ax, of the graph signal from (a).

9.2 Systems Based on Graph Shifted Signals

Very much like in standard linear shift-based systems, a system on a
graph can be implemented as a linear combination of a graph signal, x,
and its graph shifted versions, Am x, m = 1, 2, . . . ,M − 1. The output
signal from a system on a graph can then be written as

y = h0A0 x + h1A1 x + · · ·+ hM−1AM−1 x =
M−1∑
m=0

hmAm x (9.3)

where A0 = I, by definition, and h0, h1, . . . , hM−1 are the system
coefficients. For a circular (classical linear system) graph, this relation
reduces to the well known Finite Impulse Response (FIR) filter, given by,

y(n) = h0x(n) + h1x(n− 1) + · · ·+ hM−1x(n−M + 1). (9.4)

Keeping in mind that the matrix Am describes walks of the length
K = m in a graph (see Property M2 in Part I), the output graph
signal, y(n), is calculated as a linear combination of the input graph

9.2. Systems Based on Graph Shifted Signals 161

signal values and the signal values observed at vertices belonging to the
(M − 1)-neighborhood of the considered vertex n.
Remark 41: When the minimal and characteristic polynomials are
of the same degree, a physically meaningful system order (M − 1)
should be lower than the number of vertices N , that is, M ≤ N . The
corresponding condition in classical signal analysis would be that the
number, M , of the system impulse response coefficients, hm, in (9.4)
should be lower or equal to the total number of signal samples, N (for
the graph in Figure 9.5 it means that the meaningful graph signal shifts
are m = 0, 1, 2, . . . , N − 1, since the shift for m = N reduces to the shift
for m = 0, the shift for m = N + 1 is equivalent to the shift for m = 1,
and so on). Therefore, in general, the system order (M − 1) should be
lower than the degree Nm of the minimal polynomial of the adjacency
matrix A. For more detail see Part I, Section 3.1.
Remark 42: Any system of order M − 1 ≥ Nm can be reduced to a
system of order Nm − 1.
Remark 43: If the system order is greater than or equal to the degree
of the minimal polynomial, M − 1 ≥ Nm, then there exist more than
one system producing the same output signal for a given input signal.
All such systems on a graph are called equivalent.

The statements in the last three remarks will be addressed in more
detail in Section 9.5, with their proofs also provided.
Example 40: Consider a signal on the graph from Figure 9.4(a), given
in Figure 9.7(a), and a linear system which operates on this graph,
defined by the coefficients h0 = 1, h1 = 0.5. Observe that this system
on a graph corresponds to a simple classical first-order weighted moving
average system. The output graph signal then represents a weighted
average of the signal value at a vertex n and the signal values at its
K = 1 neighborhood. The output graph signal is shown in Figure 9.7(b).
General system on graph. A system on a graph may be defined in
the vertex domain as

y = H(A)x, (9.5)
where H(A) is a vertex domain system (filter) function. A system on
a graph is then linear and shift invariant if it satisfies the following
properties of:

162 Signals and Systems on Graphs

Figure 9.7: Example of vertex domain signal filtering. (a) An arbitrary graph signal.
(b) The output signal obtained through a first-order (averaging) system on a graph,
defined as y = x + 0.5 Ax.

1. Linearity
H(A)(a1x1 + a2x2) = a1y1 + a2y2.

2. Shift invariance

H(A)[Ax] = A[H(A)x] = Ay.

Remark 44: A system on a graph defined by

H(A) = h0A0 + h1A1 + · · ·+ hM−1AM−1 (9.6)

is linear and shift invariant since AAm = AmA.

9.3. Graph Fourier Transform (GFT), Adjacency
Matrix Based Definition 163

9.3 Graph Fourier Transform (GFT), Adjacency Matrix
Based Definition

Classical exploratory data analysis often employs estimation of signals
in the spectral (Fourier) domain; this has led to a number of simple
and efficient algorithms. While standard spectral analysis employs an
equidistant grid in both time and frequency, following the ideas of a
system on a graph, we next show that spectral domain representations
of graph signals are naturally based on spectral decompositions of the
adjacency matrix or graph Laplacian.

The graph Fourier transform of a signal, x, is defined as

X = U−1x (9.7)

where X denotes a vector of the GFT coefficients, and U is a matrix
whose columns represent the eigenvectors of the adjacency matrix, A.
Denote the elements of the vector X by X(k), for k = 0, 1, . . . , N − 1,
and recall that for undirected graphs, the adjacency matrix is symmetric,
that is, AT = A, and that the eigenmatrices of a symmetric matrix
satisfy the property

U−1 = UT .

Remark 45: In the analysis of directed graphs, it is usually assumed
that the adjacency matrix, A, (for unweighted graphs) or the weight
matrix, W, (for weighted graphs) are diagonizable. However, these
matrices are not always diagonizable, and we have to resort to using
the standard Jordan normal form (Sandryhaila and Moura, 2014b).
A recently proposed pragmatic approach to address this issue is to first
employ the Jordan–Chevalley decomposition of a nondiagonizable matrix
(A or W) into its diagonalizable and nilpotent parts, and subsequently
use the diagonizable part (corresponding to the diagonal of the Jordan
normal form) to define shifts on a (modified) graph (Misiakos et al.,
2020).

The element, X(k), of the graph Fourier transform vector, X, there-
fore represents a projection of the considered graph signal, x(n), onto

164 Signals and Systems on Graphs

the k-th eigenvector of A (a basis function), given by

X(k) =
N−1∑
n=0

x(n)uk(n). (9.8)

In this way, the graph Fourier transform can be interpreted as a
set of projections (signal decomposition) onto the set of eigenvectors,
u0,u1, . . . ,uN−1, which serve as orthonormal basis functions.

The inverse graph Fourier transform is then straightforwardly ob-
tained from (9.7) as

x = U X, (9.9)
or element-wise

x(n) =
N−1∑
k=0

X(k)uk(n). (9.10)

Observe that, for example, for a circular graph from Figure 9.2, the
graph Fourier transform pair in (9.8) and (9.10) reduces to the standard
discrete Fourier transform (DFT) pair. For this reason, the transform
in (9.8) and its inverse in (9.10) are referred to as the graph Fourier
transform (GFT) and the inverse graph Fourier transform (IGFT).

9.4 System on a Graph in the GFT Domain

Consider a general system on a graph defined in (9.6),

y = H(A)x = (h0A0 + h1A1 + · · ·+ hM−1AM−1)x. (9.11)

Upon employing the spectral representation of the adjacency matrix,
A = UΛU−1, we have

y = (h0UΛ0U−1 + h1UΛ1U−1 + · · ·+ hM−1UΛM−1U−1)x
= U

(
h0Λ0 + h1Λ1 + · · ·+ hM−1ΛM−1)U−1 x

= UH(Λ)U−1 x, (9.12)

with the system on a graph transfer function

H(Λ) = h0Λ0 + h1Λ1 + · · ·+ hM−1ΛM−1, (9.13)

where Λ is the matrix of eigenvalues of A.

9.4. System on a Graph in the GFT Domain 165

A pre-multiplication of this relation with U−1, yields

U−1y = H(Λ)U−1 x. (9.14)

From (9.7), the terms U−1 y and U−1 x are respectively the GFTs of
the output graph signal, y, and the input graph signal, x, so that the
spectral domain system on a graph relation becomes

Y = H(Λ) X. (9.15)

The output graph signal in the vertex domain can then be calculated as

y = H(A)x = IGFT{H(Λ) X}. (9.16)
The element-wise form of the system on a graph in (9.15) is of the form

Y (k) = (h0 + h1λk + · · ·+ hM−1λ
M−1
k)X(k),

where λk denotes the kth eigenvalue of the adjacency matrix, A. From
(9.13) and the above equation, we can now define the transfer function
of a system on a graph in the form

H(λk) = Y (k)
X(k) = h0 + h1λk + · · ·+ hM−1λ

M−1
k . (9.17)

Remark 46: The classical linear system in (9.4) can be obtained directly
from its graph counterpart in (9.17) when the graph is directed and
circular. This is because the adjacency matrix of a directed circular
graph has eigenvalues λk = e−j2πk/N (see Part I, Section 3.2 for more
detail on directed circular graphs), which are identical to the samples
on the unit circle in classical DFT.

Similar to the z-transform in classical signal processing, for systems
on graphs we can also introduce the system transfer function in the
z-domain.
The z-domain transfer function of a system on a graph is defined as

H(z−1) = Z{hn} = h0 + h1z
−1 + · · ·+ hM−1z

−(M−1), (9.18)
for n = 0, 1, . . . ,M − 1. Obviously, from (9.17), we have

H(λk) = H(z−1)
∣∣
z−1=λk

.

166 Signals and Systems on Graphs

However, the definition of the z-transform for arbitrary graph signals,
x(n) and y(n), that would satisfy the relation Y (z−1) = H(z−1)X(z−1)
is not straightforward, which limits the application of the z-transform
on graphs. This will be discussed in more detail in Section 9.10.

9.5 Graph Signal Filtering in the Spectral Domain of the
Adjacency Matrix

The energy of a graph shifted signal is given by

‖x1‖22 = ‖Ax‖22 .

However, as shown in Figure 9.6, in general, the energy of a shifted
signal is not the same as the energy of the original signal, that is

‖Ax‖22 6= ‖x‖
2
2 .

On the other hand, in graph signal processing it is often desirable that
a graph shift does not increase signal energy. One such graph shift
operator is introduced below.
Remark 47: Using the matrix two-norm it is straightforward to show
that the ratio of energies of the graph shifted signal, Ax, and the
original graph signal, x, satisfies the relation

max
{
‖Ax‖22
‖x‖22

}
= max

{
xTATAx
‖x‖22

}
= λ2

max, (9.19)

where λmax = maxk |λk|, k = 0, 1, . . . , N − 1.

Normalization of the Adjacency Matrix

From (9.19), for the energy of a graph shifted signal, ‖Ax‖22, not to
exceed the energy of the original graph signal, ‖x‖22, we may employ
the normalized adjacency matrix, defined as

Anorm = 1
λmax

A (9.20)

as a graph shift operator within any system on a graph. While this kind
of normalization still does not make the shift on a graph isometric, the

9.5. Graph Signal Filtering in the Spectral Domain 167

energy of the signal shifted in this way is guaranteed not to be bigger
than the energy of the original graph signal, since

‖Anormx‖22 ≤ ‖x‖
2
2 .

The equality holds only for a very specific signal which is proportional
to the eigenvector that corresponds to λmax.

The basic shift on a graph, system on a graph, and graph spectral
domain representations can be implemented with the normalized adja-
cency matrix in (9.20) in the same way as with the original adjacency
matrix. An important property which does not apply to standard adja-
cency matrices is that the normalization of adjacency matrix yields a
simpler eigenvector and eigenvalue ordering scheme, as shown next.

Spectral Ordering of Eigenvectors of the Adjacency Matrix

For physically meaningful low-pass and high-pass filtering on a graph,
we need to establish the notion of spectral order. This, in turn, requires
a criterion to classify the eigenvectors (corresponding to the GFT basis
functions) into the slow-varying and fast-varying ones.
Remark 48: In classical Fourier analysis, the basis functions are or-
dered according to their frequency, whereby, for example, low-pass (slow
varying) basis functions are harmonic functions characterized by low
frequencies. On the other hand, the notion of frequency of the eigen-
vectors of the graph adjacency matrix, which serve as a basis for signal
decomposition, is not defined and we have to find another criterion to
classify or rank the eigenvectors. Again, we draw the inspiration from
classical Fourier analysis which suggests that the energy of the “signal
change” can be used instead of frequency to indicate the rate of change
of an eigenvector along time.
Energy of signal change. The first graph difference can be defined
for graph signals as a difference of the original graph signal and its
graph shift, that is,

∆x = x− x1 = x−Anormx.

In analogy to classical analysis, the energy of signal change can then
be defined as the energy of the first difference of a graph signal x, and

168 Signals and Systems on Graphs

takes the form

E∆x = ‖x−Anormx‖22 =
∥∥∥∥x− 1

λmax
Ax

∥∥∥∥2

2
.

When the graph signal assumes a specific form of an eigenvector,
x = u, of the adjacency matrix, A, the energy of this eigenvector change
is equal to

E∆u =
∥∥∥∥u− 1

λmax
λu
∥∥∥∥2

2
=
∣∣∣∣1− λ

λmax

∣∣∣∣2 , (9.21)

whereby the normalized adjacency matrix, Anorm, is used to bound the
energy of the shifted graph signal. In the derivation we have also used
Au = λu and ‖u‖22 = 1.

Now, the lower values of E∆u indicate that u is slow-varying,
E∆u = 0 indicates that the signal is constant, while larger values
of E∆u are associated with fast changes of u in time. The form in
(9.21) is also referred to as the two-norm total variation of a basis
function/eigenvector. Therefore, if the change in a basis function, u,
has a large energy, then the eigenvector, u, can be considered to belong
to the higher spectral content of the graph signal.
Remark 49: From (9.21), the energy of the rate of change of a graph
signal is minimal for λ = λmax and it increases as λ decreases (see
Figure 3.1 in Part I).

Now that we have established a criterion for the ordering of eigen-
vectors, based on the corresponding eigenvalues, we shall proceed to
define an ideal low-pass filter on a graph. The intuition behind low-pass
filtering in the graph domain is that such a filter should pass unchanged
all signal components (eigenvectors of A) for which the rates of change
are slower than that defined by the cut-off eigenvalue, λc (cf. cut-off
frequency), while all signal components (eigenvectors) which exhibit
variations which are faster than that defined by the cut-off eigenvalue,
λc, should be suppressed. The ideal low-pass filter in the graph domain
is therefore defined as

f(λ) =

1, for λ > λc,

0, for other λ.

9.5. Graph Signal Filtering in the Spectral Domain 169

0
1

2
3 4

56 7
0 1 2 3 4 5 6 7

(a) original signal, x = 3.2u7 + 2u6

0
1

2
3 4

56 7
0

1
2

3 4 5
6

7

(b) noisy signal, xε = x + ε

0
1

2
3 4

56 7
0 1 2 3 4 5 6 7

(c)

Figure 9.8: A low-pass graph signal filtering example. (a) Original signal, x =
3.2u7 + 2u6. (b) Noisy signal, xε = x + ε, at an SNR = 2.7 dB. (c) Filtered signal,
at an SNR = 18.8 dB. Ideal low-pass filtering based on the two highest eigenvalues
in the pass-band was applied. Note that if uk is an eigenvector then −uk is also an
eigenvector (eigenvectors sign ambiguity).

Example 41: Consider again the undirected graph from Figure 9.4(a)
on which we observe a graph signal shown in Figure 9.8(a), which is
constructed as a linear combination of two of the eigenvectors of the
adjacency matrix of this graph to give x = 3.2u7 + 2u6 (eigenvectors of
the adjacency matrix of the considered graph are presented in Part I,

170 Signals and Systems on Graphs

Figure 3.1). The signal is corrupted by additive white Gaussian noise,
ε, at the signal-to-noise (SNR) ratio of SNRin = 2.7 dB and the noisy
graph signal, xε = x + ε, is shown in Figure 9.8(b). This noisy signal is
next filtered using an ideal spectral domain graph filter with a cut-off
eigenvalue of λc = 1. The output signal, xf , is shown in Figure 9.8(c).
With SNRout = 18.8 dB, an increase in signal quality of 16.1 dB is
achieved with this type of filtering.

Remark 50: The energy of the rate of change of an eigenvector is con-
sistent with the classical DFT based filtering when λk = exp(−j2πk/N)
and λmax = 1.

Spectral Domain Filter Design

We shall denote by G(Λ) the desired graph transfer function of a system
defined on a graph. Then, a system with this transfer function can be
implemented either in the spectral domain or in the vertex domain.

In the spectral domain, the implementation is straightforward and
can be performed in the following three steps:

1. calculate the GFT of the input graph signal, X = U−1x,

2. multiply the GFT of the input graph signal by the graph transfer
function, G(Λ), to obtain the output spectral form, Y = G(Λ)X,
and

3. calculate the output graph signal as the inverse GFT of Y in Step
2, that is, y = UY.

This procedure may be computationally very demanding for large
graphs, where it may be more convenient to implement the desired filter
(or its close approximation) directly in the vertex domain.

For the implementation in the vertex domain, the task is to find the
coefficients (cf. standard impulse response) h0, h1, . . . , hM−1 in (9.3),
such that their spectral representation, H(Λ), is equal (or approximately
equal) to the desired G(Λ). This is performed in the following way. The
transfer function of the vertex domain system is given by (9.17) as
H(λk) = h0 + h1λ1

k + · · · + hM−1λ
M−1
k and should be equal to the

9.5. Graph Signal Filtering in the Spectral Domain 171

desired transfer function, G(λk), for k = 0, 1, . . . , N − 1. This condition
leads to a system of linear equations

h0 + h1λ
1
0 + · · ·+ hM−1λ

M−1
0 = G(λ0)

h0 + h1λ
1
1 + · · ·+ hM−1λ

M−1
1 = G(λ1)

...
h0 + h1λ

1
N−1 + · · ·+ hM−1λ

M−1
N−1 = G(λN−1). (9.22)

The matrix form of this system is then

Vλ h = g, (9.23)

where Vλ is the Vandermonde matrix form of the eigenvalues λk, given by

Vλ =

1 λ1

0 · · · λM−1
0

1 λ1
1 · · · λM−1

1
...

...
1 λ1

N−1 · · · λM−1
N−1

 (9.24)

and
h = [h0, h1, . . . , hM−1]T (9.25)

is the vector of system coefficients which need to be calculated to obtain
the desired

g = [G(λ0), G(λ1), . . . , G(λN−1)]T = diag(G(Λ)). (9.26)

Comments on the solution in (9.22):

1. Consider the case with N vertices and with all distinct eigenvalues
of the adjacency matrix (in other words, the minimal polynomial
is equal to the characteristic polynomial, Pmin(λ) = P (λ)).

(a) If the filter order, M , is such that M = N , then the solution
to (9.22) is unique, since the determinant of the Vandermonde
matrix is always nonzero.

(b) If the filter order, M , is such that M < N , then the system
in (9.22) is overdetermined. Therefore, the solution to (9.22)
can only be obtained in the least squares sense (as described
later in this section).

172 Signals and Systems on Graphs

2. If some of the eigenvalues are of a degree higher than one (minimal
polynomial order, Nm, is lower than the number of vertices, N)
the system in (9.22) reduces to a system of Nm linear equations
(by removing multiple equations which correspond to the repeated
eigenvalues λ).

(a) If the filter order, M , is such that Nm < M ≤ N , the
system in (9.22) is underdetermined. In that case (M −Nm)
filter coefficients are free variables and the system has an
infinite number of solutions, while all so obtained filters are
equivalent.

(b) If the filter order is such that M = Nm, the solution to the
system in (9.22) is unique.

(c) If the filter order is such that M < Nm, the system in (9.22)
is overdetermined and the solution is obtained in the least
squares sense.

3. Any filter of an order M > Nm has a unique equivalent filter of
order Nm. This equivalent filter can be obtained by setting the free
variables to zero, that is, hi = 0 for i = Nm, Nm + 1, . . . , N − 1.

Finding the system coefficients

Exact solution. For M = N = Nm, that is, when the filter order is
equal to the number of vertices and the order of minimal polynomial,
the solution to the system in (9.22) or (9.23) is unique and is obtained
from

h = V−1
λ g.

Least-squares solution. For the overdetermined case, when M < Nm,
the mean-square approximation of h = [h0, h1, . . . , hM−1]T in Vλh = g
is obtained by minimizing the squared error

e = ‖Vλh− g‖22 .

From ∂e/∂hT = 0 we then have

ĥ = (VT
λ Vλ)−1VT

λ g = pinv(Vλ)g.

9.5. Graph Signal Filtering in the Spectral Domain 173

Since M < Nm, the obtained solution, ĥ, is the least-squares approxi-
mation for Vλh = g. Given that this solution may not satisfy Vλh = g,
the designed coefficient vector, ĝ (its spectrum Ĝ(Λ)), obeys

Vλĥ = ĝ

which, in general, differs from the desired system coefficients, g (their
spectrum G(Λ)).
Example 42: Consider the unweighted graph from Figure 9.4(a) and
the task of the synthesis of a desired filter for which the frequency
response is described by

g = [0, 0, 0, 0, 0, 0.5, 1, 1]T .

This filter was designed for various filter orders M = 1, 2, 4, 6, using
(9.22) and the results are shown in Figure 9.9. For clarity, analytically,
the vertex domain realization of the filter with M = 4 is given by

y = 0.1734A0x + 0.3532A1x + 0.0800A2x− 0.0336A3x,

however, the exact frequency response ĝ = g is only obtained with
M = N = 8.

Polynomial (Chebyshev) Approximation of the System on a Graph Transfer
Function

Without loss of generality, it can be considered that the desired transfer
function, g = [G(λ0), G(λ1), . . . , G(λN−1)]T , consists of samples taken
from a continuous function of λ within the interval λmin ≤ λ ≤ λmax,
where λmin and λmax denote the minimum and maximum values of
{λ0, λ1, . . . , λN−1}, respectively. The variable λ of the desired transfer
function, G(λ), is continuous, and the system on graph uses only the
values at discrete points λ ∈ {λ0, λ1, . . . , λN−1}. Therefore, for a poly-
nomial approximation, P (λ), of the desired transfer function, G(λ), it
is important that the error at the points within the considered interval,
λmin ≤ λ ≤ λmax, is bounded and sufficiently small.

This problem is known in algebra as the min-max approximation, and
its goal is to find an approximating polynomial that has the smallest

174 Signals and Systems on Graphs

0

0.5

1

1.5

-1 1 3

0

0.5

1

1.5

-1 1 3

0

0.5

1

1.5

-1 1 3

0

0.5

1

1.5

-1 1 3

Figure 9.9: Design of a graph filter with a specified transfer function in the spectral
domain (cf. standard frequency response). The desired spectral response, G(λk), is
denoted by blue circles. Red asterisks designate the spectral response of the filter
designed in Example 42, denoted by Ĝ(λk), obtained with M filter coefficients, h0,
h1, . . . , hM−1, in the vertex domain.

maximum absolute error from the desired function value. The min-
max polynomials can be approximated by the truncated Chebyshev
polynomials, P (λ), which yield approximations of the desired function
having almost min-max behavior.

For this the reason, the approximation of the desired transfer func-
tion,G(λ), may be performed using the truncated Chebyshev polynomial

PM−1(z) = c0
2 +

M−1∑
m=1

cmTm(z), (9.27)

9.5. Graph Signal Filtering in the Spectral Domain 175

where Tm(z) are the Chebyshev polynomials defined as

T0(z) = 1,
T1(z) = z,

T2(z) = 2z2 − 1,
T3(z) = 4z3 − 3z,

...
Tm(z) = 2zTm−1(z)− Tm−2(z), (9.28)

with the variable λ being centered and normalized as

z = 2λ− (λmax + λmin)
λmax − λmin

, (9.29)

such that −1 ≤ z ≤ 1 (required by the Chebyshev polynomial definition).
The inverse mapping, from z to λ, is given by

λ = 1
2(z(λmax − λmin) + λmax + λmin).

Since the Chebyshev polynomials are orthogonal, with measure
dz/
√

1− z2, the Chebyshev coefficients, cm, for an expansion of the
desired function, G(z), into the polynomial series, PM−1(z), are easily
obtained as

cm = 2
π

∫ 1

−1
G(z)Tm(z) dz√

1− z2

= 2
π

∫ π

0
cos(mθ)G(cos(θ))dθ.

Example 43: Consider the unweighted graph from Figure 9.4(a) with
the desired transfer function

G(λ) = 1 + sign(λ− λ5)
2 .

The samples of G(λ) at the discrete points

λk ∈ {−2,−1.74,−1.28,−0.68,−0.41, 1.11, 1.81, 3.19},

correspond to the values of G(λk) in Example 42, Figure 9.9. Since the
minimum and maximum eigenvalues are λmin = −2 and λmax = 3.19,

176 Signals and Systems on Graphs

-1 1 3

0

1

-1 1 3

0

1

-1 1 3

0

1

-1 1 3

0

1

Figure 9.10: Design of a graph filter with a specified transfer function in the spectral
domain using the Chebyshev polynomial approximation of order (M − 1) with M
terms, T0(z), T1(z), . . . , TM−1(z). The desired spectral response, G(λ), is denoted
by blue dashed line and blue dots. Red lines designate the spectral response of the
designed Chebyshev approximation.

this yields the desired transfer function with a variable z within a
normalized interval, −1 ≤ z ≤ 1,

G(z) = 1 + sign(z − z5)
2 ,

where z5 is defined by (9.29) as

z5 = 2λ5 − (λ7 + λ0)
λ7 − λ0

= 0.2.

The Chebyshev series for (M − 1) = 3 is given by

PM−1(z) = 0.43 + 0.62T1(z) + 0.12T2(z)− 0.18T3(z)
= 0.31 + 1.16z + 0.24z2 − 0.72z3.

Upon the change of variables, z → λ, we obtain the form

P̄M−1(λ) = 0.07 + 0.36λ+ 0.11λ2 − 0.04λ3.

The approximations of the spectral domain transfer function of the
graph filter, using the Chebyshev polynomial of order (M − 1), with M
terms, are shown in Figure 9.10, for M = 2, 4, 6, and 11.

9.5. Graph Signal Filtering in the Spectral Domain 177

0
1

2
3 4

56 7
0 1 2 3 4 5 6 7

Figure 9.11: Vertex-domain filtering result for the noisy signal from Figure 9.8,
using the Chebyshev approximation of the desired transfer function from Figure 9.10
with M = 4.

Graph signal filtering can now be performed in the vertex domain
using

y = P̄M−1(A)x,
where

P̄M−1(A) = 0.07 + 0.36A + 0.11A2 − 0.04A3.

The result of the vertex domain filtering using P̄M−1(A) is shown
in Figure 9.11 for the noisy signal from Figure 9.8, with the SNR
improvement of 16.76 dB.
Calculation complexity. If the number of nonzero elements in the
adjacency matrix, A, is NA, then the number of arithmetic operations
(additions) to calculate Ax is of NA order. The same number of oper-
ations is required to calculate A2x = A(Ax) using the available Ax.
This means that the total number of arithmetic operations (additions)
to calculate all Ax, A2x, . . . ,AM−1x is of order MNA. Adding these
terms requires additional MNA arithmetic operations (additions), while
the calculation of all terms of the form cmAmx requires an order of
MNA multiplications by constants cm, m = 0, 1, . . . ,M − 1. Therefore,
to calculate the output graph signal, y = P̄M−1(A)x, an order of 2MNA
additions and MNA multiplications is needed. Notice that the eigen-
analysis of the adjacency matrix, A, requires an order of N3 arithmetic
operations. For large graphs, the advantage in calculation complexity
of the vertex domain realization with the polynomial transfer function
approximation, y = P̄M−1(A)x, is obvious.

178 Signals and Systems on Graphs

As is common place in standard filter design theory, the transition
intervals of the approximated transfer function, G(λ), can be appropri-
ately smoothed, to improve the approximation.

In general, the mapping in (9.29) from λ to z can be written as z =
aλ+b, where a = 2/(λmax−λmin) and b = −(λmax+λmin)/(λmax−λmin).
The Chebyshev polynomial series in λ is then of the form

P̄M−1(λ) = c0
2 +

M−1∑
m=1

cmT̄m(λ), (9.30)

with T̄0(λ) = 1, T̄1(λ) = aλ+ b, and

T̄m(λ) = 2(aλ+ b)T̄m−1(λ)− T̄m−2(λ),

for m ≥ 2.
The same relations hold for

P̄M−1(A) = c0
2 +

M−1∑
m=1

cmT̄m(A). (9.31)

This change of variables admits recursive calculation, as in (9.28).

9.5.1 Inverse System on a Graph

A system on a graph,H(Λ), which represents an inverse of the system on
a graph, given by G(Λ), can be obtained from their generic relationship

H(Λ)G(Λ)X = X.

According to (9.26), this in turn means that if all G(λk) 6= 0 and
P (λ) = Pmin(λ), then H(λk) = 1/G(λk) for each k.

9.6 Graph Fourier Transform Based on the Laplacian

Similar to the graph Fourier transform based on the adjacency matrix,
spectral representation of a graph signal can be alternatively based on
eigenvalue decomposition of the graph Laplacian, given by

L = UΛU−1

or LU = UΛ.

9.6. Graph Fourier Transform Based on the Laplacian 179

Although the analysis can be conducted in a unified way for spectral
decompositions based on both the adjacency matrix and the graph Lapla-
cian, due to their different behavior and scope of application, these will
be considered separately.

The graph Fourier transform of a signal, x, which employs the graph
Laplacian eigenvalue decomposition to define its basis functions, is

180 Signals and Systems on Graphs

given by
X = U−1x, (9.32)

where the matrix U comprises in its columns the eigenvectors of the
graph Laplacian. The inverse graph Fourier transform then follows
immediately in the form

x = U X. (9.33)
In the case of undirected circular unweighted graph, such as the

graph in Figure 9.3(a), this Laplacian based spectral analysis reduces
to the standard Fourier transform, but with real-valued basis functions
(eigenvectors), as shown in Part I, Section 3.3.2.

9.7 Ordering and Filtering in the Laplacian Spectral Domain

As shown in Section 9.5, the graph shift and the adjacency matrix are
related to the first finite difference of eigenvectors in the vertex domain,
while the rate of the eigenvector change is related to its corresponding
eigenvalue (cf. standard frequency). A similar approach can be used
for the Laplacian based eigendecomposition. We have seen that for
standard time domain signals, the Laplacian of a circle graph represents
the second order finite difference, y(n), of a signal u(n), that is

y(n) = −u(n− 1) + 2u(n)− u(n+ 1),

as shown in Section 3.3 in Part I. A compact expression for all elements
of the Laplacian can then be written in a matrix form as y = Lu. It
is now obvious that the eigenvectors, u, which exhibit small variations
should also have a small cumulative energy of the second order difference

Eu =
∑
n

[(u(n)− u(n− 1))2 + (u(n)− u(n+ 1))2]/2.

Recall that this expression corresponds to the quadratic form of the
eigenvector, u, defined by Eu = uTLu.

The above reasoning for the Laplacian quadratic form can also be
used for graph signals. As a default case for the Laplacian analysis we
will consider undirected weighted graphs, where by definition

Lu = λu, uTu = 1

9.7. Ordering and Filtering in the Laplacian Spectral Domain 181

or
uTLu = λuTu = λ = Eu.

This means that the quadratic form of an eigenvector, uk, is equal to
its corresponding eigenvalue. This is elaborated in detail in Section 4.2
in Part I, where we have shown that

uTkLuk = λk = 1
2

N−1∑
n=0

N−1∑
m=0

Wnm(uk(n)− uk(m))2 ≥ 0. (9.34)

Obviously, a small uTkLuk = λk implies a small variation ofWnm(uk(n)−
uk(m))2 in the eigenvector uk, and for each vertex n. Consequently, the
eigenvectors corresponding to small λk correspond to the low-pass part
of a graph signal. In other words, the smaller the smoothness index
(curvature), uTkLuk = λk, the smoother the eigenvector, uk.

An ideal low-pass filter in the Laplacian spectrum domain, with a
cut-off eigenvalue λc, can be therefore defined as

f(λ) =

1, for λ < λc

0, for other λ.

Example 44: Consider a signal on the undirected graph from Figure 2.2
in Part I, shown in Figure 9.12(a). This graph signal is generated as a
linear combination of two Laplacian eigenvectors (which correspond to
the slow-varying signal part), to give x = 2u0 + 1.5u1. The Laplacian
eigenvectors of the considered graph are presented in Part I, Figure 3.4,
while the considered graph signal is shown in Figure 9.12(a). The
original signal, x, was then corrupted by white Gaussian noise at the
signal-to-noise ratio of SNRin = −1.76 dB, and shown in Figure 9.12(b).
Next, this noisy graph signal was filtered using an ideal spectral domain
graph filter, with a cut-off eigenvalue λc = 2, to obtain the filtered
signal, xf , shown in Figure 9.12(c). The so achieved output SNR was
SNRout = 21.29 dB, that is, despite its simplicity, the graph filter
achieved a gain in SNR of 23.05 dB, as compared to the noisy signal in
Figure 9.12(b).

To further illustrate the principle of graph filtering, the noisy signal
from Figure 8.3 was filtered using a filter with the spectral cut-off at
λc = 0.25 and the result is shown in Figure 9.13. The same signal was

182 Signals and Systems on Graphs

0
1

2
3 4

56 7 0 1 2 3 4 5 6

7

(a) original signal

0
1

2
3 4

56 7 0

1

2 3 4 5 6

7

(b) noisy signal

0
1

2
3 4

56 7 0 1 2 3 4 5 6

7

(c)

Figure 9.12: Graph signal filtering example. (a) Original signal. (b) Noisy signal.
(c) Filtered signal. Low pass filtering was performed based on the two lowest eigen-
values of the graph Laplacian.

also filtered using a polynomial approximation to the low-pass system,
as illustrated in Figure 9.14.
Laplacian versus adjacency-based GFT for regular graphs.
A direct relation between the adjacency-based and Laplacian-based
spectral decomposition can be established for J -regular unweighted

9.7. Ordering and Filtering in the Laplacian Spectral Domain 183

0
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

SNRout = 19.43 dB

Figure 9.13: Denoising results for the noisy signal from Figure 8.3, which was
filtered using a low-pass graph filter with λc = 0.25.

graphs (see Equation (2.13) in Part I), for which

L = J I−A

to yield
λ

(A)
k = J − λ(L)

k ,

where the eigenvalues of the adjacency matrix and the graph Laplacian
are respectively denoted by λ(A)

k and λ(L)
k , while they share the same

eigenvectors.
Remark 51: Rank-ordering of the eigenvectors, uk, from low-pass
to high-pass, which is based on the respective eigenvalues, λ(A)

k and
λ

(L)
k , yields exactly opposite ordering for these two graph spectral

decompositions. For example, the smoothest eigenvector is obtained for
mink λ(L)

k = λ
(L)
0 = 0 or for maxk λ(A)

k = λmax = J − λ(L)
0 = J .

184 Signals and Systems on Graphs

0
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

SNRout = 21.31 dB

Figure 9.14: Graph filtering of a noisy signal from Figure 8.3, using a fourth-order
system given by y = h0L0 x + h1L1 x + h2L2 + h3L3 + h4L4.

9.8 Systems on a Graph Defined Using the Graph Laplacian

Following on the discussion in Section 9.2 and Equation (9.3), a system
on a graph, defined using the graph Laplacian, has the form

y = h0L0 x + h1L1 x + · · ·+ hM−1LM−1 x

=
M−1∑
m=0

hmLm x. (9.35)

For an unweighted graph, this definition of a system on a graph can
be related to the corresponding adjacency matrix form as L = D−A.

The spectral domain description of a system on a graph is
then obtained through the Laplacian eigenvalue decomposition, to yield

y = UY =
M−1∑
m=0

hmLm x = H(L)x

= UH(Λ)UTx = UH(Λ)X, (9.36)

9.8. Systems on a Graph Defined Using the Graph Laplacian 185

where we used the property of the eigendecomposition of matrix
polynomial,

H(L) =
M−1∑
m=0

hmLm =
M−1∑
m=0

hmUΛmUT = UH(Λ)UT (9.37)

described in Section 3.2.3 in Part I, and the notation

H(Λ) =
M−1∑
m=0

hmΛm (9.38)

to obtain
Y = H(Λ)X

or in an element-wise form

Y (k) = H(λk)X(k), k = 0, 1, . . . , N − 1.

In the vertex domain, the n-th element of the output signal, y =
UH(Λ)UTx, of a system on a graph is given by

y(n) =
N−1∑
k=0

N−1∑
i=0

x(i)uk(i)H(λk)uk(n) =
N−1∑
i=0

x(i)hn(i), (9.39)

for which the transfer function is defined by

H(λk) = h0 + h1λk + · · ·+ hM−1λ
M−1
k (9.40)

and the graph impulse response is

hn(i) =
N−1∑
k=0

H(λk)uk(n)uk(i) = Tn{h(i)}. (9.41)

Remark 52: The expression for y(n) in (9.39) can be interpreted as a
generalized convolution on graphs, which is performed using a generalized
graph shift of the impulse response, hn(i), in the vertex domain (see
also Part III).

We next proceed to describe the generalized convolution on graphs
through responses to the unit delta pulses. For illustration, consider the
delta function located at a graph vertex m, given by

δm(n) =

1, for m = n

0, for m 6= n
(9.42)

186 Signals and Systems on Graphs

with the corresponding GFT

∆(k) =
N−1∑
n=0

δm(n)uk(n) = uk(m), (9.43)

which is defined based on graph Laplacian eigenvectors.
Observe that, similar to the standard time domain, any graph signal

can be written as a sum of delta functions at the graph vertices, that is

x(n) =
N−1∑
i=0

x(i)δn(i)

or in a vector form

x =
N−1∑
i=0

x(i)δi,

where δi is a vector with elements δ(n − i), as in (9.42). Then, the
system output, y, takes the form

y =
M−1∑
m=0

hmLm x = UH(Λ)UTx

=
N−1∑
i=0

x(i)UH(Λ)UTδi

and its elements are obtained as

y(n) =
N−1∑
i=0

x(i)
N−1∑
k=0

uk(n)H(λk)uk(i) =
N−1∑
i=0

x(i)hn(i),

where hn(i) are related to H(λk) as in (9.41).
Remark 53: According to (9.36), the form of the graph convolution
operator for a vertex n, given in (9.39), is localized within the (M − 1)-
neighborhood of the vertex n. This localization property is even more
important for large graphs.

A generalized convolution for two arbitrary graph signals will be
addressed next.

9.9 Convolution of Signals on a Graph

Consider two graph signals, x(n) and h(n). A generalized convolution
operator for these two signals on a graph is defined using their graph

9.9. Convolution of Signals on a Graph 187

Laplacian spectra (Shuman et al., 2016), based on the assumption that
the spectrum of a convolution on a graph

y(n) = x(n) ∗ h(n)

is equal to the product of the corresponding spectra of graph signals,
x(n) and h(n), that is

Y (k) = X(k)H(k), (9.44)

in the element-wise form. The output of the generalized graph convo-
lution operation, x(n) ∗ h(n), is then equal to the inverse GFT of the
spectral product Y (k) in (9.44), that is

y(n) = x(n) ∗ h(n)

=
N−1∑
k=0

Y (k)uk(n) =
N−1∑
k=0

X(k)H(k)uk(n),

where

H(k) =
N−1∑
n=0

h(n)uk(n). (9.45)

Notice the difference between the definition of H(k) in (9.45) and H(λk)
in (9.40). Both these forms will be discussed in more detail in the next
section.

Shift on a graph – an alternative definition. The above framework
of generalized graph convolution can also serve as a basis for a convenient
definition of a shift on a graph. Consider the graph signal, h(n), and
the delta function located at a vertex m. Here, we will use hm(n) to
denote the shifted version of the graph signal, h(n), “toward” a vertexm.
This kind of shifted signal will be defined following the reasoning in
classical signal processing where the shifted signal is obtained as a
convolution of the original signal and an appropriately shifted delta
function. Therefore, a graph shifted signal is here defined through a
generalized graph convolution, h(n) ∗ δm(n), whose GFT is equal to
H(k)uk(m), according to (9.43) and (9.44). The graph shifted signal is
then the IGFT of H(k)uk(m), that is

hm(n) = h(n) ∗ δm(n) =
N−1∑
k=0

H(k)uk(m)uk(n). (9.46)

188 Signals and Systems on Graphs

The same relation follows when calculating the inverse GFT of
X(k)H(k), to yield

y(n) =
N−1∑
k=0

X(k)H(k)uk(n)

=
N−1∑
k=0

N−1∑
m=0

x(m)uk(m)H(k)uk(n)

=
N−1∑
m=0

x(m)hm(n) = x(n) ∗ h(n), (9.47)

where

hm(n) =
N−1∑
k=0

H(k)uk(m)uk(n) = Tm{h(n)} (9.48)

is another version of graph shifted signal. Since the definition of H(k)
as a GFT of a signal h(n) differs from that in (9.40), these produce
different shift operations, which are respectively denoted by Tm{h(n)}
and Tm{h(n)}.
Remark 54: Note that neither of the two shift operations, (9.41) or
(9.48), satisfy the property that a shift by 0 is equal to the original
signal, h0(n) 6= h(n).
Example 45: Consider a signal on the graph from Figure 9.4(a), which
is defined by its graph Laplacian GFT, given by

H(k) = exp(−2λkτ),

with τ = 0.1573. All shifted signals, hm(n) = Tm{h(n)}, obtained using
the shift operator in (9.48), are shown in Figure 9.15.

9.10 The z-Transform of a Signal on a Graph

The relation between the graph signal shift operators, Tm{h(n)} and
Tm{h(n)}, which are respectively used to define the generalized convolu-
tions in (9.40) and (9.47), can be established based on the definitions of
H(λk) and H(k). Consider H(λk), defined by (9.40), as a graph Fourier
transform of signal h(n). The samples of the graph signal h(n) are then

9.10. The z-Transform of a Signal on a Graph 189

0 1 2 3 4 5 6 7

0
1

2

3
4

5

6
7

0 1 2 3 4 5 6 7

0
1

2

3
4

5

6
7

0 1 2 3 4 5 6 7

0
1

2

3
4

5

6
7

0 1 2 3 4 5 6 7

0
1

2

3
4

5

6
7

0 1 2 3 4 5 6 7

0
1

2

3
4

5

6
7

0 1 2 3 4 5 6 7

0
1

2

3
4

5

6
7

0 1 2 3 4 5 6 7

0
1

2

3
4

5

6
7

0 1 2 3 4 5 6 7

0
1

2

3
4

5

6
7

0 1 2 3 4 5 6 7

Figure 9.15: An example of graph shift operator. Top: The graph signal defined by
its Laplacian GFT, given by H(k) = exp(−2λkτ). Left and right column: The graph
signals hm(n) “shifted” for m = 0 to m = 7, calculated using hm(n) = Tm{h(n)} in
(9.48). The shifted signal is shown both on the vertex index line (left) and on the
graph itself (right).

190 Signals and Systems on Graphs

equal to the IGFT of H(λk), that is

h(n) =
N−1∑
k=0

H(λk)uk(n)

while the system coefficients hn, n = 0, 1, . . . ,M − 1, are related to
H(λk) by (9.40), that is

H(λk) = h0 + h1λk + · · ·+ hM−1λ
M−1
k .

For M = N , the vector forms of the last two relations are

[h(0), h(1), . . . , h(N − 1)]T = UH(Λ)
H(Λ) = Vλ[h0, h1, . . . , hN−1]T

so that the signal, h(n), and the coefficients, hn, can be related as

[h0, h1, . . . , hN−1]T = V−1
λ UT [h(0), h(1), . . . , h(N − 1)]T . (9.49)

Remark 55: In classical DFT (the case of a directed circular graph
and its adjacency matrix, when UH should be used instead of UT), the
signal samples, h(n), which are obtained as the inverse DFT of H(λk)
and the system coefficients, hn, are the same, since the eigenvalues
are equal to the corresponding shift operators in the spectral domain,
λk = exp(−j2πk/N) and uk(n) = exp(j2πnk/N)/

√
N = λ−nk /

√
N ,

with hn = h(n)/
√
N and

H(k) = 1√
N

N−1∑
n=0

h(n)e−j2πnk/N .

Therefore, for classical DFT analysis, the following relation holds
√
NVλ = (UH)−1.

This relation is obvious from (9.24) and u∗k(n) = λnk/
√
N , and will be

used to define the z-transform of a graph signal.
The z-transform of graph signals. For a given graph signal x =
[x(0), x(1), . . . , x(N − 1)]T , following the reasoning as in (9.49), the co-
efficients of a system [x0, x1, . . . , xN−1]T which corresponds to a system
transfer function that would have the same GFT as the graph signal

9.10. The z-Transform of a Signal on a Graph 191

itself are

[x0, x1, . . . , xN−1]T = V−1
λ UT [x(0), x(1), . . . , x(N − 1)]T

or
[x0, x1, . . . , xN−1]T = V−1

λ [X(0), X(1), . . . , X(N − 1)]T .

The graph z-transform of a signal x is therefore equal to the classic
z-transform of coefficients [x0, x1, . . . , xN−1]T ,

X(z−1) = Z{xn} = x0 + x1z
−1 + · · ·+ xN−1z

−(N−1) (9.50)

so that the following holds

Y (z−1) = H(z−1)X(z−1).

The output signal, y(n), can now be obtained as

[y(0), y(1), . . . , y(N − 1)]T = UVλ[y0, y1, . . . , yN−1]T ,

where the output graph signal, y(n), results from the inverse z-transform
of the coefficients, yn, that is

Y (z−1) = Z{yn} = y0 + y1z
−1 + · · ·+ yN−1z

−(N−1).

The z-transform representation in the complex valued z-domain may
be of interest when the eigenvalues are complex-valued, which occurs
in the decomposition of adjacency matrices of directed graphs. For
example, for the graph from Figure 2.1(b) in Part I and its adjacency
matrix, the eigenvalues are shown in Figure 9.16.

Definition: The analytic graph signal, Xa(k), and the graph Hilbert
transform, Xh(k), are defined in the spectral domain as

Xa(k) = (1 + sign(=(λk)))X(k)
Xh(k) = j sign(=(λk))X(k)
X(k) = Xa(k) + jXh(k),

where =(λk) denotes imaginary part of λk. If these relations are ap-
plied to the standard DFT with λk = e−j2πk/N we would obtain the
corresponding classical signal processing definitions.

192 Signals and Systems on Graphs

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

z-1 complex plane

Figure 9.16: Complex eigenvalues of the adjacency matrix of a directed graph in
Figure 2.1(b) in Part I.

9.11 Shift Operator in the Spectral Domain

A shift operation in the spectral domain can be defined in the same
way as the shift in the vertex domain. Consider a product of two graph
signals, x(n)y(n), defined on an undirected graph. The GFT of this
product then takes the form

GFT{x(n)y(n)} =
N−1∑
n=0

x(n)y(n)uk(n)

=
N−1∑
n=0

N−1∑
i=0

X(i)ui(n)y(n)uk(n) =
N−1∑
i=0

X(i)Yi(k),

where

Yi(k) =
N−1∑
n=0

y(n)ui(n)uk(n)

can be considered as a shift of Y (k) by i spectral indices.

9.13. Optimal Denoising 193

Remark 56: As desired, a shift by i = 0 in the spectral domain produces
the original value, Y0(k) = Y (k), up to a constant factor 1/

√
N . This

relation does not hold for the shift operators in the vertex domain.

9.12 Parseval’s Theorem on a Graph

Consider two graph signals, x(n) and y(n), which are observed on an
undirected graph and their spectra, X(k) and Y (k). Then, Parseval’s
theorem has the form

N−1∑
n=0

x(n)y(n) =
N−1∑
k=0

X(k)Y (k) (9.51)

and it holds for any two graph signals.
To prove Parseval’s theorem on graphs, consider

N−1∑
n=0

x(n)y(n) =
N−1∑
n=0

[N−1∑
k=0

X(k)uk(n)
]
y(n)

=
N−1∑
k=0

X(k)
N−1∑
n=0

y(n)uk(n), (9.52)

to yield Parseval’s equivalence between the energies in the original
vertex and spectral domains. It has been assumed that the graphs are
undirected, so that U−1 = UT holds. This theorem is quite general and
applies to both the graph Laplacian and the adjacency matrix based
decompositions on undirected graphs.

9.13 Optimal Denoising

Consider a measurement, x, composed of a slow-varying graph signal, s,
and a fast changing disturbance, ε, to give

x = s + ε.

The aim is to design a filter for disturbance suppression (denoising),
the output of which is denoted by y.

The optimal denoising task may then be defined as a minimization
of the objective function

J = 1
2‖y− x‖22 + αyTLy. (9.53)

194 Signals and Systems on Graphs

Physically, the minimization of the first term 1
2‖y−x‖22 forces the output

signal y to be as close as possible to the available observations x, in
terms of the energy of their Euclidean distance (minimum error energy),
while the second term represent a measure of smoothness of y (see
Section 9.7). This is also physically meaningful, as the original input, s,
was low-pass and smoother than the disturbance, ε. The parameter α
provides a balance between the closeness of output, y, to x and the
output smoothness criterion.

To solve this minimization problem, we differentiate
∂J

∂yT = y− x + 2αLy = 0

which results in
y = (I + 2αL)−1x.

The spectral domain form of this relation follows from L = UTΛU,
Y = UTy, and X = UTx, to yield

Y = (I + 2αΛ)−1X.

The element-wise transfer function of the above spectral input/output
relation then takes the form

H(λk) = 1
1 + 2αλk

. (9.54)

Remark 57: For a small α, we have H(λk) ≈ 1, that is, an all-pass
behavior of (9.54), with no signal smoothing, which yields y ≈ x. On
the other hand, for a large α, H(λk) ≈ δ(k). The resulting y ≈ const.
is maximally smooth (a constant output, without any variation).
Example 46: The noisy signal from Figure 8.3 was filtered using the
optimal filter in (9.54) with α = 1, and the result is shown in Figure 9.17.
The achieved SNR was 19.16 dB.
Other cost functions. Among many possible alternatives, we will
introduce two more cost functions for graph signal denoising, which
exploit different constraints imposed on the solution.

Instead of enforcing the smoothness of the output signal, we may
instead desire that its deviation from a linear form (which would satisfy

9.13. Optimal Denoising 195

0
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

SNRout = 19.16 dB

Figure 9.17: Graph signal denoising for a noisy signal from Figure 8.3, which is
filtered using an optimal filter in (9.54), with α = 1.

Ly = 0) is as small as possible. This can be achieved with the cost
function given by

J = 1
2‖y− x‖22 + α‖Ly‖22 = 1

2‖y− x‖22 + αyTL2y (9.55)

which yields a closed form denoising solution

y = (I + 2αL2)−1x

with the corresponding element-wise spectral domain relation H(λk) =
1/(1 + 2αλ2

k).
A combination of the two cost function forms in (9.53) and (9.55),

may provide additional flexibility in the design of the filter transfer
function, for example

J = 1
2‖y− x‖22 + αyTLy + βyTL2y

would yield the transfer function

H(λk) = 1
1 + 2αλk + 2βλ2

k

.

196 Signals and Systems on Graphs

This transfer function form can be further fine-tuned through the choice
of the parameters α and β. For example, if we desire the component
corresponding to λ1 6= 0 not to be attenuated, we would use α+βλ1 = 0.
Such a cost function can be straightforwardly extended to produce a
transfer function for M unattenuated components.

Sparsity promoting solutions. Some applications require to promote
the sparsity of the output graph signal, rather than its smoothness. Such
solutions then naturally rest upon compressive sensing theory which
requires the two-norm in the previous cost functions to be replaced with
the norms that promote sparsity. Two examples of such cost functions
are

J = 1
2‖y− x‖22 + α‖Ly‖pp (9.56)

and

J= 1
2

N−1∑
n=0

(y(n)−x(n))2+α
N−1∑
n=0

(
N−1∑
m=0

Wmn(y(n)− y(m))2
)p/2

(9.57)

with 0 ≤ p ≤ 1.
Remark 58: The zero-norm, `0, with p = 0, is the best in promoting
sparsity, since for p = 0 the second term in the cost function in (9.56)
counts (and minimizes) the number of nonzero elements in Ly. Mini-
mization of the sparsity of Ly promotes constant (or linear) solutions
for y, with the smallest number of discontinuities (nonzero elements
of vector Ly). In the second cost function in (9.57), the zero-norm
promotes the smallest possible number of nonzero elements of the term∑N−1
m=0 Wmn(y(n) − y(m))2; this is also known as the total variation

(TV) approach. However, the minimization of such objective functions
cannot be achieved in an analytic way, like in the standard MSE case
of p = 2.

On the other hand, the choice of p = 1 with one-norm, `1, makes
the above cost functions convex, allowing for gradient descend methods
be used to arrive at the solution, while producing the same solution
as with p = 0, under some mild conditions. The `1-norm serves as an
analytic proxy to the `0-norm (Kim et al., 2009).

9.14. Summary of Shift Operators for Systems on a Graph 197

9.14 Summary of Shift Operators for Systems on a Graph

The most common choices for the graph shift operator are: (i) adjacency
matrix, S = A, and (ii) graph Laplacian, S = L.

Various other operators can and have been used as shift operators in
systems on a graph, like: (a) normalized versions of the adjacency matrix,
(b) normalized graph Laplacian, S = D−1/2LD−1/2, (c) random walk
(diffusion) matrix, S = D−1W (Heimowitz and Eldar, 2017; Stanković
et al., 2019b), signed Laplacian, and Laplacian for directed graphs.

Various shift operators produce corresponding eigenvector (signal
decomposition) bases, such as those analyzed in Part I and given in
Table 9.1.

A generalized form of the output from a system on a graph can then
be written as

y = h0S0 x + h1S1 x + · · ·+ hM−1SM−1 x =
M−1∑
m=0

hmSm x, (9.58)

where, by definition S0 = I, while h0, h1, . . . , hM−1 are the system
coefficients.

In the next sections we will consider in detail the adjacency matrix
of unweighted (directed and undirected graphs) and graph Laplacian of
directed graphs.

Table 9.1: Summary of graph spectral basis vectors

Operator Eigenanalysis
Graph Laplacian Luk = λkuk
Generalized eigenvectors Luk = λkDuk

of graph Laplacian
Normalized graph Laplacian D− 1

2 LD− 1
2 uk = λkuk

Adjacency matrix Auk = λkuk
Normalized adjacency matrix

(
1

λmax
A
)
uk = λkuk

Laplacian for directed graphs Suk = λkuk
L = Din −W S = I− L

Sign Laplacian Lauk = λkuk
La = Da −W Da(m,m) =

∑N−1
n=0 |Wmn|

10
Subsampling, Compressed Sensing, and

Reconstruction

Graphs may comprise of a very large number of vertices, of the order of
millions or even higher. The associated computational and storage issues
bring to the fore the consideration of potential advantages of signal
subsampling and compressive sensing defined on graphs. We here present
several basic approaches to subsampling, along with their relations to
classical signal processing (Anis et al., 2016; Behjat et al., 2016; Chen
et al., 2015a,b,c, 2016; Leskovec and Faloutsos, 2006; Marques et al.,
2016; Narang and Ortega, 2011, 2012; Nguyen and Do, 2015; Puy et al.,
2018; Sakiyama and Tanaka, 2014; Segarra et al., 2015; Stanković, 2015;
Stanković et al., 2018b; Tanaka and Eldar, 2020; Tanaka and Sakiyama,
2014; Tremblay and Borgnat, 2016; Tsitsvero et al., 2016; Wang et al.,
2015).

10.1 Subsampling of Bandlimited Graph Signals

For convenience, we shall start from the simplest case where the con-
sidered graph signal is of a bandlimited nature. Such a signal can be
expressed as a linear combination of K < N eigenvectors of the graph

199

200 Subsampling, Compressed Sensing, and Reconstruction

Laplacian which exhibit the lowest smoothness indices,

x(n) =
K−1∑
k=0

X(k)uk(n), n = 0, 1, . . . , N − 1. (10.1)

The GFT domain coefficients of this (K-sparse) signal in the GFT
domain are of the following form

X = [X(0), X(1), . . . , X(K − 1), 0, 0, . . . , 0]T . (10.2)

Recall that a graph signal is sparse in the GFT domain if K � N .
The smallest number of graph signal samples, M , needed to recover the
sparse signal is therefore M = K < N . For stability of reconstruction,
it is common to employ K ≤M < N graph signal samples. The vector
of available graph signal samples will be referred to as the measurement
vector, and will be denoted by y, while the set of vertices (a random
subset of V = {0, 1, 2, . . . , N − 1}) over which the samples of graph
signal are available is denoted by

M = {n1, n2, . . . , nM}.

The measurement matrix can now be defined using the IGFT, x = U X,
of which an element-wise form is given by (10.1). The equations in
(10.1) corresponding to the available graph signal samples at vertices
n ∈M = {n1, n2, . . . , nM} then define the system

x(n1)
x(n2)

...
x(nM)

=

u0(n1) u1(n1) . . . uN−1(n1)
u0(n2) u1(n2) . . . uN−1(n2)

...
...

u0(nM) u1(nM) . . . uN−1(nM)

X(0)
X(1)
...

X(N − 1)

 ,
for which the matrix form is given by

y = AMNX, (10.3)

where AMN is the measurement matrix and the measurements vector

y = [x(n1) x(n2) . . . x(nM)]T

consists of the available graph signal samples. In general, since M < N

this system is underdetermined, and cannot be solved uniquely for X
without additional constraints.

10.1. Subsampling of Bandlimited Graph Signals 201

The assumption that the spectral representation of a signal contains
a linear combination of only K ≤M slowest varying eigenvectors allows
us to exclude the GFT coefficients X(K), X(K + 1), . . . , X(N − 1) in
(10.2) since these are zero-valued and do not contribute to the formation
of graph signal samples. With this in mind, the M × N system of
equations in (10.3) is reduced to the following M ×K system

x(n1)
x(n2)

...
x(nM)

=

u0(n1) u1(n1) . . . uK−1(n1)
u0(n2) u1(n2) . . . uK−1(n2)

...
...

u0(nM) u1(nM) . . . uK−1(nM)

X(0)
X(1)
...

X(K − 1)

 ,
or, in the matrix form

y = AMKXK , (10.4)

where the definitions of the reduced measurement matrix AMK and
the reduced GFT vector XK are obvious. For M = K independent
measurements, this system can be solved uniquely, while for M > K

the system is typically overdetermined and the solution is found in the
least squares (LS) sense, as Stanković et al. (2018b)

XK = (AT
MKAMK)−1AT

MKy = pinv(AMK)y, (10.5)

where pinv(AMK) = (AT
MKAMK)−1AT

MK is the matrix pseudo-inverse
of AMK .

After XK is calculated, all GFT values follow directly as X =
[X(0), X(1), . . . , X(K − 1), 0, 0, . . . , 0]T , where the assumed zero values
are added for X(K), X(K + 1), . . . , X(N − 1). The graph signal is
then recovered at all vertices using x = U X.

Recovery condition. The signal reconstruction in (10.5) is possible if
the inverse (AT

MKAMK)−1 exists, which means that

rank(AT
MKAMK) = K. (10.6)

In terms of the matrix condition number, this requirement is equiva-
lent to

cond(AT
MKAMK) <∞,

that is, a nonsingular AT
MKAMK .

202 Subsampling, Compressed Sensing, and Reconstruction

Remark 59: For noisy measurements of graph signals, the noise in
the reconstructed GFT coefficients is directly related to the input noise
and the matrix condition number. If we are able to choose the available
signal sample positions (vertices), then the sampling strategy would be
to find the set of measurements so that these produce the condition
number which is as close to unity as possible (for stability and reduced
influence of noise).
Example 47: To demonstrate the principle of reconstruction from a
reduced set of graph signal samples, consider the values of a graph
signal at M = 3 vertices, given by

y = [x(0), x(2), x(6)]T = [1.140, 0.996, 0.563]T ,

as shown in Figure 10.1 (upper panel). Assume that the graph signal
is of a bandlimited type, with K = 2 lowest nonzero GFT coefficients
X(0) and X(1). The GFT coefficients of this graph signal can then be
reconstructed from

y = A32X2, (10.7)

that follows from the definition in (10.1) for the assumed available signal
samples, x(n), at the three vertices n = 0, n = 2, and n = 6, for two
nonzero coefficients, X(0) and X(1),x(0)

x(2)
x(6)

 =

u0(0) u1(0)
u0(2) u1(2)
u0(6) u1(6)

[X(0)
X(1)

]
.

The rank of the matrix A32 is 2. The corresponding matrix condition
number is cond(AT

32A32) = 4.33, while the reconstructed nonzero values
of the GFT are X(0) = 2 and X(1) = 1, to yield the reconstructed
graph signal x = U X, with X = [2, 1, 0, 0, 0, 0, 0, 0]T , as shown in Figure
10.1 (lower panel).

Remark 60: For a directed circular graph, with the eigenvectors
uk(n) = exp(j2πnk/N)/

√
N , the above downsampling and interpo-

lation relations are identical to those in classical signal processing
(Stanković, 2015).

10.2. Subsampling of Sparse Graph Signals 203

0
1

2
3 4

56 7

×

×
×

××

0
1

2
3 4

56 7

Figure 10.1: Illustration of the subsampling of a lowpass graph signal. Top: A graph
signal with missing samples at vertices 1, 3, 4, 5, and 7. Bottom: The reconstructed
graph signal.

10.2 Subsampling of Sparse Graph Signals

The subsampling of graph signals which are sparse in the GFT domain
will be next considered for the cases of both known and unknown
positions of the nonzero GFT coefficients. This is a generalization of the
previous case with bandlimited signals when the positions of nonzero
GFT coefficients are assumed to be known and located at the spectral
indices from 0 to K − 1.

Known Coefficient Positions in GFT

The previous analysis in Section 10.1 holds not only for a bandlimited
type of the graph signal, x, and its corresponding GFT, X, but also
for case of GFT, X, with K nonzero values at arbitrary, but known
spectral positions, that is,

X(k) = 0 for k /∈ K = {k1, k2, . . . , kK}.

204 Subsampling, Compressed Sensing, and Reconstruction

Similar to (10.3), the corresponding system of equations
x(n1)
x(n2)

...
x(nM)

=

uk1(n1) uk2(n1) . . . ukK (n1)
uk1(n2) uk2(n2) . . . ukK (n2)

...
...

uk1(nM) uk2(nM) . . . ukK(nM)

X(k1)
X(k2)

...
X(kK)

 , (10.8)

of which the matrix form is y = AMKXK , is solved for the nonzero
spectral values X(k), k ∈ K, in the same way as in the case of a
bandlimited signal presented in Section 10.1.

Support Matrices, Subsampling and Upsampling

In graph signal processing literature, the subsampling problem is often
defined using the so called support matrices (Chen et al., 2015c; Lorenzo
et al., 2018; Tsitsvero et al., 2016). Assume that a graph signal, x,
is subsampled in such way that it is available on a subset of vertices
n ∈ M = {n1, n2, . . . , nM}, rather than on the full set of vertices. For
this subsampled signal, we can define its upsampled version, xs, by
adding zeros at the vertices where the signal is not available. Using a
mathematical formalism, the subsampled and upsampled version, xs, of
the original signal, x, is then

xs = Bx, (10.9)

where the support matrix B is an N × N diagonal matrix with ones
at the diagonal positions which correspond to M = {n1, n2, . . . , nM}
and zeros elsewhere. The subsampled and upsampled version, xs, of the
signal x is obtained is such a way that the signal x is subsampled on
a reduced set of vertices, and then upsampled by adding zeros at the
original signal positions where the subsampled signal is not defined.

Recall that in general a signal, x, with N independent values can-
not be reconstructed from its M < N nonzero values in xs, without
additional constraints. However, for graph signals which are also sparse
in the GFT domain, the additional constraint is that the signal, x, has
only K ≤ M nonzero coefficients in the GFT domain, X = UTx, at
k ∈ K = {k1, k2, . . . , kK}, so that the relation

X = CX

10.2. Subsampling of Sparse Graph Signals 205

holds, where the support matrix C is an N ×N diagonal matrix with
ones at the diagonal positions which correspond to K = {k1, k2, . . . , kK}
and zeros elsewhere. Note that the presence of the GFT, X, is on both
sides of this equation, contrary to xs = Bx in (10.9). The reconstruction
formula then follows from

xs = Bx = BUX = BUCX

as X = pinv
(
BUC

)
xs. The inversion

X = CX = pinv
(
BUC

)
xs

is possible for K nonzero coefficients of CX if the rank of BUC is K
(if there are K linearly independent equations), that is

rank(C) = K = rank
(
BUC

)
.

This condition is equivalent to (10.6) since the nonzero part of matrix
BUC is equal to AMK in (10.8).

Unknown Coefficient Positions

The reconstruction problem is more complex if the positions of nonzero
spectral coefficients K = {k1, k2, . . . , kK} are not known. This case has
been addressed within standard compressive sensing theory and can be
formulated as

min ‖X‖0 subject to y = AMNX, (10.10)

where ‖X‖0 denotes the number of nonzero elements in X (`0 pseudo-
norm).

While the ways to solve this minimization problem are manifold, we
here adopt a simple, two-step approach:

1. Estimate the positions K = {k1, k2, . . . , kK} of the nonzero coeffi-
cients using M > K signal samples.

2. Reconstruct the nonzero coefficients of X at the estimated posi-
tions K, along with the signal x at all vertices, using the methods
for the reconstruction with the known nonzero coefficient posi-
tions, described in Sections 10.1 and 10.2. The nonzero coefficients
at positions K are calculated as XK = pinv(AMK)y.

206 Subsampling, Compressed Sensing, and Reconstruction

The nonzero positions of the GFT in Step 1 can be estimated
through the projection of measurements (available signal samples), y,
on the measurement matrix

AMN =

u0(n1) u1(n1) . . . uN−1(n1)
u0(n2) u1(n2) . . . uN−1(n2)

...
...

u0(nM) u1(nM) . . . uN−1(nM)

to give

X0 = AT
MNy, (10.11)

where the positions of K largest values in absolute values of X0 are
used as an estimate of the nonzero positions, K.

This procedure can also be implemented in an iterative way
(Stanković et al., 2018b), where:

(i) In the first iteration we assume K = 1 and proceed to estimate
the largest spectral component (absolute value) in the graph
signal. Upon determining its position as k1 = argmax|AT

MNy|,
the initially empty set of the nonzero positions becomes K = {k1}.
The reconstructed vector y1 = A1X1, where X1 = pinv(AM1)y,
is then removed from the measurements, y. In this case, the matrix
AM1 is a column of the matrix AMN defined by the index k1. The
difference e = y − y1 is used as the measurement vector in the
next step.

(ii) The position of the second largest spectral component in the graph
signal is estimated by solving k2 = argmax|AT

MNe|. The set of
nonzero positions now becomes K = {k1, k2}. The first and the
second component of the graph signal are now (re)estimated as
X2 = pinv(AM2)y, where the matrix AM2 is a submatrix of the
measurement matrix, AMN , which consists of the columns defined
by the indices k1 and k2. The reconstructed vector y2 = A2X2, is
removed from the measurements, y, with the error, e = y− y2,
now acting as the new measurement vector.

(iii) The procedure is iteratively repeated K times or until the re-
maining measurement error values in e are negligible. In the cases

10.2. Subsampling of Sparse Graph Signals 207

0
1

2
3 4

56 7

× ×

× (a)

0
1

2
3 4

56 7
(b)

(c)0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 10.2: Compressive sensing on graphs. (a) Available samples (measurements),
y = [x(2), x(3), x(4), x(5), x(7)]T , with missing samples at n = 0, 1, 6. (b) Recon-
structed signal, x, over the whole set of vertices. (c) Initial estimate of the GFT,
X0(k), (left), and the reconstructed sparse GFT, X(k), (right).

when the sparsity, K, is unknown, the procedure is iterated until
‖e‖2 < ε, where ε is a predefined precision.

Example 48: Consider a sparse graph signal, of the sparsity degree
K = 2, measured at vertices n = 2, 3, 4, 5, and 7, which takes the values

y = [0.707, 1.307, 0.407, 1.307, 0.407]T ,

as shown in Figure 10.2(a). Our task is to reconstruct the full signal,
that is, to find the missing samples x(0), x(1), and x(6).

To estimate positions of the nonzero elements in the GFT, X, the
initial estimate, X0, is calculated for given measurements, y, according
to (10.11). The positions of K = 2 largest values in |X0| are estimated
as positions of the nonzero elements in X. In the considered case,

208 Subsampling, Compressed Sensing, and Reconstruction

K = {k1, k2} = {0, 3}, as shown in Figure 10.2(c). The GFT co-
efficients are then reconstructed for the sparsity degree K = 2, as
X2 = pinv(A52)y, resulting in X(0) = 2, X(3) = 1.2, as illustrated
in Figure 10.2(c–right). Finally, the reconstructed graph signal at all
vertices, x = UX, is shown in Figure 10.2(b).

Unique Reconstruction Conditions

When the positions of the nonzero coefficients are not known (stan-
dard compressive sensing setup), the uniqueness of the solution can be
compromised. To this end, it is crucial to establish that, for a given
reduced set of the graph signal samples at vertices M, the set of nonzero
positions, K, of the sparse vector, X, is unique. In order to define other
unique reconstruction conditions, we shall consider again the solution to
y = AMNX which assumes a minimum number of nonzero coefficients
in X. Assume that the sparsity degree K is known, then a set of K
measurements would yield a possible solution, XK , for any combination
of K nonzero coefficients in X. For another set of K measurements, we
would obtain another set of possible solutions, XK . Then, a common
solution between these two sets of solutions would be the solution to
our problem. For a unique solution, there are no two different K-sparse
solutions X(1)

K and X(2)
K if all possible matrices, AT

M2KAM2K , are non-
singular. Namely, both of these two different solutions would satisfy
measurement equations,

AM2K

X(1)
K

0K

 = y and AM2K

 0K
X(2)
K

 = y,

where AM2K = [A(1)
MK A(2)

MK]. Obviously, if we subtract these two
matrix equations we get a zero-vector on the right-side and a nonzero
solution for the resulting vector,

X2K =
[

X(1)
K

−X(2)
K

]
,

requires the zero-valued determinant of AM2K . The nonzero determinant
of AM2K guarantees that two such, nonzero solutions, X(1)

K and X(2)
K ,

10.2. Subsampling of Sparse Graph Signals 209

cannot exist. If all possible submatrices AM2K of the measurement
matrix AMK are nonsingular, then two solutions of sparsity K cannot
exist, and the solution is unique. The requirement that all reduced
measurement matrices corresponding to a 2K-sparse X are nonsingular
can be written in several forms, listed below

det{AT
M2KAM2K} = d1d2 . . . d2K 6= 0

cond{AT
M2KAM2K} = dmax

dmin
≤ 1 + δ2K

1− δ2K
<∞.

These conditions are satisfied if dmin > 0.
Remark 61: In classical compressive sensing, it is commonly assumed
that the measurement matrix is normalized in such a way that the
energy of each column is equal to one. Therefore, to be able to directly
use and/or compare the results from classical compressive sensing to
those for graph data, it is convenient to normalize the matrix AMK so
that its columns have unit energy. This is equivalent to the condition
that all diagonal elements of AT

MKAMK are equal to one.
Upon normalization, the measurement relation (10.8), becomes

y = AMKXK = AMKN−1
K NKXK ,

where NK is a diagonalK×K matrix, of which the elements are equal to
the square root of the energy of the corresponding columns in AMK , that
is, NK(k) =

√∑
m∈M |uk(m)|2. Upon introducing ĀMK = AMKN−1

K

and X̄K = NKXK , with the elements ūk(n) = uk(n)/NK(k) and
X̄(k) = X(k)NK(k), we obtain

y = ĀMKX̄K . (10.12)

With that, we may directly use the standard compressive sensing results
derived for the normalized measurement matrices. After the normalized
vector of sparse elements, X̄K = NKXK , is found, the reconstruction
of nonzero elements is given by XK = N−1

K X̄K , and the vertex domain
signal now becomes x = UX.

The reconstruction of a K-sparse signal is unique if the restricted
isometry property (RIP) is satisfied for a 2K-sparse signal, that is

1− δ2K ≤ dmin ≤
‖ĀM2KX̄2K‖22
‖X̄2K‖22

≤ dmax ≤ 1 + δ2K

210 Subsampling, Compressed Sensing, and Reconstruction

where di are the eigenvalues of ĀT
M2KĀM2K , dmin is the minimum

eigenvalue, dmax is the maximum eigenvalue, and δ2K is the restricted
isometry constant. All these conditions are satisfied if dmin > 0 or
0 ≤ δ2K < 1.

Noisy data require robust estimators, and thus more strict bounds
on dmin and δ2K . For example, it has been shown that the condition
0 ≤ δ2K < 0.41 will guarantee stable inversion of AT

M2KAM2K and
consequently a robust reconstruction for noisy signals; in addition, this
bound will allow for convex relaxation of the reconstruction problem
(Candes, 2008). Namely, the previous problem, (10.10), can be solved us-
ing the convex relaxation from the norm-zero to a norm-one formulation
given by

min ‖X‖1 subject to y = AMNX. (10.13)

The solutions to these two problem formulations are the same if the
measurement matrix satisfies the previous conditions, with 0 ≤ δ2K <

0.41.
Once the reconstruction of graph signals is formulated within the

compressive sensing framework in (10.10) and (10.13), it can be solved
using various well-established optimization techniques in this field, such
as gradient-based approaches, Bayesian-based reconstruction, and linear
programming methods (Candes, 2008; Stanković et al., 2018b).

As is the case with the standard compressive sensing problem, the
initial GFT estimate, X0, will produce correct positions of the nonzero
elements, X(k), and the reconstruction will be unique, if

K <
1
2

(
1 + 1

µ

)
,

where µ is equal to the maximum value of the inner product among any
two columns of the measurement matrix, ĀMN (µ is referred to as the
coherence index) (Stankovic et al., 2020).

For illustration of the uniqueness of reconstruction, recall that a
K-sparse signal can be written as

x(n) =
K∑
i=1

X(ki)uki(n) =
K∑
i=1

X̄(ki)ūki(n),

10.3. Measurements as Linear Combinations of Samples 211

of which the initial estimate in (10.11) is equal to X̄0 = ĀT
MNy =

ĀT
MNĀMNX̄, or element-wise

X̄0(k) =
K∑
i=1

X̄(ki)
∑
n∈M

ūk(n)ūki(n) =
K∑
i=1

X̄(ki)µ(k, ki),

where M = {n1, n2, . . . , nM} and

µ(k, ki) =
∑
n∈M

ūk(n)ūki(n).

If the maximum possible absolute value of µ(k, ki) is denoted by µ =
max |µ(k, ki)| (coherence index of AMN) then, in the worst case scenario,
the amplitude of the largest component, X(ki), (assumed with the
normalized amplitude 1), will be reduced for the maximum possible
influence of other equally strong (unity) components 1− (K − 1)µ, and
should be greater than the maximum possible disturbance at k 6= ki,
which is Kµ. From 1 − (K − 1)µ > Kµ, the unique reconstruction
condition follows; see also Stanković et al. (2018b) and Stankovic et al.
(2020).

10.3 Measurements as Linear Combinations of Samples

It should be mentioned that if some spectrum coefficients of a graph
signal are strongly related to only a few of the signal samples, then
these signal samples may not be good candidates for the measurements.
Example 49: Consider a graph with one of its eigenvectors of the
form close to ui(n) = δ(n − m). This case is possible on graphs, in
contrast to the classic DFT analysis where the basis functions are
spread over all sensing instants (vertices). A similar scenario is also
possible in wavelet analysis or short time Fourier transforms, which also
allow for some of the transform coefficients to be related to only a few
of the signal samples. In the assumed simplified case, if a considered
sparse signal contains a nonzero coefficient, X(i), corresponding to
ui(n) = δ(n−m), then all information about X(i) is contained in the
graph signal sample x(m) only. This is prohibitive to the principle of
reduced number of samples, since an arbitrary set of available samples
may not contain x(m).

212 Subsampling, Compressed Sensing, and Reconstruction

In classical and graph data analysis this class of problems is solved
by defining a more complex form of the measurements, y(n), through
linear combinations of all signal samples rather than the original sam-
ples themselves. In this way, each measurement, y(n), will contain
information about all signal samples, x(n), n = 0, 1, . . . , N − 1.

Such measurements are linear combinations of all signal samples,
and are given by

y(1)
y(2)
...

y(M)

=

b11 b12 . . . b1N
b21 b12 . . . b2N
...

...
bM1 bM2 . . . bMN

x(0)
x(1)
...

x(N − 1)

 ,
or in a matrix form

y = BMNx.
The weighting coefficients for the measurements, bmn, in the matrix,
BMN , may be, for example, drawn from a Gaussian random distribution.

For reconstruction, the sparsity of a graph signal, x, should be again
assumed in the GFT domain. The relation of the measurement vector, y,
with this sparsity domain vector of coefficients, X, is then given by

y = BMNx = BMNUX = AMNX.

The reconstruction is now obtained as a solution to

min ‖X‖0 subject to y = (BMNU)X

or as a solution of the corresponding convex minimization problem,

min ‖X‖1 subject to y = (BMNU)X,

as described in Section 10.2.

10.4 Aggregate Sampling

A specific form of a linear combination of graph signals is referred to as
aggregate sampling.

For clarity, we shall first establish an interpretation of sampling in
classical signal processing through its graph counterpart – sampling on

10.4. Aggregate Sampling 213

a directed circular graph (Figure 9.2). Consider a graph signal, x, at a
vertex/instant n. If the signal is observed at this vertex/instant only,
then its value is y0(n) = x(n). Upon applying the graph shift operator,
we have y1 = Ax, then for the same vertex, n, we have y1(n) = x(n−1).
If we continue this “shift and observe” operation on the directed circular
graph N times at the same vertex/instant, n, we will eventually have all
signal values x(n), x(n− 1), . . . , x(n−N + 1) observed at the vertex n.

To proceed with signal reconstruction, observe that if the shifts
are stopped after M < N steps, the available signal samples will
be x(n), x(n − 1), . . . , x(n − M + 1). From this reduced set of mea-
surements/samples we can still recover the full graph signal, x, using
compressive sensing based reconstruction methods, if the appropriate
reconstruction conditions are met.

Principle of aggregate sampling on an arbitrary graph. The
same procedure can be applied to a signal observed in the same way on
an arbitrary graph. Assume that we observe the graph signal at only
one vertex, n, and obtain one graph signal sample

y0(n) = x(n),

which will be considered as the measurement y(0) = y0(n).
This graph signal may now be “graph shifted” to produce y1 = Ax.

Recall that in a one-step signal shift on a graph, all signal samples
will move by one step along the graph edges, as described in detail in
Section 9.1 and illustrated in Figure 10.3. The sample of a graph signal
at vertex n will now be a sum of all signal samples that have shifted to
this vertex. Its value is obtained as an inner product of the mth row of
the adjacency matrix, A, and the original signal vector, x. The value of
graph shifted signal at the vertex n, is therefore given by

y1(n) =
∑
m

Anmx(m),

and represents a linear combination of some of the signal samples, which
is now considered as the measurement y(1) = y1(n).

One more signal shift on the graph yields

y2(n) =
∑
m

A(2)
nmx(m),

214 Subsampling, Compressed Sensing, and Reconstruction

Figure 10.3: Principle of aggregate sampling. (a) A graph signal x. (b) Its graph
shifted version Ax. For example, for a graph signal value observed at the vertex
n = 7 in the graph in (a) the measurement is y(0) = x(7), and the aggregate
measurement at the same vertex, n = 7, after the graph signal is shifted, is equal to
y(1) = x(4) + x(5) + x(6) in (b). These two observations, y(0) and y(1), would be
sufficient to reconstruct a signal whose sparsity degree is K = 2 with nonzero values
at the known spectral index positions, k1 and k2, if the reconstruction condition
(10.6) is satisfied for the matrix AMN = BMNU at the specified spectral index
positions.

where A(2)
nm are the elements of matrix A2 = AA (see Property M2 in

Part I, Section 2.3). Such an observed value, after two one-step shifts,
y2(n) at a vertex n, represents a new linear combination of some signal
samples and will be considered as the measurement y(2) = y2(n).

If we proceed with shifts M = N times, a system of N linear
equations, y = BMNx, is obtained from which all signal values, x(n),
can be calculated. If we stop atM < N , the signal can still be recovered
using compressive sensing based reconstruction methods if the signal is
sparse and the reconstruction conditions are met.

10.5. Random Sampling with Optimal Strategy 215

Instead ofM signal samples (instants) at one vertex, we may use, for
example, P samples at vertex n and (M − P) samples from a vertex m.
Other combinations of vertices and samples may be also used to obtain
M measurements and to fully reconstruct a signal.

10.5 Random Sampling with Optimal Strategy

Consider a realistic case of bandlimited signals on a graph. For conve-
nience, assume that they admit a representation through linear combi-
nations of K eigenvectors with the smallest eigenvalues, that is

x(n) =
K−1∑
k=0

X(k)uk(n).

Recall that, in graphs, the basis functions may be highly concentrated
at specific vertices; this means that for adequate graph sampling some
vertices are more important and are almost “must keep”, while some
vertices can be omitted (with a higher probability). For example, if
one of the eigenvectors, for k = 0, 1, . . . ,K − 1, is fully concentrated
at a certain vertex, then this vertex must be included in the sampling
scheme.

To this end, a sampling scheme with an adaptive strategy, proposed
by Puy et al. (2018), introduces the probability, pn, of a vertex n being
selected in the reduced set of signal samples (measurements) and finds
its optimal value using the graph weighted coherence.

To clarify this method, consider a signal which is equal to the delta
pulse at a vertex n = m, that is x(n) = δ(n−m). In the time domain,
the energy of this signal is completely concentrated at the vertex n = m,
with the GFT of this signal

∆m(k) =
N−1∑
n=0

x(n)uk(n) = uk(m).

The local graph weighted coherence then represents the energy of GFT
within the first K eigenvectors, and is given by

‖∆m‖22 =
K−1∑
k=0
|uk(m)|2 = ‖UT

Kx‖22 ≤ 1.

216 Subsampling, Compressed Sensing, and Reconstruction

The value of energy equal to 1 indicates that there exist a bandlimited
signal whose energy is completely concentrated at the vertex n = m,
and this vertex must be used in any successful sampling scheme. The
lower this value, the larger the spread of signal energy over vertices, so
that we can randomly pick any of these vertices.

With the probability of picking a vertex, pm, the graph weighted
coherence can now be defined as

νK = max
m
{p−1/2
m ‖∆m‖22}.

The optimal sampling distribution, p∗m, that minimizes the graph
weighted coherence is then equal to

p∗m = 1
K
‖∆m‖2.

This can be seen by recognizing that the energy of K normalized
eigenvectors equals to K, that is

K =
N−1∑
m=0

K−1∑
k=0
|uk(m)|2

since ∑N−1
m=0 |uk(m)|2 = 1, by definition. The above expression for p∗m

follows from

K =
N−1∑
m=0

K−1∑
k=0
|uk(m)|2 =

N−1∑
m=0

K−1∑
k=0

pm
|uk(m)|2
pm

≤ max
m

{
N−1∑
m=0

K−1∑
k=0

|uk(m)|2
pm

}
N−1∑
m=1

pm = ν2
K .

The sampling distribution, p∗n, is optimal in the sense that the
number of measurements needed to embed the set of K-bandlimited
signals is effectively reduced to its minimum value (Puy et al., 2018).
Example 50: Consider a very simple case of a graph with three dis-
connected components (sub-graphs). The number of vertices in these
graph components is N1 = 1 vertex, N2 = 2 vertices, and N3 = 4
vertices, denoted by n = 0, 1, 2, 3, 4, 5, 6, respectively. Assume that the
signal is constant over the three graph components, and only the three
(K = 3) lowest eigenvalues with λ0 = λ1 = λ2 = 0 are considered.

10.5. Random Sampling with Optimal Strategy 217

The corresponding nonzero eigenvector elements are u0(n) = 1, for
n = 0, u1(n) = 1/

√
2, for n = 1, 2, and u2(n) = 1/

√
4, for n = 3, 4, 5, 6.

Intuitively, in order to recover this graph signal we must have at
least M = 3 samples; also each graph component should contain a
sample.

We will now compare the two strategies: (1) Fully random selection
of samples; and (2) Selection of samples with probabilities defined as

p∗m = 1
K
‖∆m‖22 = 1

K

K−1∑
k=0
|uk(m)|2 = 1

3

2∑
k=0
|uk(m)|2,

which results in p∗m = (1/3, 1/6, 1/6, 1/12, 1/12, 1/12, 1/12) for m =
(0, 1, 2, 3, 4, 5, 6). Obviously, when using the optimal sampling strat-
egy the probability of selecting M = 3 samples from different sets
is much higher than when the samples are chosen randomly with
pm = (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7).

This kind of variable sampling density is also used in classical
compressive sensing to improve the density of samples where this is
needed due to signal variations. Two variants of this approach are
used: (1) with vertex replacement, when every selected vertex can be
chosen again; and (2) without vertex replacement, when a vertex can be
selected only once. Within the compressive sensing framework, taking
some samples several times means that these vertices are considered
with higher importance. Since the selection process accounts for the
importance of the vertices, we will assume the latter approach.

For large graphs, it is also very important to try to avoid the
eigenvector calculation and even to estimate the factor ‖∆m‖22 without
the eigendecomposition. One such method was introduced by Puy et al.
(2018) using random vectors and the property that an average of the
power of several random vectors, filtered by bandlimited filters to the
K lowest eigenvectors, can estimate the value of ‖∆m‖22. These filters
can be implemented using the described graph shifts.

Having in mind that the set of vertices,M, needs to be selected only
once to sample all K-bandlimited signals on a graph G, the problem
of the uniqueness of solution does not exist in this sampling setup, in
contrast to classical compressive sensing (meaning that in this case there

218 Subsampling, Compressed Sensing, and Reconstruction

is no need for sophisticated tools like the restricted isometry property,
since there is no possibility that two different sets of K nonzero elements,
with different indices k, satisfy the same measurements). Namely, here
we assume that the signal is bandlimited and with known indices of
nonzero spectral elements, X(k), that is, X(k) may assume nonzero
values only for k = 0, 1, 2, . . . ,K − 1. Once optimal sampling vertices
are selected, the problem reduces to the solution of

y = AMKXK , (10.14)

where the reduced measurement matrix, AMK , is well defined, without
any random combination of indices, while the reduced GFT vector,
XK , is already explained, with y containing the signal values at the
selected vertices. Since M ≥ K, the stability of this system solution is
well studied within linear algebra, with the condition number being the
best parameter for its description.

The reconstruction is performed using

XK = pinv(AMK)y

and
x = UKXK .

If the measurements, y, are noisy, then

y + ε = AMK(XK + XN),

where ε denotes additive noise, and XK + XN is the reconstructed
vector which contains the true elements, XK , and the noise in the
reconstruction, XN . Then, the output signal-to-noise ratio is defined
by the condition number (ratio of the maximum and the minimum
eigenvalue, dmax and dmin, of the matrix AT

MKAMK), to yield

−10 log
(
dmax
dmin

)
≤ SNRi − SNR ≤ 10 log

(
dmax
dmin

)
,

where the input and output signal-to-noise ratios are defined as

SNRi = 10 log(‖y‖22 / ‖ε‖
2
2)

and
SNR = 10 log(‖XK‖22 / ‖XN‖22).

10.5. Random Sampling with Optimal Strategy 219

Here, we have assumed that the columns of the measurement matrix
are energy normalized, for notation simplicity.

Other strategies for random sampling can be found, for example, in
Chen et al. (2015b, 2016) and Tanaka and Eldar (2020).

11
Filter Bank on a Graph

Subsampling and upsampling are the two standard operators used to
alter the scale at which the signal is processed. Subsampling of a signal
by a factor of 2, followed by the corresponding upsampling, can be
described in classical signal processing by

f(n) = 1
2(x(n) + (−1)nx(n)) = 1

2((1 + (−1)n)x(n)),

as illustrated in Figure 11.1.
This is the basic operation used in multiresolution approaches based

on filter banks and can be extended to signals on graphs in the following
way. Consider a graph with the set of vertices V. Any set of vertices
can be considered as a union of two disjoint subsets E and H, such that
V = E ∪H and E ∩H = ∅. The subsampling-upsampling procedure can
then be performed in the following two steps:

1. Subsample the signal on a graph by keeping only signal values on
the vertices n ∈ E , while not altering the original graph topology.

2. Upsample the graph signal by setting the signal values for the
vertices n /∈ E to zero.

221

222 Filter Bank on a Graph

2

2 2

Figure 11.1: Principle of a signal, x(n), downsampling and upsampling in the
classical time domain.

This combined subsampling-upsampling operation produces a graph
signal

f(n) = 1
2(1 + (−1)βE(n))x(n),

where

βE(n) =

0, if n ∈ E
1, if n ∈ H.

The values of the resulting graph signal, f(n), are therefore f(n) = x(n)
if n ∈ E and f(n) = 0 elsewhere.

The vector form of the subsampled-upsampled graph signal, f(n),
which comprises all n ∈ V, is given by

f = 1
2(x + JEx) = 1

2(I + JE)x, (11.1)

where JE = diag((−1)βE(n)), n ∈ V.
The focus of our analysis will be on the two-channel wavelet filter

bank on a graph, shown in Figure 11.2. As in the classical wavelet
analysis framework for the time domain signals, such a filter bank

223

+

Figure 11.2: Principle of a filter bank for a graph signal.

provides decomposition of a graph signal into the corresponding low-
pass (smooth) and high-pass (fast-varying) constituents. The analysis
side (left part of the system in Figure 11.2) consists of two channels with
filters characterized by the vertex domain operators HL(L) and HH(L),
with the corresponding spectral domain operators HL(Λ) and HH(Λ).
The operator HL(L) acts as a low-pass filter, transferring the low-pass
components of the graph signal, while the operator HH(L) does the
opposite, acting as a high-pass filter. The low-pass filter, HL(H), is
followed by a downsampling operator which keeps only the graph signal
values, x, at the vertices n ∈ E . Similarly, the high-pass filtering with
the operator HH(L), is subsequently followed by a downsampling to
the vertices n ∈ H. These operations are crucial to alter the scale at
which the graph signal is processed.

The synthesis side (right part in Figure 11.2), comprises the com-
plementary upsampling and filtering operations, aiming to perform
the graph signal reconstruction based on the upsampled versions,
1
2(I + JE)HL(L)x and 1

2(I + JH)HH(L)x, of signals obtained on the
filter bank analysis side. Therefore, upon performing the upsampling
of these signals onto the original set of vertices, V, by adding zeros to
the complementary sets of vertices, filtering is performed by adequate
low-pass, GL(L), and high-pass, GH(L), filters, to replace the zeros
with meaningful values, as required for a successful reconstruction of
the original signal. As in the classical wavelet analysis, to achieve the
perfect (distortion-free) reconstruction it is necessary to conveniently
design the analysis filters, HL(L) and HH(L), and the synthesis filters,

224 Filter Bank on a Graph

GL(L) and GH(L), as well as to determine adequate downsampling and
upsampling operators.

It will be shown that the spectral folding phenomenon, described by
Equations (3.9)–(3.10) in Part I, characterized by the specific spectral
symmetry in the case of bipartite graphs, can be used to form the basis
for the two-channel filter bank framework discussed in this section.

Consider a graph signal, x, and the filter-bank as in Figure 11.2. If the
graph signal, x, passes through a low-pass analysis filter, HL(L), the out-
put signal is HL(L)x. According to (11.1), the downsampled–upsampled
form of the output signal, HL(L)x, is given by 1

2(I + JE)HL(L)x. After
the syntheses filter, GL(L), the graph signal output becomes

fL = 1
2GL(L)(I + JE)HL(L)x. (11.2)

The same holds for the high-pass part

fH = 1
2GH(L)(I + JH)HH(L)x, (11.3)

where JH = −JE = diag((−1)1−βE(n)) and

JH + JE = 0. (11.4)

The overall output is a sum of these two signals, as illustrated in
Figure 11.2, which after rearranging of terms gives

y = fL + fH = 1
2(GL(L)HL(L) +GH(L)HH(L))x

+ 1
2(GL(L)JEHL(L) +GH(L)JHHH(L))x. (11.5)

The perfect reconstruction condition, y = x, is then achieved if

GL(L)HL(L) +GH(L)HH(L) = 2I, (11.6)
GL(L)JEHL(L)−GH(L)JEHH(L) = 0. (11.7)

Spectral solution. For the spectral representation of the filter-bank
signals in the domain of Laplacian basis functions, we will use the
decomposition of the graph Laplacian in the form

F = UT f = 1
2(UTx + UTJEx) = 1

2(X + X(alias)), (11.8)

where X(alias) = UTJEx is the aliasing spectral component.

225

In the case of bipartite graphs, the matrix operator UTJE produces
the transformation matrix UT with reversed (left–right flipped) order
of eigenvectors. This is obvious from (3.10) in Part I, since

UTJE = [u0 u1 . . . uN−1]TJE

=
[

u0E u1E uN−1E
−u0H −u1H · · · −uN−1H

]T
= [uN−1 uN−2 . . . u0]T = UT

LR

where

uk =
[
ukE
ukH

]
, uN−1−k =

[
ukE
−ukH

]
, k = 0, 1, . . . N − 1,

and
ULR = [uN−1 uN−2 . . . u0]

is a left–right flipped version of the eigenvector matrix

U = [u0 u1 . . . uN−1].

The element-wise form of Equation (11.8) is given by

F (k) = 1
2(X(k) +X(N − 1− k)).

For bipartite graphs and the normalized graph Laplacian, we can write

F (λk) = 1
2(X(λk) +X(2− λk)).

The second term in F (λk) represents an aliasing component of the GFT
of the original signal.

The spectral representation of (11.6) is obtained with a left-multi-
plication by UT and a right-multiplication by U,

UTGL(L)UUTHL(L)U + UTGH(L)UUTHH(L)U = 2I,

having in mind that we can add UTU = UUT = I between GL(L) and
HL(L), and between GH(L) and HH(L). Using the spectral domain
definition of the transfer functions, UTHL(L)U = HL(Λ), we obtain

226 Filter Bank on a Graph

the spectral domain form of the reconstruction condition (11.6) as

GL(Λ)HL(Λ) +GH(Λ)HH(Λ) = 2I. (11.9)

For the aliasing part in Equation (11.7), the left-multiplication is per-
formed by UT , while the right-multiplication is done by UT

LR. The first
term in (11.7) is then of the form

UTGL(L)UUTJEHL(L)ULR = UTGL(L)UUT
LRHL(L)ULR

= GL(Λ)H(R)
L (Λ), (11.10)

since UTJE = UT
LR and UT

LRULR = I. The term

H
(R)
L (Λ) = UT

LRHL(L)ULR = HL(2I−Λ)

is just a reversed order version of the diagonal matrix HL(Λ), with
diagonal elements HL(λN−1−k) = HL(2− λk) instead of HL(λk).

The same holds for the second term in (11.7) which is equal to
GH(L)JHHH(L), yielding the final spectral form of the aliasing condi-
tion in (11.7) as

GL(Λ)HL(2I−Λ)−GH(Λ)HH(2I−Λ) = 0. (11.11)

An element-wise solution to the system in (11.6)–(11.7), for bipartite
graphs and the normalized graph Laplacian, according to (11.9) and
(11.11), reduces to

GL(λk)HL(λk) +GH(λk)HH(λk) = 2, (11.12)
GL(λk)HL(2− λk)−GH(λk)HH(2− λk) = 0. (11.13)

Remark 62: A quadratic mirror filter solution would be such that for
the designed transfer function of the low-pass analysis filter, HL(λ), the
other filters are

GL(λ) = HL(λ),
HH(λ) = HL(2− λ),

GH(λ) = HH(λ) = HL(2− λ). (11.14)

For this solution, the design equation is given by

H2
L(λ) +H2

L(2− λ) = 2, (11.15)

while the aliasing cancellation condition, (11.13), is always satisfied.

227

An example of such a system would be an ideal low-pass filter,
defined by HL(λ) =

√
2 for λ < 1 and HL(λ) = 0 elsewhere. Since

HH(λ) = HL(2− λ) holds for systems on bipartite graphs, this satisfies
the reconstruction condition. For the vertex domain realization, an
approximation of the ideal filter with a finite neighborhood filtering
relation would be required.
Example 51: Consider a simple form of the low-pass system

H2
L(λ) = 2− λ,

which satisfies the design equation, H2
L(λ) + H2

L(2 − λ) = 2. It also
satisfies the condition that its form is of low-pass type for the normalized
Laplacian of bipartite graphs, H2

L(λ0) = 2− λ0 = 2, since λ0 = 0, and
H2
L(λmax) = 2 − λmax = 0, as λmax = 2. The vertex domain system

operators which satisfy all four quadratic mirror analysis and synthesis
filters in (11.14), are

HL(Λ) =
√

2I−Λ, GL(Λ) = HL(Λ) =
√

2I−Λ,
HH(Λ) = HL(2I−Λ) =

√
Λ, GH(Λ) = HH(Λ) =

√
Λ.

The spectral domain filtering form for the low-pass part of graph signal
is then obtained from (11.2), as

FL = UT fL = 1
2UTGL(L)(I + JE)HL(L)x

= 1
2UTGL(L)UUT (I + JE)HL(L)ULRUT

LRUX

= 1
2GL(Λ)HL(Λ)X + 1

2GL(Λ)HL(2I−Λ)XUD

since UTU = I, UT
LRULR = I, UTJE = UT

LR, UT
LRU = ILR, and

ILRX = XUD, where ILR is an anti-diagonal (backward) identity matrix,
and XUD is the GFT vector, X, with elements flipped upside-down.

The same holds for the high-pass part in (11.3), to yield

FH = 1
2UTGH(L)(I + JH)HH(L)x

= 1
2GH(Λ)HH(Λ)X− 1

2GH(Λ)HH(2I−Λ)XUD

and
FL + FH = X.

228 Filter Bank on a Graph

L =

0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
15

1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1
−1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1

(11.16)

Therefore, after the one-step filter-bank based decomposition on a
bipartite graph, we have a new low-pass signal, fL, for which the nonzero
values are at the vertices in E , and a high-pass signal, fH , with nonzero
values only on H. Note that the high-pass operator on the graph signal
is the graph Laplacian, L, while the low-pass operator is 2I− L, which
easily reduces to |L|, for the normalized graph Laplacian used here.

Another simple transfer function that satisfies the design equation
(11.15) is HL(λ) =

√
2 cos(πλ/4). A similar analysis can also be done

for this transfer function and other functions defined by (11.14).
The considered transfer functions HL(λ) =

√
2− λ and HL(λ) =√

2 cos(πλ/4) have several disadvantages, the most important being
that they are not sufficiently smooth in the spectral domain at the
boundary interval points (Stanković, 2015). In addition, although the
graph Laplacian, L, is commonly sparse (with a small number of nonzero
elements in large graphs), the transfer function form HL(L) =

√
2I− L

229

is not sparse. This is the reason to use other forms which are sufficiently
smooth toward the boundary points, along with their polynomial approx-
imations, HL(Λ) = c0Λ + c1Λ2 + · · ·+ cM−1ΛM−1, with the coefficients
c0, c1, . . . , cM−1, that approximate HL(λ) and HH(λ) = HL(2− λ) for
each λ = λk, k = 0, 1, . . . , N − 1. This topic will be addressed in detail
on a general form of graphs in Section 14.

The classic time-domain Haar wavelet (and scale) functions are
easily obtained for a bipartite graph, such that E = 0, 2, 4, . . . , N − 2
andH = 1, 3, 5, . . . , N − 1, with the adjacency/weighting matrix defined
by the elements Amn = 1, for (m,n) ∈ {(0, 1), (2, 3), . . . , (N−2, N−1)},
as shown in Figure 11.3(a). This adjacency matrix has the block form
as in Equation (2.19), Part I. The corresponding graph Laplacian is
given in (11.16). Its eigenvectors are equal to the wavelet transform
functions. The bipartite graph for the four-vertex resolution level in the
Haar wavelet transform is shown in Figure 11.3(b).

Synthesis operators, comprised of more general interpolation meth-
ods, may be found in Li et al. (2019a).

(a) (b)

Figure 11.3: Bipartite graph for the Haar wavelet transform with N = 16 vertices.
(a) Vertices in yellow are used for the low-pass part of the signal and correspond to
the set E , while the vertices in gray belong to the set H. This is the highest two-vertex
resolution level for the Haar wavelet. (b) Graph for a four-vertex resolution level in
the Haar wavelet.

12
Time-Varying Signals on Graphs

We shall denote a time-varying signal by xp(n), where n designates the
vertex index and p the discrete-time index. For uniform sampling in
time, the index p corresponds to the time instant p∆t, where ∆t is the
sampling interval. In general, this type of data can be considered within
the graph Cartesian product framework (given in Property M15, Sec-
tion 2.3, Part I). The resulting graph G = (V,B) follows as a Cartesian
product of the given graph G1 = (V1,B1) and a simple path (or circular)
graph G2 = (V2,B2) that corresponds to the classical uniformly sampled
time-domain axis.
Example 52: A graph topology for a time varying signal on a graph is
shown in Part I, Figure 2.9, where the graph vertices are designated by
1, 2, 3, 4, 5 and time instants are denoted as the a, b, c vertices on the
path graph. The resulting Cartesian product graph, for the analysis of
this kind of signals, is shown in Part I, Figure 2.9.

The adjacency matrix of a Cartesian product of two graphs is then
given by

A = A1 ⊗ IN2 + IN1 ⊗A2 = A1 ⊕A2,

where A1 is the adjacency matrix of the graph of interest G1, and A2 is
the adjacency matrix for the path or circular graph, G2, which designates

231

232 Time-Varying Signals on Graphs

the sampling grid, while N1 and N2 denote, respectively, the number of
vertices in G1 and G2.

We will next consider a simple and important example of a time-
varying signal defined on graph in an iterative way, which designates
the diffusion process on a graph in time.

12.1 Diffusion on Graph and Low Pass Filtering

Consider the diffusion equation

∂x/∂t = −αLx.

Its discrete-time form, at a time instant p, may be obtained by using the
backward difference approximation of the partial derivative (∂x/∂t ∼
xp+1 − xp), and has the form

xp+1 − xp = −αLxp+1

or xp+1(I + αL) = xp to produce

xp+1 = (I + αL)−1xp.

On the other hand, the forward difference approximation (∂x/∂t ∼
xp − xp−1) to the diffusion equation yields

xp+1 − xp = −αLxp

or
xp+1 = (I− αL)xp.

It is interesting to note that these iterative forms lead to the min-
imization of the quadratic form of a graph signal, Ex = xLxT , (see
Section 4.2, Part I). The minimum of this quadratic form can be found
based on the steepest descent method, whereby the signal value at
a time instant p is moving in the direction opposite to the gradient,
toward the energy minimum position, with a step α. The gradient of
the quadratic form, Ex = xLxT , is ∂Ex/∂xT = 2xL, which results in
an iterative procedure

xp+1 = xp − αLxp = (I− αL)xp. (12.1)

12.2. Taubin’s α− β Algorithm 233

This relation can be used for simple and efficient filtering of graph signals
(with the aim to minimize Ex as a measure of signal smoothness). The
spectral domain relation follows immediately, and has the form

Xp+1 = (I− αΛ)Xp

or for every individual component

Xp+1(k) = (1− αλk)Xp(k).

Recall that the eigenvalues, λk, represent the index of smoothness for
a spectral vector (eigenvector), uk, with a small λk indicating smooth
slow-varying elements of the eigenvectors; therefore, for low-pass filtering
we should retain the slow-varying eigenvectors in a spectral represen-
tation of the graph signal. Obviously, these slow-varying components
will pass through this system since (1 − αλk) is close to 1 for small
λk, while the fast-varying components with a larger λk, are attenuated.
This iterative procedure will converge if |1− αλmax| < 1.

In a stationary state of a diffusion process, the trivial minimal energy
solution is obtained when

lim
p→∞

Xp+1(k) = (1− αλk)p+1X0(k),

that is, all components Xp+1(k) tend to 0, except for the constant
component, Xp+1(0), for which λ0 = 0. This component therefore
defines the stationary state (maximally smooth solution). In order to
avoid this effect in the processing of data on graphs, and to retain
several low-pass components (eigenvectors) in the signal, the iteration
process in (12.1) can be used in alternation with

xp+2 = (I + βL)xp+1. (12.2)

This is the basis for Taubin’s α− β algorithm, presented next.

12.2 Taubin’s α− β Algorithm

When the two iterative processes in (12.1) and (12.2) are used in a
successive order, the resulting system on a graph is referred to as
Taubin’s α− β algorithm. This algorithm is widely used for low-pass

234 Time-Varying Signals on Graphs

filtering of data on graphs, since it is very simple, and admits efficient
implementation in the vertex domain.
Definition: Taubin’s α− β algorithm is a two-step iterative algorithm
for efficient low-pass data filtering on graphs. Its two steps are defined
in a unified way as

xp+2 = (I + βL)(I− αL)xp. (12.3)

The corresponding element-wise transfer function in the spectral domain
of the two iteration steps in (12.3) is given by

H(λk) = (1 + βλk)(1− αλk).

After K iterations of this algorithm, the spectral domain transfer func-
tion can be written as

HK(λk) = ((1 + βλk)(1− αλk))K . (12.4)

For some values of α < β, this system can be a good and computationally
very simple approximation of a graph low-pass filter.
Example 53: Consider the graph from Figure 9.4(a) and its graph
Laplacian, L. For the choice of parameters α = 0.1798 and β = 0.2193,
the spectral transfer function in (12.4) is shown in Figure 12.1 for the
considered graph filter, and for the numbers of iterations in Taubin’s
algorithm K = 1, 5, 30, and 150. Observe how the transfer function,
H(λk), approaches the ideal low-pass form as the number of iterations,
K, increases.

The task is next to low-pass filter the noisy signal from Figure 9.12(b).
The initial noisy signal is denoted by x0. Then x1 = (I− 0.1545L)x0
is calculated using the corresponding graph Laplacian, followed by
obtaining x2 = (I + 0.1875L)x1. In the third and fourth iteration,
the signal values x3 = (I− 0.1545L)x2 and x4 = (I + 0.1875L)x3 are
calculated. This two-step iteration cycle is repeated K = 20 times. The
resulting signal is the same as the output of an ideal low-pass filter
shown in Figure 9.12(c).

Finally, the noisy signal from Figure 8.3 was filtered using Taubin’s
α− β algorithm, with α = 0.15 and β = 0.15, over K = 100 iterations,
and the result is shown in Figure 12.2. Observe the reduced level of
additive noise in the output.

12.2. Taubin’s α− β Algorithm 235

0 2 4

0

0.5

1

1.5

0 2 4

0

0.5

1

1.5

0 2 4

0

0.5

1

1.5

0 2 4

0

0.5

1

1.5

Figure 12.1: Filter approximation in the spectral domain for a varying number of
iterations, K, using Taubin’s algorithm and the graph Laplacian matrix of the graph
in Figure 9.4.

0
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

SNRout = 19.46 dB

Figure 12.2: The noisy signal from Figure 8.3 was filtered using K = 100 iterations
of the Taubin two-step algorithm with α = 0.15 and β = 0.15.

236 Time-Varying Signals on Graphs

Processing of time-varying signals on graphs has been a topic of
intensive research; for a deeper insight we refer the reader to Isufi et al.
(2017), Grassi et al. (2017), and Gama et al. (2019).

13
Random Graph Signal Processing

This section extends the concepts of data analytics for deterministic
signals on graphs addressed so far, to introduce notions of random
signals on graphs, their properties, and statistical graph-specific methods
for their analysis. The main focus is on wide-sense stationary (WSS)
data observed on graphs. In general, the stationarity of a signal is
inherently related to the signal shift operator and its properties. We have
already presented two approaches to define a shift on a graph (through
the adjacency matrix and the graph Laplacian, and their spectral
decompositions). These will be used, along with other general properties
of WSS signals, to define the conditions for wide sense stationarity
of random signals on graphs (Chepuri and Leus, 2016; Loukas and
Perraudin, 2016; Marques et al., 2017; Perraudin and Vandergheynst,
2017; Puy et al., 2018; Zhang et al., 2015). However the main obstacle
toward extending the classical statistical data analytics to graphs is that
the shift on a graph typically does not preserve signal energy (isometry
property), that is, ‖Ax‖22 6= ‖x‖22.

For completeness, we first provide a short review of WSS definitions
in classical signal processing, together with their properties.

237

238 Random Graph Signal Processing

13.1 Review of WSS and Related Properties for Random Signals
in Standard Time Domain

Definition: A real-valued random signal, x(n), is WSS in the standard
time domain if its mean value is time-invariant, µx(n) = E{x(n)} = µx,
and its autocorrelation function is shift-invariant, that is, rx(n, n−m) =
E{x(n)x(n−m)} = rx(m).
Remark 63: A random WSS time-domain signal, x(n), can be con-
sidered as an output of a linear shift invariant system with impulse
response, h(n), which is driven by a white noise input, ε(n), with
rε(n,m) = δ(n−m).
Remark 64: In classical time domain, the eigenvectors, uk, of the shift
operator y(n) = x(n − 1), or in a matrix form y = Ax, are the DFT
basis functions, with A = UΛUH . This property is discussed in detail
and proven in Part I, Section 3.2, Equations (3.4)–(3.5).
Remark 65: For a random signal, its DFT X = UHx is also a random
signal with the power spectrum matrix Px = E{XXH}, where UH

is the DFT transformation matrix. For WSS signals, the matrix Px

is diagonal and has the power spectral density (PSD) as its diagonal
values

px(k) = DFT{rx(n)} = E{|X(k)|2}.

Remark 66: For WSS random signals, their correlation matrix, Rx =
E{xxT }, is diagonalizable with the same transform matrix, U, which
defines the DFT, Xdef= UHx, with xdef= UX. The proof follows from

Rx = E{xxT } = E{UX(UX)H}
= UE{XXH}UH = UPxUH , (13.1)

and the fact that Px is a diagonal matrix for WSS signals.
The properties of the WSS signals in classical analyses, presented in

this subsection, will be used next to define the corresponding properties
of random signals on undirected graphs.

13.2. Adjacency Matrix Based Definition of GWSS 239

13.2 Adjacency Matrix Based Definition of GWSS

Consider a real-valued white noise signal on a graph, ε = {ε(n)}.
Following Remark 63, a signal x on the graph is graph wide-sense
stationary (GWSS) if it can be considered as an output of a linear shift
invariant system on a graph, H(A) = ∑M−1

m=0 hmAm, which is driven by
a white noise input, ε, that is

x = H(A)ε.

Remark 67: The autocorrelation matrix, Rx = E{xxT }, of a GWSS
signal is diagonalizable with the eigenmatrix of the adjacency matrix,
A, since (cf. Remark 66)

A = UΛU−1 = UΛUT

E{xxT } = UPxUT , (13.2)

where Px is a diagonal matrix. The values on the diagonal of matrix
Px can be comprised into the vector px, which represents the PSD of a
graph signal, x, px(k) = E{|X(k)|2}.

To prove this property for a signal x = H(A)ε, consider

Rx = E{xxT } = E{H(A)ε(H(A)ε)T } = H(A)HT (A),

since E{εεT } = I. Using H(A) = UTH(Λ)U, we obtain

Rx = UT |H(Λ)|2U,

which concludes the proof that the matrix Px is diagonal

Px = |H(Λ)|2,

with the diagonal elements equal to the PSD of signal x,

px(k) = |H(λk)|2.

The periodogram of a graph signal can be estimated using K realiza-
tions of the random signal, denoted by xi, and is equal to the diagonal
elements of the matrix

P̂x = 1
K

K∑
i=1

XiXT
i = UT 1

K

K∑
i=1

(xixTi)U.

240 Random Graph Signal Processing

Consider a system on a graph, with a spectral domain transfer
function H(Λ). Assume that the input signal to this system is GWSS,
with PSD px(k). The PSD of the output graph signal, y(n), is then
given by

py(k) = |H(λk)|2px(k).
This expression is conformal with the output power of a standard linear
system.

13.3 Wiener Filter on a Graph

Consider a real-valued graph signal, s, which serves as an input to a
linear shift-invariant system on an undirected graph, to yield a noisy
output

x =
M−1∑
m=0

hmAms + ε.

In the spectral domain, this system is described by

X = H(Λ)S + E,

where E is the GFT of the noise, ε.
Assume that the signal and noise are statistically independent, and

that the noise is a zero-mean GWSS random signal. The aim is to find
the system function of the optimal filter, G(Λ), such that its output
Y = G(Λ)X, estimates the GFT of the input, S, in the least squares
sense. This condition can be expressed as

e2 = E{‖S−Y‖22} = E{‖S−G(Λ)X‖22}.

Upon setting the derivative of e2 with respect to the elements of G(Λ)
to zero, we arrive at

2E{(S−G(Λ)X)XT } = 0,

which results in the system function of the graph Wiener filter in the
form (using matrix division in a symbolic way)

G(Λ) = E{SXT }
E{XXT }

= E{S(H(Λ)S + E)T }
E{(H(Λ)S + E)(H(Λ)S + E)T }

= H(Λ)Ps

H2(Λ)Ps + Pε

13.4. Spectral Domain Shift Based Definition of GWSS 241

or element-wise

G(λk) = H(λk)ps(k)
H2(λk)ps(k) + E(k) .

When the noise is not present, the elements of the vector E are zero-
valued, E(k) = 0 for all k, and the graph inverse filter (introduced in
Section 9.5.1) directly follows.
Remark 68: The above expressions for the graph Wiener filter are
conformal with the standard frequency domain Wiener filter, given by

G(ω) = Ps(ω)
Ps(ω) + Pε(ω) ,

which again demonstrates the generic nature of Graph Data Analytics.

13.4 Spectral Domain Shift Based Definition of GWSS

Consider an m-step shift on a graph defined using the graph filter
response

Tm{h(n)} = hm(n) =
N−1∑
k=0

H(λk)uk(m)uk(n). (13.3)

The matrix form of this relation is given by

Th = H(L) =
M−1∑
m=0

hmLm = UH(Λ)UT , (13.4)

where Tm{h(n)} are the elements of Th.
Note that the graph filter response function is well localized on a

graph. Namely, if we use, for example, the (M − 1)-neighborhood of a
vertex n, within a filtering function of order M defined by H(Λ), then
only the vertices within this neighborhood are used in the calculation of
graph filter response. From (13.4), we see that the localization operator
acts in the spectral domain and associates the corresponding shift to
the vertex domain.
Definition: A random graph signal, x(n), is GWSS if its autocorrelation
function is invariant with respect to the shift, Tm{rx(n)}.

242 Random Graph Signal Processing

Similar to (13.2), the autocorrelation matrix, Rx, of a GWSS signal
is diagonalizable based on the matrix of eigenvectors of the graph
Laplacian L, whereby

L = UΛUT . (13.5)

For the basic autocorrelation we use

Rx = UPx(Λ)UT

so that

Tm{rx(n)} =
N−1∑
k=0

px(λk)uk(m)uk(n)

where
Px(Λ) = URxUT

is a diagonal matrix.

13.5 Isometric Shift Operator

Another possible approach may be based on the shift operator defined
as Th = exp(jπ

√
L/ρ), where ρ is the upper bound on the eigenvalues,

ρ = maxk{λk} (Girault, 2015; Girault et al., 2015). Physically, this
operator casts the eigenvalues of the Laplacian, L, onto a unit circle,
thus preserving in this way the isometry property, since

Th = exp(jπ
√

L/ρ) = U exp(jπ
√

Λ/ρ)UT . (13.6)

The property f(L) = Uf(Λ)UH was used above. Observe that for
real-valued eigenvalues, λk, all eigenvalues of the matrix exp(jπ

√
Λ/ρ)

reside on the unit circle, with the frequency 0 ≤ ωk = π
√
λk/ρ ≤ π

being associated to the eigenvector uk.

14
Vertex-Frequency Representations

Oftentimes in practical applications concerned with large graphs, we
may not be interested in the analysis of the entire graph signal, but
rather in its local behavior. Indeed, the Big Data paradigm has revealed
the possibility of using smaller and localized subsets of the available
information to enable reliable mathematical analysis and local charac-
terization of subsets of data of interest (Sandryhaila and Moura, 2014a).
Our aim in this section is to characterize the localized graph signal
behavior simultaneously in the vertex-frequency domain, in a natural
analogy with classical time-frequency analysis (Boashash, 2015; Cohen,
1995; Stanković et al., 2014). Indeed, the concept of vertex-frequency
analysis was introduced in Shuman et al. (2012), by extending the prin-
ciple of signal localization by applying localization window functions
to signals defined on graphs. This concept was further developed in
Shuman et al. (2016), with the extensions of this approach including the
multi-window form Zheng et al. (2016), a short-graph Fourier transform
combined with page-rank vectors (Tepper and Sapiro, 2016), or vertex
domain localization windows (Stanković et al., 2017a). Window forms
have also been adapted to define the frequency-varying localized graph
Fourier transform (Cioacă et al., 2019) and spectral domain wavelet

243

244 Vertex-Frequency Representations

transform-based vertex-frequency kernels, including the signal adap-
tive kernels with polynomial approximations and recursive realizations
(Behjat and Van De Ville, 2019; Hammond et al., 2011, 2019).

It is important to note that, while the concept of window functions
for signal localization has been extended to signals defined on graphs
(Shuman et al., 2012, 2016; Stanković et al., 2017a; Tepper and Sapiro,
2016; Zheng et al., 2016), such extensions are not straightforward, since,
owing to inherent properties of graphs as irregular but interconnected
domains, even an operation which is very simple in classical time-domain
analysis, like the time shift, cannot be straightforwardly generalized
to graph signal domain. This has resulted in several approaches to the
definition of the graph shift operator, and much ongoing research in
this domain (Shuman et al., 2012, 2016; Stanković et al., 2017a; Tepper
and Sapiro, 2016; Zheng et al., 2016).

A common approach to signal windowing in the graph domain is
to utilize the eigenspectrum of a graph to obtain window function for
each graph vertex (Shuman et al., 2013). Another possibility is to define
the window support as a local neighborhood for each vertex (Stanković
et al., 2017a). In either case, the localization window is defined based
on a set of vertices that contain the current vertex, n, and all vertices
that are close in some sense to the vertex n, that is, a neighborhood of
vertex n. In this monograph, special attention is devoted to the class of
local graph Fourier transform approaches which can be implemented in
the vertex domain, since this domain often offers a basis for numerically
efficient analysis in the case of very large graphs.

Notice that, as in classical signal analysis, a localization window
should be narrow enough so as to provide good localization of signal
properties, but at the same time wide enough to produce high resolution
in the spectral domain.

With vertex-frequency analysis serving as a key to graph signal
estimation, filtering, and efficient representation, two forms of the local
graph Fourier transform inversion are considered here, while the inver-
sion condition is defined within the framework of frames, that is, based
on the analysis of energy of the graph spectrogram. A relation between
the graph wavelet transform and the local graph Fourier transform
implementation and its inversion is also established.

14.1. Localized Graph Fourier Transform (LGFT) 245

Remark 69: The energy versions of the vertex-frequency representa-
tions are also considered, as these representations can be implemented
without a localization window, and they can serve as estimators of the
local smoothness index.

The reduced interference vertex-frequency distributions, which sat-
isfy the marginal property and localize graph signal energy in the
vertex-frequency domain are also defined, and are subsequently related
to classical time-frequency analysis, as a special case.

Consider a graph with N vertices, n ∈ V = {0, 1, . . . , N − 1}, which
are connected with edges whose weights are Wmn. Spectral analysis of
graphs is most commonly based on the eigendecomposition of the graph
Laplacian, L, or the adjacency matrix, A. By default, we shall assume
the decomposition of the graph Laplacian, L, if not stated otherwise.

14.1 Localized Graph Fourier Transform (LGFT)

The localized graph Fourier transform (LGFT), denoted by S(m, k),
can be considered as an extension of the standard time-localized (short-
time) Fourier transform (STFT), and can be calculated as the GFT of
a signal, x(n), multiplied by an appropriate vertex localization window
function, hm(n), to yield

S(m, k) =
N−1∑
n=0

x(n)hm(n) uk(n). (14.1)

In general, it is desired that a graph window function, hm(n), should
be such that it localizes the signal content around the vertex m. To this
end, its values should be close to 1 at vertex m and vertices in its close
neighborhood, while it should approach to 0 for vertices that are far
from vertex m. For an illustration of the concept of localization window
on a graph see Figure 8.2, panels (a) and (c).

The localized GFT in (14.1) admits a matrix notation, S, and
contains all elements, S(m, k), m = 0, 1, . . . , N − 1, k = 0, 1, . . . , N − 1.
The columns of S which correspond to a vertex m are given by

sm = GFT{x(n)hm(n)} = UTxm,
where xm is the vector of which the elements, x(n)hm(n), are equal
to the graph signal samples, x(n), multiplied by the window function,

246 Vertex-Frequency Representations

hm(n), centered at the vertex m, while matrix U is composed of the
eigenvectors uk, with elements uk(n), k = 0, 1, . . . , N − 1, of the graph
Laplacian as its columns.
Special cases:

• For hm(n) = 1, the localized vertex spectrum is equal to the
standard spectrum, S(m, k) = X(k), in (14.1) for each m; this
means that no vertex localization is performed.

• If hm(m) = 1 and hm(n) = 0 for n 6= m, the localized vertex
spectrum is equal to the graph signal, S(m, 0) = x(m)/

√
N , for

k = 0.

In the following, we outline ways to create vertex domain windows
with desirable localization characteristics, and address two methods for
defining graph localization window functions, hm(n):

• Spectral domain definition of windows, hm(n), which are defined
using their spectral basic function. The spectral domain definition
of the window is shown to be related to the wavelet transform.

• Vertex domain window definitions, with one method bearing a
direct relation to the spectral analysis of the graph window, while
the other method represents a purely vertex domain formulation.

Windows Defined in the GFT Domain

The basic function of a window, h(n), can be conveniently defined in
the spectral domain, for example, in the form

H(k) = C exp(−λkτ), (14.2)

where C denotes the “window amplitude” and τ > 0 is a constant
which determines the window width in the spectral domain. Notice
that the graph shifted and “modulated” versions of this window are
straightforwardly obtained using the generalized convolution of graph
signals, defined in Section 9.9. The graph-shifted window in the vertex
domain is then defined by the IGFT of H(k)uk(m), to give the window

14.1. Localized Graph Fourier Transform (LGFT) 247

localized at the vertex m, denoted by hm(n), as in (9.46), in the form

hm(n) = h(n) ∗ δm(n) =
N−1∑
k=0

H(k)uk(m)uk(n). (14.3)

An example of two windows obtained in this way is given in
Figures 8.2(a), (b).

Observe that the exponential function in (14.2) corresponds to a
Gaussian window in classical analysis (thus offering the best time-
frequency concentration (Boashash, 2015; Cohen, 1995; Stanković et al.,
2014)), since graph signal processing on a path graph reduces to classical
signal analysis. In this case, the eigenvalues of the graph Laplacian, λ,
may be related to the frequency, ω, in classical signal analysis as λ ∼ ω2.
Properties of graph window functions. The graph window which is
localized at the vertex m, and defined by (14.3), satisfies the following
properties:

W1: Symmetry, hm(n) = hn(m), which follows from the definition
in (14.3).

W2: A sum of all coefficients of a localized window, hm(n), is equal to
H(0), since

N−1∑
n=0

hm(n) =
N−1∑
k=0

H(k)uk(m)
N−1∑
n=0

uk(n)

=
N−1∑
k=0

H(k)uk(m)δ(k)
√
N = H(0),

with ∑N−1
n=0 uk(n) = δ(k)

√
N , following from the definition of the

eigenvectors, uk(n).

W3: The Parseval theorem for hm(n) has the form
N−1∑
n=0
|hm(n)|2 =

N−1∑
k=0
|H(k)uk(m)|2. (14.4)

These properties will be used in the sequel in the inversion analysis of
the LGFT.

248 Vertex-Frequency Representations

Based on the above properties, the LGFT can now be written as

S(m, k) =
N−1∑
n=0

x(n)hm(n) uk(n) (14.5)

=
N−1∑
n=0

N−1∑
p=0

x(n)H(p)up(m)up(n) uk(n). (14.6)

The modulated (frequency shifted) version of the window centered
at a vertex m and for a spectral index k will be referred to as the
vertex-frequency kernel, Hm,k(n), which is defined as

Hm,k(n) = hm(n)uk(n) =
(N−1∑
p=0

H(p)up(m)up(n)
)
uk(n). (14.7)

Using the kernel notation, it becomes obvious that the LGFT in (14.6),
for a given vertex m and a spectral index k, physically represents a
projection of a graph signal, x(n), onto the graph kernel, Hm,k(n),
that is,

S(m, k) = 〈Hm,k(n), x(n)〉 =
N−1∑
n=0
Hm,k(n)x(n). (14.8)

Remark 70: The classical STFT, a basic tool in time-frequency analysis,
can be obtained as a special case of the GFT when the graph is directed
and circular. For this type of graph, the eigendecomposition of the
adjacency matrix produces complex-valued eigenvectors of the form
uk(n)

√
N = exp(j2πnk/N). Then, having in mind the complex nature

of these eigenvectors,

S(m, k) =
N−1∑
n=0

N−1∑
p=0

x(n)H(p)u∗p(m)up(n)u∗k(n), (14.9)

the value of S(m, k) in (14.5) becomes the standard STFT, that is

S(m, k) = 1
N3/2

N−1∑
n=0

N−1∑
p=0

x(n)H(p)e−j
2π
N
mpej

2π
N
npe−j

2π
N
nk,

= 1
N

N−1∑
n=0

x(n)h(n−m)e−j2πnk/N , (14.10)

where h(n) is the inverse DFT of H(k).

14.1. Localized Graph Fourier Transform (LGFT) 249

Example 54: To illustrate the principle of local vertex-frequency repre-
sentations, consider the graph and the graph signal from Figure 8.1. A
graph with N = 100 vertices, randomly placed on the so called Swiss roll
surface, is shown in Figure 8.1(a). The vertices are connected with edges
whose weights are defined as Wmn = exp(−r2

mn/α), where rmn is the
distance between the vertices m and n, measured along the Swiss roll
manifold, and α is a constant. Small weight values were hard-thresholded

-1

0

1

0.5

0

-0.5

10-1 (a)

-1

0

1

0.5

0

-0.5

10-1 (b)

Figure 14.1: Continued.

250 Vertex-Frequency Representations

01 2 3

45 67

8

9 1011
1213

14

15

16

17 18

19

20

21

22

2324

2526 2728 29

30

31
32

33

3435

36

37

3839

40 41
42 43

44 45

464748

49
50

51
52

53 5455

565758

59 60 6162 63 64

6566

67

6869 70

71

72

73

74

75
76

77

78

79 80

81

82

83

84
85

86 87

88

89

90
91

92

93

94
95

96
97

9899

(c) (d)

Figure 8.1: Concept of a signal on a graph. (a) Vertices on a three-dimensional
manifold Swiss roll surface. (b) A graph representation on the Swiss roll manifold.
(c) Two-dimensional presentation of the three-dimensional graph from (b), with vertex
colors defined by the three smoothest graph Laplacian eigenvectors u1(n), u2(n),
and u3(n). (d) A signal observed on the graph in (c), which is composed of three
Laplacian eigenvectors (signal components). The supports of these three components
are designated by different vertex colors. The vertex-frequency representations are
then assessed based on their ability to accurately resolve and localize these three
graph signal components.

14.1. Localized Graph Fourier Transform (LGFT) 251

to zero, in order to reduce the number of edges associated with each
vertex to only a few strongest ones. The so produced graph is shown
in Figure 8.1(b), and its two-dimensional presentation in Figure 8.1(c).
Vertices are ordered so that the values of the Fiedler eigenvector, u1(n),
are nondecreasing. More detail about the Swiss role graph are given in
Part III.

A signal on this graph was created so as to be composed of parts
of three Laplacian eigenvectors. For the subset, V1, of all vertices, V,
which comprises the vertices with indices from m = 0 to m = 29, the
eigenvector with the spectral index k = 8 was used. For the subset, V2,
with the vertex indices from m = 30 to m = 59, the signal was equal
to the eigenvector u66(n), that is, with k = 66. The remaining vertices
form the vertex subset V3, and the signal on this subset was equal to
the eigenvector with the spectral index k = 27. The amplitudes of these
eigenvectors were scaled too.

Consider now the vertex-frequency localization kernels,

Hm,k(n) = hm(n)uk(n),

shown in Figure 8.2. The constant eigenvector, u0(n) = 1/
√
N , was

used in the panel shown in Figure 8.2(a) at m = 34. In this case, the
localization window, h34(n), is shown since H34,0(n) = h34(n)/

√
N .

The illustration is repeated in the panel in Figure 8.2(c) for the vertex
m = 78. The frequency shifted version of these two vertex-domain
kernels, shown in Figures 8.2(a) and (c), are given respectively in
Figures 8.2(b) and (d), where Hm,20(n) = hm(n)u20(n) is shown for
m = 34 and m = 78, respectively.

Next, the vertex-frequency representation, S(n, k), using the LGFT
and the localization window defined in the spectral domain is shown
in Figure 8.3. From this representation, we can clearly identify the
three constituent signal components, within their intervals of support.
The marginal properties, such as the projections of S(n, k) onto the
vertex index axis and the spectral index axis, are also clearly distinguish-
able. From the marginal properties, we can conclude that the considered
graph signal in hand is spread over all vertex indices, while its spectral
localization is dominated by the three spectral indices which correspond
to the three components of the original graph signal. In an ideal case of

252 Vertex-Frequency Representations

Figure 8.2: Illustration of localization kernels, Hm,k(n) = hm(n)uk(n), for vertex-
frequency analysis based on spectral domain defined windows within the local graph
Fourier transform, S(m, k) =

∑N−1
n=0 x(n)Hm,k(n). (a) Localization kernelH34,0(n) =

h34(n)u0(n) ∼ h34(n), for a constant eigenvector, u0(n) = 1/
√
N , centered at the

vertex m = 34. (b) The same localization kernel as in (a) but centered at the vertex
m = 78. (c) Localization kernel, H34,20(n) = h34(n)u20(n), centered at the vertex
m = 34 and frequency shifted by u20(n). Notice that the variations in kernel
amplitude indicate the effects of modulation of the localization window, hm(n).
(d) The same localization kernel as in (c), but centered at the vertex m = 78.
(e) Three-dimensional representation of the kernel H34,0(n) = h34(n)u0(n). (f) Three-
dimensional representation of the kernel H78,0(n) = h78(n)u0(n).

14.1. Localized Graph Fourier Transform (LGFT) 253

00.5

0

20

40

60

80

100

0

0.02

0.04

0.06

0.08

0 20 40 60 80 100

Figure 8.3: Local vertex-frequency spectrum calculated using the LGFT and the
vertex-frequency localized kernels defined in the spectral domain, as in (14.7). From
this representation, observe that the graph signal consists of three distinct components
located at spectral indices k = 8, k = 66, and k = 27, with the corresponding vertex
index subsets V1, V2, and V3, where V1 ∪ V2 ∪ V3 = V. The marginal (vertex and
spectrum-wise) properties are shown in the panels to the right and below the vertex-
frequency representation. Observe that, while the graph signal is spread across all
vertices, its spectral content is localized at the three spectral indices which correspond
to the constituent signal components. In an ideal case of vertex-frequency analysis,
these marginals should be respectively equal to |x(n)|2 and |X(k)|2.

vertex-frequency analysis, these marginals should respectively be equal
to |x(n)|2 and |X(k)|2, which is not the case here.

The calculation of (14.8) is computationally demanding, as in addi-
tion to the double summation (where it can be reduced having in mind
the low-pass nature of the function H(p) and its possible truncation),
the bulk of computational load comes from the eigendecomposition of the
graph Laplacian. Although this decomposition is performed only once
for a given graph and is signal independent, the full eigendecomposition
of a graph with N vertices requires an oder of N3 numerical operations.

254 Vertex-Frequency Representations

For a large graph, this can limit the application of this approach. The
issue of computational complexity was a motivation to introduce vertex-
frequency analysis without the need for eigendecomposition, which will
be presented later.

Spectral Domain Localization of the LGFT

Recall that the classical STFT admits frequency localization in the
spectral domain; this is achieved based on the DFT of the original signal
and a spectral domain window. For graph signals, we may also adapt
this approach to perform signal localization in the spectral domain,
whereby the LGFT is obtained as an inverse GFT of X(p) that is
localized by a spectral domain window, H(k − p), which is centered
around spectral index k, that is

S(m, k) =
N−1∑
p=0

X(p)H(k − p) up(m). (14.11)

Note that this form of the LGFT can be entirely implemented in the
graph spectral domain, without a graph shift operator in the vertex
domain.
Remark 71: Recall that the classical time-frequency analysis counter-
part of (14.11) is Stanković et al. (2014)

S(m, k) = 1√
N

N−1∑
p=0

X(p)H(k − p)ej
2π
N
mp.

The spectral domain LGFT form in (14.11) can be implemented
using band-pass transfer functions, Hk(λp) = H(k − p), as

S(m, k) =
N−1∑
p=0

X(p)Hk(λp) up(m). (14.12)

The elements S(m, k), m = 0, 1, . . . , N − 1 of the LGFT matrix S can
also be written in a matrix form, where the k-th column is defined as

sk = IGFTp{X(p)Hk(λp)} = U Hk(Λ)X, (14.13)

14.1. Localized Graph Fourier Transform (LGFT) 255

where Hk(Λ) is a diagonal matrix with elements Hk(λp), p = 0, 1, . . . ,
N − 1.
Remark 72: The kernel in (14.7) is defined based on a low-pass transfer
function H(k), which is appropriately shifted in the spectral domain
using the modulation term, uk(n). The transfer function in (14.12),
Hk(λp), is centered (shifted) at a spectral index, k, by definition. Hence,
in this case, the modulation term, uk(n), is not needed and the kernel
is now of the form

Hm,k(n) =
N−1∑
p=0

Hk(λp)up(m)up(n). (14.14)

LGFT Realization with Band-Pass Functions

Assume that the GFT of the localization window, hm(n), corresponds
to the transfer function of a band-pass system on a graph, centered at
an eigenvalue, λk, and around it, and that it is defined in the form of a
polynomial given by

Hk(λp) = h0,k + h1,kλp + · · ·+ hM−1,kλ
M−1
p , (14.15)

with (M − 1) as the polynomial order and k = 0, 1, . . . ,K, where K is
the number of spectral bands.

The vertex shifted version of the window, hm(n), has the GFT of the
form, GFT{h(n) ∗ δm(n)} = H(p)up(m). Therefore, the inverse GFT
of Hk(λp)up(m) represents a vertex domain kernel, where Hk(λp) is
centered at the spectral index k by definition, while up(m) corresponds
to the shift in the vertex domain which centers the window at the
vertex m. In other words, this kernel, centered around the spectral
index k and vertex m, is defined as

Hm,k(n) =
N−1∑
p=0

Hk(λp)up(m)up(n). (14.16)

Remark 73: It is important to emphasize crucial difference between the
vertex-frequency kernels in (14.7) and (14.16). The kernel in (14.7) is
defined based on the low-pass transfer function H(k), such as in (14.2),
appropriately shifted in the vertex domain and the spectral domain, to

256 Vertex-Frequency Representations

be centered at a vertex m and at a spectral index k. This is achieved
involving adequate modulation terms uk(n) and up(m). The transfer
function in the kernel given by (14.16), Hk(λp), is centered at k by
definition (14.15). Hence, it is needed to perform the spectral modulation
only, by up(m), in order to center the kernel, Hm,k(n), at a vertex m.
Therefore, the main difference between the kernels in (14.7) and (14.16)
is that the spectral shift in (14.7) is achieved by a modulation in the
vertex domain using uk(n), while in (14.16) the kernel is directly shifted
(defined as a pass-band function) in the spectral domain.

Classical time-frequency domain kernel. To additionally clarify
the previous two forms of kernels, we will observe their special cases
for a circular directed graph and write the kernels in the classical
time-frequency domain.

The kernel defined by (14.7) uses low-pass function H(k) and as-
sumes the following form

Hm,k(n) = 1
N3/2

N−1∑
p=0

H(p)e−j
2π
N
mpej

2π
N
npe−j

2π
N
kn

= 1
N
h(n−m)e−j

2π
N
kn = 1√

N
hk(n−m),

which is shifted for m in time, and modulated by the kth eigenvector
elements u∗k(n) = e−j

2π
N
kn/
√
N , to achieve centering around the spectral

index k.
The classical time-frequency domain form of the kernel in (14.16) is

given by

Hm,k(n) = 1
N

N−1∑
p=0

Hk(λp)e−j
2π
N
mpej

2π
N
np

= 1
N

N−1∑
p=0

H(p− k)e−j
2π
N
mpej

2π
N
np = 1√

N
hk(n−m),

where hk(n − m) is the temporary shifted version of hk(n) =
IGFT{Hk(λp)} = IDFT{H(k − p)}, which corresponds to the already
frequency shifted (band-pass) transfer function Hk(λp) = H(p− k).

14.1. Localized Graph Fourier Transform (LGFT) 257

In the case of kernel (14.16), the local vertex-frequency transform
for a vertex, m, and a spectral index, k, becomes

S(m, k) =
N−1∑
n=0
Hm,k(n)x(n)

=
N−1∑
n=0

N−1∑
p=0

x(n)Hk(λp)up(m)up(n) =
N−1∑
p=0

X(p)Hk(λp)up(m).

(14.17)

The relation (14.17) can be written in a vector form as

sk = UHk(Λ)UTx = Hk(L)x =
M−1∑
p=0

hp,kLp x, (14.18)

where sk is the column vector with elements S(m, k), m = 0, 1, . . . ,
N−1, and the property of the eigendecomposition of a matrix polynomial
is used in derivation. The number of bands (shifted transfer functions,
Hk(λp), k = 0, 1, . . . ,K) is equal to K+ 1 and is not related to the total
number of indices, N .
Example 55: Consider the simplest decomposition into a low-pass
and high-pass part of a graph signal, with K = 1. In this case, the
two values, k = 0 and k = 1, represent respectively the low-pass part
and high-pass part of the graph signal. Such a decomposition can be
achieved using the graph Laplacian with h0,0 = 1, h0,1 = −1/λmax,
and h1,0 = 0, h1,1 = 1/λmax, where the coefficients are chosen so as to
form a simple linearly decreasing function of λp for the low-pass, and a
linearly increasing function of λp for the high-pass, in the corresponding
transfer functions. These low-pass and high-pass transfer functions are
respectively given by

H0(λp) =
(

1− λp
λmax

)
, H1(λp) = λp

λmax
,

which leads to the vertex domain implementation of the LGFT in the
form

s0 =
(

I− 1
λmax

L
)

x, s1 = 1
λmax

L x.

258 Vertex-Frequency Representations

To improve the spectral resolution, we can employ the same transfer
function, but divide the low-pass part into its low-pass and high-pass
part. The same can be performed for the high-pass part, to obtain

s00 =
(

I− L
λmax

)2
x, s01 = 2

(
I− L

λmax

) L
λmax

x, s11 = L2

λ2
max

x.

The factor 2 appears in the new middle pass-band, s01, since the low-
high-pass and the high-low-pass components are the same.

A division into (K + 1) bands would correspond to the terms of a
binomial form

((I− L/λmax) + L/λmax)Kx,
with the corresponding transfer functions in the vertex domain given by

Hk(L) =
(
K

k

)(
I− 1

λmax
L
)K−k(1

λmax
L
)k
.

Example 56: Consider the transfer functions Hk(λp), p = 0, 1, . . . ,
N − 1, k = 0, 1, . . . ,K in the spectral domain, corresponding to the
binomial form terms for K = 25, which are shown in Figure 8.4(a).
These functions are used for the LGFT calculation at vertex indicesm =
0, 1, . . . , N−1 in the k = 0, 1, . . . ,K bands for the graph and signal from
Figure 8.1. Since the bands are quite spread out, the resulting LGFT
is also spread along the frequency axis. The frequency concentration
can be improved by reassigning the values of S(m, k) to the position of
their maximum value along the frequency band index, k, for each vertex
index, m. The so reassigned LGFT values are given in Figure 8.5.

Of course, any band-pass function, Hk(Λ), can be used in (14.12)
or (14.17) to produce the LGFT in the form

sk = UHk(Λ)UTx = Hk(L)x. (14.19)

Commonly used examples of such band-pass functions are the spline or
raised cosine (Hann window) functions. We will next use the general
form of the shifted raised cosine functions as the transfer functions,

14.1. Localized Graph Fourier Transform (LGFT) 259

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

(a)

0 1 2 3 4 5 6 7
0

0.5

1

(b)

0 1 2 3 4 5 6 7
0

0.5

1

(c)

Figure 8.4: Exemplar of transfer functions in the spectral domain. (a) The spectral
domain transfer functions Hk(λp), p = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K which corre-
spond to the binomial form terms for K = 25. (b) The transfer functions Hk(λp),
p = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K which correspond to the raised cosine (Hann)
window form for K = 25. (c) The spectral index-varying (wavelet-like) transfer
functions Hk(λp), p = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K which correspond to the raised
cosine (Hann) window form for K = 10. The transfer function H9(λ) is designated
by the thick black line for each considered domain, while its discrete values at λp,
H9(λp), are shown in gray, in panels (b) and (c).

260 Vertex-Frequency Representations

20 40 60 80 100

5

10

15

20

25

(a)

20 40 60 80 100

5

10

15

20

25

(b)

20 40 60 80 100

2

4

6

8

10

(c)

Figure 8.5: Vertex-frequency representation of a three-component signal in
Figure 8.1(d). (a) The LGFT of the signal from Figure 8.1(d), calculated using
the transfer functions for frequency selection given in Figure 8.4(a). The LGFT
values, S(m, k), were reassigned to the position of its maximum value along the
frequency band index, k, for each vertex index, m. (b) The LGFT of the signal from
Figure 8.1(d), calculated using the transfer functions for frequency selection given
in Figure 8.4(b). The LGFT values, S(m, k), were reassigned to the positions of
their maximum values along the frequency band index, k, for each vertex index, m.
(c) The LGFT of the signal from Figure 8.1(d), calculated using the wavelet-like
transfer functions for frequency selection given in Figure 8.4(c).

14.1. Localized Graph Fourier Transform (LGFT) 261

defined by

Hk(λ) =

sin2
(
π

2
ak

bk − ak

(
λ

ak
− 1

))
, for ak < λ ≤ bk

cos2
(
π

2
bk

ck − bk

(
λ

bk
− 1

))
, for bk < λ ≤ ck

0, elsewhere,

(14.20)

where (ak, bk] and (bk, ck], k = 1, 2, . . . ,K, define the spectral bands for
Hk(Λ). For uniform bands within 0 ≤ λ ≤ λmax, the intervals can be
defined by

ak = ak−1 + λmax
K

bk = ak + λmax
K

(14.21)

ck = ak + 2λmax
K

with a1 = 0. The initial transfer function, H0(λ), is defined using only
0 = b0 ≤ λ ≤ c0 = λmax/K, while the last transfer function, HK(λ), is
defined using the interval aK < λ ≤ bK = λmax in (14.20).

The raised cosine transfer function satisfy the following condition
K∑
k=0

Hk(λp) = 1. (14.22)

The conditions for graph signal reconstruction from the LGFT will be
discussed in Section 14.2.
Example 57: The shifted raised cosine functions, defined by (14.20)
and (14.21), are shown in Figure 8.4(b) for the graph from Figure 8.1,
for K = 25. These functions are used for the LGFT calculation of the
graph signal from Figure 8.1 at the vertex indices m = 0, 1, . . . , N − 1,
and in (K + 1) spectral bands, k = 0, 1, . . . ,K. The absolute LGFT
values are given in Figure 8.5(b). Spectral resolution depends on the
number of bands K, with a larger number of spectral bands resulting
in a higher spectral resolution.

Example 58: The experiment from Examples 56 and 57 is repeated
with varying bounds of the spectral intervals in the raised cosine transfer

262 Vertex-Frequency Representations

functions Hk(λp), p = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K. The spectral
index-varying (wavelet-transform like) form of the raised cosine transfer
functions Hk(λp), p = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K, is defined by the
interval bounds λmax((1.5 + p)/11.5)5, for p = 0, 1, 2, . . . , 10,

ak ∈ {0, 0.004, 0.02, 0.07, 0.19, 0.44, 0.9, 1.7, 2.9},
bk ∈ {0.004, 0.02, 0.07, 0.19, 0.44, 0.9, 1.7, 2.9, 4.8},
ck ∈ {0.02, 0.07, 0.19, 0.44, 0.9, 1.7, 2.9, 4.8, 7.63},

k = 1, 2, . . . , 9,

and depicted in Figure 8.4(c). The LGFT values, S(m, k), calculated
with the so-obtained transfer functions, Hk(λp), are shown in
Figure 8.5(c). In order to illustrate the change of resolution in this case,
the LGFT was reassigned to each eigenvalue λp, p = 0, 1, . . . , N − 1,
and shown in Figure 8.6. As in classical wavelet transform, the spectral
resolution is lower for the higher spectral indices.

20 40 60 80 100

20

40

60

80

100

Figure 8.6: Vertex-frequency representation from Figure 8.5(c) with the axis of
the eigenvalue index, p, instead of the frequency band index, k. The same value of
LGFT, S(m, k), is assigned to each spectral index, p, when λp ∈ (ak+bk

2 , bk+ck
2], and

without any scaling.

14.1. Localized Graph Fourier Transform (LGFT) 263

Signal Adaptive LGFT

The spectral graph wavelet-like transform is just an example of varying
spectral transfer functions in the LGFT, where the spectral resolution
is the highest (spectral wavelet functions narrowest) for small values of
the smoothness index, λp (Behjat and Van De Ville, 2019). The spectral
resolution decreases as the spectral wavelet functions become wider for
large smoothness index values, Figure 8.4(c). In general, the change
of resolution may be arbitrary and signal adaptive, for example, the
resolution may be higher for the spectral intervals of λ which are rich
in signal components and lower within the intervals where there are no
signal components.

Before introducing an example with a signal adaptive LGFT, we
will modify the transfer functions, Hk(λp), in (14.20) to satisfy the
condition

K∑
k=0

H2
k(λp) = 1, (14.23)

as this will be important for the frame-based LGFT inversion.
Notice that a simple transformation of the transfer functions,

Hk(λp) → H2
k(λp), would allow for the condition ∑K

k=0H
2
k(λp) = 1

to hold instead of ∑K
k=0Hk(λp) = 1. This means that a simple removal

of squares in the sine and cosine functions in (14.20) would produce a
form to satisfy the condition∑K

k=0H
2
k(λp) = 1. Both of these conditions

will be used in Section 14.2 in various approaches to the graph signal
reconstruction from the LGFT.

By removing the squares in the sine and cosine functions in (14.20),
their first derivative loses continuity in λ at the end interval points. In
order to preserve continuous derivatives, the arguments in the sine and
cosine functions can be mapped by a polynomial,

vx(x) = x4(35− 84x+ 70x2 − 20x3), for 0 ≤ x ≤ 1,

with vx(0) = 0 and vx(1) = 1. In this way, we arrive at the Meyer
wavelet-like transfer functions (Meyer, 1992) for the LGFT calculation,

264 Vertex-Frequency Representations

given by

Hk(λ) =

sin
(
π

2 vx
(

ak
bk − ak

(
λ

ak
− 1

)))
, for ak < λ ≤ bk

cos
(
π

2 vx
(

bk
ck − bk

(
λ

bk
− 1

)))
, for bk < λ ≤ ck

0, elsewhere.

(14.24)

The initial transfer function, k = 0, and the last transfer function,
k = K, are calculated using only the half of the interval, as explained
after the spectral band definition in relation (14.21).
Example 59: The transfer functions of the form defined in (14.24) are
used with signal adaptive intervals. These intervals are defined in such
a way that they are small (fine) around λ, where a significant signal
spectral content is detected, and are big (rough) around λ where the
signal spectral content is low, as in Figures 8.7(a) and (b). The intervals
are narrow (with a high resolution) around the three signal components
at λ = 0.38, λ = 1.87, and λ = 4.62. Vertex-frequency representation
with these transfer functions is shown in Figures 8.7(c) and (d) with the
spectral band index, k, and the assigned eigenvalue (spectral) index, p,
as a spectral axis. Fine intervals around the spectral signal components
allowed for high spectral resolution representation, as in Figure 8.7(c),
with a smaller number of transfer functions K+1 = 17. A wider interval
width for the third component resulted in a lower spectral resolution
than in the case of the other two components.

Polynomial LGFT Approximation

Bandpass LGFT functions, Hk(λ), k = 0, 1, . . . ,K, of the form (14.20)
or (14.24) can be implemented using the Chebyshev finite (M −1)-order
polynomial approximation, P̄k,M−1(λ), k = 0, 1, . . . ,K, of the form

P̄k,M−1(λ) = ck,0
2 +

M−1∑
m=1

ck,mT̄m(λ). (14.25)

This leads to the vertex domain implementation of the spectral LGFT
form, given by

sk = P̄k,M−1(L)x,

14.1. Localized Graph Fourier Transform (LGFT) 265

0 1 2 3 4 5 6 7

0

0.5

1

(a)

0 1 2 3 4 5 6 7
0

0.5

1

(b)

20 40 60 80 100

2

4

6

8

10

12

14

16

20 40 60 80 100

20

40

60

80

100

)d()c(

Figure 8.7: A graph signal and transfer functions in the spectral domain for a signal
adaptive LGFT. (a) Graph signal in the spectral domain, X(p), as a function of the
eigenvalues, λp. (b) The spectral domain transfer functionsHk(λp), p = 0, 1, . . . , N−1,
k = 0, 1, . . . ,K which satisfy the condition

∑K

k=0 H
2
k(λp) = 1, with K = 16. (c) The

LGFT of the signal from Figure 8.1(d), calculated using the transfer functions
for frequency selection given in (b). (d) Vertex-frequency representation from (c)
with the eigenvalue (spectral) index, p, axis instead of the frequency band index, k.
The same value of LGFT, S(m, k), is assigned to each spectral index, p, when
λp ∈ (ak+bk

2 , bk+ck
2], without any scaling.

266 Vertex-Frequency Representations

Table 14.1: Coefficients, hi,k, i = 0, 1, . . . ,M−1, k = 0, 1, . . . ,K, for the polynomial
calculation of the LGFT, sk, of a signal, x, in various spectral bands, k, shown in
Figure 8.8(b). The obtained LGFT of the three-component signal from Figure 8.1(d)
is given in Figure 8.9(a)

sk = (h0,kI + h1,kL + h2,kL2 + h3,kL3 + h4,kL4 + h5,kL5)x
k h0,k h1,k h2,k h3,k h4,k h5,k

0 1.062 −1.925 1.168 −0.3115 0.03776 −0.001702
1 −0.002 1.773 −1.655 0.5357 −0.07250 0.003508
2 −0.154 1.016 −0.601 0.1295 −0.01155 0.000349
3 0.005 −0.301 0.621 −0.2674 0.04200 −0.002225
4 0.089 −0.748 0.869 −0.3042 0.04217 −0.002040
5 0.060 −0.381 0.319 −0.0704 0.00461 0.000000
6 −0.024 0.277 −0.430 0.2055 −0.03570 0.002040
7 −0.076 0.598 −0.714 0.2814 −0.04292 0.002225
8 −0.027 0.159 −0.122 0.0198 0.00177 −0.000349
9 0.087 −0.699 0.868 −0.3662 0.06140 −0.003508
10 −0.026 0.220 −0.293 0.1333 −0.02435 0.001536

for k = 0, 1, 2, . . . ,K, with

P̄k,M−1(L) = ck,0
2 +

M−1∑
m=1

ck,mT̄m(L),

= h0,kI + h1,kL + h2,kL2 + · · ·+ h(M−1),kLM−1 (14.26)

as discussed in Section 9.5 and shown in Table 14.1. The polynomial form
in (14.26) uses only the (M−1)-neighborhood in calculation of the LGFT
for each considered vertex, without the need for eigendecomposition
analysis, thus significantly reducing the computational cost.
Example 60: Consider the shifted transfer functions, Hk(λ), k =
0, 1, . . . ,K, defined by (14.20) and (14.21), shown in Figure 8.8(a), for
K = 10. Functions Hk(λ) satisfy ∑K

k=0Hk(λ) = 1, which is numerically
confirmed and designated by the horizontal dotted line in 8.8(a). Each
individual transfer function, Hk(λ), is approximated using the Cheby-
shev polynomial, P̄k,M−1, k = 0, 1, . . . ,K, as detailed in Section 9.5,
with three polynomial orders defined by M = 6, M = 20 and M = 80.
These polynomial approximations are shown in Figures 8.8(b)–(d). In
each considered case, summations∑K

k=0 P̄k,M−1(λ) are calculated. It can

14.1. Localized Graph Fourier Transform (LGFT) 267

0 1 2 3 4 5 6 7
0

0.5

1

0 1 2 3 4 5 6 7
0

0.5

1

0 1 2 3 4 5 6 7
0

0.5

1

0 1 2 3 4 5 6 7
0

0.5

1

Figure 8.8: Chebyshev approximation of LGFT transfer functions, which corre-
spond to the raised cosine window in the spectral domain. (a) Original transfer
functions Hk(λ), k = 0, 1, . . . ,K, for K = 10. The dotted horizontal line designates∑K

k=0 Hk(λ). (b) Polynomial Chebyshev approximations, P̄k,M−1(λ), k = 0, 1, . . . ,K,
with M = 6. (c) Polynomial Chebyshev approximations, P̄k,M−1(λ), k = 0, 1, . . . ,K,
withM = 20. (d) Polynomial Chebyshev approximations, P̄k,M−1(λ), k = 0, 1, . . . ,K,
with M = 80. The dotted horizontal line designates

∑K

k=0 P̄k,M−1(λ), which is close
to 1 in all considered approximations, thus guaranteeing stable transform invertibility.
Transfer function H6(λ) and approximations, P̄6,M−1(λ), are designated by the thick
black line.

268 Vertex-Frequency Representations

be observed that for different values of M , the summations in all con-
sidered cases are very close to 1, thus guaranteeing numerically stable
invertibility of the LGFT, as discussed later.

The so obtained approximations of transfer functions, Hk(λ), are
used for the LGFT based vertex-frequency analysis. Absolute LGFT val-
ues, calculated for the three-component graph signal from Figure 8.1(d),
are shown in Figures 8.9(a)–(c), for M = 6, M = 20 and M = 80.
Low resolution in Figure 8.9(a) is directly related to the imprecise and
very wide (with a low spectral resolution) approximation of the spectral
transfer functions for M = 6, in Figure 8.8(b). Notice that high values
of the polynomial order, (M − 1), increase calculation complexity and
require wide vertex neighborhood in the calculation of the LGFT.

Based on the analysis of calculation complexity in Section 9.5 we may
conclude that an order of KMNL of arithmetic operations is needed to
calculate the LGFT in the vertex domain, with (K + 1) spectral bands,
using a polynomial whose order is (M − 1). The number of nonzero
elements in the graph Laplacian is denoted by NL.

The Spectral Graph Wavelet Transform

Several attempts have been made to extend the classical wavelet analy-
sis to general graph signals, some of which were performed on specific
tree graphs (Ann B. Lee and Wasserman, 2008; Murtagh, 2007). The
most significant attempts to define the wavelet transform on general
graphs have been: (i) a lifting-based approach for multi-scale repre-
sentation of graph signals (Jansen et al., 2009; Narang and Ortega,
2009; Rustamov and Guibas, 2013), (ii) diffusion-based wavelets and
diffusion based polynomial frames (Coifman and Lafon, 2006; Maggioni
and Mhaskar, 2008), and (iii) separable filter-bank wavelets (Narang
and Ortega, 2012). The wavelet definition that can be directly related
to the presented spectral domain local graph Fourier transform, and
has been commonly used in the graph signal analysis, is based on the
extension of the spectral domain form of the classical wavelet transform
and its polynomial approximations, and was introduced in Hammond
et al. (2011a).

14.1. Localized Graph Fourier Transform (LGFT) 269

20 40 60 80 100

2

4

6

8

10

(a)

20 40 60 80 100

2

4

6

8

10

(b)

20 40 60 80 100

2

4

6

8

10

(c)

Figure 8.9: Vertex-frequency representation of a three-component signal in
Figure 8.1(d). The LGFT is based on raised cosine (Hann window) like band-
pass transfer functions for frequency selection, with K = 10, approximated using the
Chebyshev polynomials of various order, as shown in Figures 8.8(b)–(d). (a) The
LGFT of the signal from Figure 8.1(d), calculated using the Chebyshev polynomial
approximation of transfer functions given in Figure 8.8(b), with M = 6. (b) The
LGFT of the signal from Figure 8.1(d), calculated using the transfer functions for
frequency selection given in Figure 8.4(c), with M = 20. (c) The LGFT of the signal
from Figure 8.1(d), calculated using the transfer functions for frequency selection
given in Figure 8.4(d), with M = 80. Low resolution in (a) can be directly related
with low M = 6 used in approximation in Figure 8.8(b). The resolution is consider-
ably improved for M = 20.

270 Vertex-Frequency Representations

In classical signal processing theory, time-frequency analysis has
many common goals with the wavelet transform (and its generalization
in the form of time-scale analysis). However, these two areas are usually
considered separately. The main goals of the wavelet analysis are to per-
form multi-resolution signal analysis, compression, and signal processing,
including the wavelet domain sparsity-driven signal denoising. The main
goals in classical time-frequency analysis are in spectral and signal pa-
rameter estimation (like, for example, the instantaneous frequency),
joint time-frequency domain processing, detection, and denoising of
nonstationary signals.

Since the same relation between these areas can be assumed for graph
signal processing, we shall consider only the spectral wavelet transform,
which is directly related to the frequency-varying LGFT and can be
considered as a special case of the frequency-varying vertex-frequency
analysis, rather than a transform aimed at graph signal compression
and its wavelet-like multi-resolution analysis.

The classic wavelet analysis is based on defining the “mother wavelet”
and using its dilatated and translated versions to create signal decom-
position kernels. A direct extension of this concept is not possible on
graphs as irregular signal domains, since the operations of dilatation
and translation are not possible in the same way as in the case of
simple regularly sampled line as the signal domain. As in classical signal
processing, wavelet coefficients can be defined as a projection of a graph
signal onto the wavelet kernel functions. Assume that the basic form for
the wavelet definition in the spectral domain is H(λp). The wavelet in
spectral domain then represents a scaled version of H(λp) in the scale
si, i = 1, 2, . . . ,K−1, and is denoted by Hammond et al. (2019), Behjat
and Van De Ville (2019), Behjat et al. (2015), Rustamov and Guibas
(2013), Jestrović et al. (2017), Masoumi et al. (2019), and Cioacă et al.
(2019)

Hi(λp) = H(siλp).

Additionally, a low-pass scale (father wavelet) function G(λp), plays
the role of low-pass function, H0(λp), in the LGFT. Therefore, a
set of discrete scales for the wavelet calculation, denoted by s ∈
{s1, s2, . . . , sK−1}, is assumed with the corresponding spectral transfer

14.1. Localized Graph Fourier Transform (LGFT) 271

functions, Hsi(λp) and G(λp). Now, in the same way as in the case of
the kernel form of the LGFT in (14.8), the graph wavelet transform is
defined using the band-pass scaled wavelet kernel, ψm,si(n), instead of
the LGFT kernel, Hm,k(n), in (14.14). This yields

ψm,si(n) =
N−1∑
p=0

H(siλp)up(m)up(n), (14.27)

which corresponds to the LGFT kernel, Hm,k(n), defined in (14.16).
This yields the wavelet coefficients given by

W (m, si) =
N−1∑
n=0

ψm,si(n)x(n)

=
N−1∑
n=0

N−1∑
p=0

H(siλp)x(n)up(m)up(n)=
N−1∑
p=0

H(siλp)X(p)up(m).

The wavelet coefficients may be interpreted as the IGFT of
H(siλp)X(p), that is

W (m, si) = IGFT{H(siλp)X(p)}. (14.28)

Remark 74: We will use the notation H(siλ) = Hi(λ) with the cor-
responding matrix function form Hi(Λ). Notice that this scale-based
indexing is opposite to the classical frequency band indexing. The
largest scale for H(s1λ), 1 < s1λ ≤M , is obtained for the smallest s1,
1/s1 < λ ≤M/s1, where M > 1 is the coefficient of the scale changes,
which will be explained later. The associated spectral wavelet trans-
fer function, H(s1λ) = H1(λ), corresponds to the highest frequency
band. The wavelet transfer function in scale sK , H(sKλ) = HK(λ), is
associated with the lowest frequency band. Notation for the spectral
scale function (low-pass transfer function complementary to H(sKλ)
within the lowest spectral interval) is G(λ). The spectral scale function,
G(λ), plays the role of low-pass transfer function with spectral index 0
in the LGFT. Therefore, K spectral wavelet transfer functions H(siλ),
i = 1, 2, . . . ,K, along with the scale function G(λ), cover exactly K + 1
spectral bands as in the LGFT case.

According to (9.36), we can write

wi = Hi(L)x, (14.29)

272 Vertex-Frequency Representations

where wi is a column vector with elementsW (m, si),m = 0, 1, . . . , N−1.
If Hi(λ) = H(siλ) can be approximated by a polynomial in λ,

Hi(λ) ≈ Pi(λ), then the relation

wi ≈ Pi(L)x, (14.30)

follows, where Pi(L) is a polynomial in the graph Laplacian (see
Section 9.5 and Example 60).
Example 61: The wavelet transform (vertex-scale) representation of
a three-component signal in Figure 8.1(d), obtained using the Meyer-
like graph wavelet in the spectral domain, λ, will be illustrated here.
As in classical wavelet transform, the wavelet in the first scale should
correspond to the high-pass transfer function with nonzero values in
the interval λmax/M < λ ≤ λmax, where M > 1 is the coefficient of
the scale changes. In classical wavelet transforms the dyadic scheme
with M = 2 is commonly used. The scale based indexing is opposite to
the classical frequency indexing, where large indices indicate the high
frequency content. The Meyer-like graph wavelet in the first scale is
defined by Meyer (1992) and Leonardi and Van De Ville (2013)

H(s1λ) =

sin
(
π

2 vx(q(s1λ− 1))
)
, for 1 < s1λ ≤M,

0, elsewhere.

For 2 ≤ i ≤ K the Meyer-like graph wavelet is given by

H(siλ) =

sin
(
π

2 vx(q(siλ− 1))
)
, for 1 < siλ ≤M

cos
(
π

2 vx
(
q

(
siλ

M
− 1

)))
, for M < siλ ≤M2

0, elsewhere,

where q = 1/(M − 1). The initial interval is defined by s1 = M/λmax,
so that 1 < siλ ≤ M corresponds to λmax/M < λ ≤ λmax, while the
other interval bounds are defined using a geometric sequence of scale
factors,

si = si−1M = s1M
i−1 = 1

λmax
M i.

14.1. Localized Graph Fourier Transform (LGFT) 273

Observe that the larger the scale factor si (and the scale index i), the
narrower the transfer function, H(siλ), while the progression coeffi-
cient is

M = (q + 1)/q > 1.

In classical wavelet transforms the dyadic scheme with M = 2 is
commonly used. The last value of the scale factor, sK = MK/λmax/M ,
is defined by K and indicates how close the last wavelet transfer function
is to λ = 0.

The polynomial function, vx(x), is defined by

vx(x) = x4(35− 84x+ 70x2 − 20x3), for 0 ≤ x ≤ 1, with
vx(q(0)) = vx(0) = 0, vx(q(M − 1)) = vx(1) = 1. (14.31)

The wavelet transfer functions,

Hi(λ) = H(siλ),

are of a band-pass type. The main property (condition for the recon-
struction) is that the wavelet functions in two successive scales satisfy
the following property

H2
i (λ) +H2

i+1(λ)

= cos2
(
π

2 vx
(
q

(
siλ

M
− 1

)))
+ sin2

(
π

2 vx
(
q

(
siλ

M
− 1

)))
= 1,

within
M < siλ ≤M2.

This property implies ∑K
i=1H

2(siλ) = 1 for all λ except in the last
interval, sKλ ∈ [0,M2]. To handle the low-pass spectral components
(the interval for λ closest to λ = 0), the low-pass type scale function,
G(λ)), is added in the form

G(λ)=

1, for 0 ≤ λ ≤M/sK = λmax/MK−1

cos
(
π

2 vx
(
q

(
sKλ

M
− 1
)))

, for M < sKλ ≤M2

0, elsewhere.

274 Vertex-Frequency Representations

Remark 75: The number of wavelet transfer functions, K, does not
depend on the other wavelet parameters. A large value of K will only
increase the number of intervals and the resolution (producing smaller
width of the first interval defined by λmax/MK−1) toward λ → 0, as
shown in Figures 8.10(a)–(c).
Remark 76: The wavelet transfer functions, H(siλ), including the
low-pass scale function, G(λ), defined in Example 61 satisfy the relation

K∑
i=1

H2(siλ) +G2(λ) = 1.

Example 62: For q = 1,M = 2, andK = 9 the Meyer wavelet functions
are given in Figure 8.10(a). The Meyer wavelet functions for q = 3,
M = 4/3, K = 13 and q = 9, M = 10/9, K = 45 are shown in Figures
8.10(b) and (c). The vertex-frequency representation of the signal from
Figure 8.1 using these three sets of wavelet transfer functions are shown
in Figures 8.11(a)–(c).
Polynomial SGWT approximation. Chebyshev approximation of
the wavelet functions, H(siλ) = Hi(λ), in the form

P̄i,M−1(λ) = ci,0
2 +

M−1∑
m=1

ci,mT̄m(λ), (14.32)

can be used for the vertex domain wavelet transform implementation

P̄i,M−1(L) = ci,0
2 +

M−1∑
m=1

ci,mT̄m(L), i = 0, 1, 2, . . . ,K

using only the (M − 1)-neighborhood of each considered vertex, and
without any graph Laplacian eigendecomposition analysis. The Cheby-
shev polynomials can be calculated recursively, as in (9.28), with a
change of variables and the recursive implementation as described in
detail in Examples 43 and 60.

Windows Defined Using the Vertex Neighborhood

In order to show that the window, hm(n), which is localized at a vertex
m can also be defined using the vertex neighborhood, recall that the

14.1. Localized Graph Fourier Transform (LGFT) 275

0 1 2 3 4 5 6 7
0

0.5

1

(a)

0 1 2 3 4 5 6 7
0

0.5

1

(b)

0 1 2 3 4 5 6 7
0

0.5

1

(c)

Figure 8.10: Exemplars of Meyer wavelet functions (acting as transfer functions in
the wavelet transform), shown in the spectral domain. (a) Band-pass Meyer wavelet
functions H(siλ), i = 1, 2, . . . ,K and the low-pass scale function G(λ), for K = 9
and M = 2. (b) Band-pass Meyer wavelet functions H(siλ), i = 1, 2, . . . ,K and the
low-pass scale function G(λ), for K = 13 and M = 3/2. (c) Band-pass Meyer wavelet
functions H(siλ), i = 0, 1, . . . ,K and the low-pass function G(λ), for K = 45 and
M = 10/9. Transfer functions H(s2λ), H(s2λ), H(s5λ) are designated by the thick
black line, for each of the considered setups in (a)–(c), respectively; their values at
λp are shown in gray.

276 Vertex-Frequency Representations

20 40 60 80 100

20

40

60

80

100

(a)

20 40 60 80 100

20

40

60

80

100

(b)

20 40 60 80 100

20

40

60

80

100

(c)

Figure 8.11: Vertex-frequency representation of a three-component signal in
Figure 8.1(d). (a) The Meyer wavelet transform of the signal from Figure 8.1(d),
calculated using the transfer functions for frequency selection given in Figure 8.10(a).
(b) The Meyer wavelet transform of the signal from Figure 8.1(d), calculated using
the transfer functions for frequency selection given in Figure 8.10(b). (c) The Meyer
wavelet transform of the signal from Figure 8.1(d), calculated using the Meyer wavelet
transform transfer functions for frequency selection given in Figure 8.10(c). Wavelet
values were reassigned to spectral indices, p, in order to illustrate the change in
resolution. The same value of SGWT, W (m, k), is assigned to each spectral index, p,
when λp ∈ (ak+bk

2 , bk+ck
2], without any scaling.

14.1. Localized Graph Fourier Transform (LGFT) 277

distance, dmn, between vertices m and n is equal to the length of the
shortest walk from vertex m to vertex n, and that dmn takes integer
values. Then, the window function can be defined as a function of vertex
distance, in the form

hm(n) = g(dmn),
where g(d) corresponds to any basic window function in classical signal
processing. For example, we can use the Hann window, given by

hm(n) = 1
2(1 + cos(πdmn/D)), for 0 ≤ dmn < D,

where D is the assumed window width.
For convenience, window functions for every vertex can be calculated

in a matrix form as follows:

• For the vertices for which the distance is dmn = 1, window func-
tions are defined through an adjacency (neighborhood one) matrix
A1 = A. In other words, the vertices which belong to the one-
neighborhood of a vertex, m, are indicated by unit-value elements
in the mth row of the adjacency matrix A (in unweighted graphs).
In weighed graphs, the corresponding adjacency matrix A can be
obtained from the weighting matrix W as A = sign(W).

• Window functions for vertices m and n, for which the distance is
dmn = 2 are defined by the matrix

A2 = (A�A1) ◦ (1−A1) ◦ (1− I),

where the symbol � denotes the logical (Boolean) matrix product,
◦ is the Hadamard (element-by-element) product, and 1 is a
matrix with all elements equal to 1. The nonzero elements of the
mth row of the matrix A�A1 then designate the vertices that are
connected to the vertex m with walks of length K = 2 or lower. It
should be mentioned that the element-by-element multiplication
of (A�A1) by matrix (1−A1) removes the vertices connected
with walks of length 1, while the multiplication by (1− I) removes
the diagonal elements from (A�A1).

• For dmn = d ≥ 2, we arrive at a recursive relation for the calcula-
tion of a matrix which will give the information about the vertices

278 Vertex-Frequency Representations

separated by the distance d. Such a matrix has the form

Ad = (A�Ad−1) ◦ (1−Ad−1) ◦ (1− I). (14.33)

The window matrix for an assumed graph window width, D, can
now be defined as

PD = g(0)I + g(1)A1 + · · ·+ g(D − 1)AD−1,

so that a graph signal which is localized around a vertex m, may be
formed based on this matrix, as

xm(n) = hm(n)x(n) = PD(n,m)x(n).

The LGFT representation of a graph signal, x(n), then becomes

S(m, k) =
N−1∑
n=0

x(n)hm(n) uk(n) =
N−1∑
n=0

x(n)PD(n,m) uk(n), (14.34)

with the vertex-frequency kernel given by

Hm,k(n) = hm(n)uk(n) = PD(n,m)uk(n). (14.35)

This allows us to arrive at the matrix form of the LGFT, given by

S = UT (PD ◦ [x, x, . . . , x]), (14.36)

where [x, x, . . . , x] is an N ×N matrix, the columns of which are the
signal vector, x.

For a rectangular function g(d) = 1, for d < D, the LGFT can be
calculated recursively with respect to the window width, D, as

SD = SD−1 + UT (AD−1 ◦ [x, x, . . . , x]). (14.37)

Example 63: Consider the local vertex-frequency representation of
the signal from Figure 8.1, using vertex domain defined windows. The
localization kernels, Hm,k(n) = hm(n)uk(n), are shown in Figure 8.12
for two vertices and two spectral indices. Observe that for the spectral
index k = 0, the localization kernel is proportional to the localization
function hm(n), given in Figures 8.12(a) and (c) for the vertices m = 34
and m = 78. Frequency modulated forms of these localization functions
are shown in Figures 8.12(b) and (d), for the same vertices and k = 20.

14.1. Localized Graph Fourier Transform (LGFT) 279

Figure 8.12: Localization kernels for vertex-frequency analysis, Hm,k(n) =
hm(n)uk(n), for the case of vertex domain defined windows in the local graph
Fourier transform, S(m, k) =

∑N−1
n=0 x(n)Hm,k(n). (a) Localization kernelH34,0(n) =

h34(n)u0(n) ∼ h34(n), for a constant eigenvector, u0(n) = 1/
√
N , centered at the

vertex m = 34. (b) The same localization kernel as in (a), but centered at the vertex
m = 78. (c) Localization kernel, H34,20(n) = h34(n)u20(n), centered at the vertex
m = 35 and frequency shifted by u20(n). Observe the variations in kernel amplitude,
which indicate a modulation of the localization window, hm(n). (d) The same local-
ization kernel as in (c), but centered at the vertex m = 78. (e) Three-dimensional
representation of the kernel H34,0(n) = h34(n)u0(n). (f) Three-dimensional represen-
tation of the kernel H78,0(n) = h78(n)u0(n).

280 Vertex-Frequency Representations

01

0

20

40

60

80

100

0

0.05

0.1

0 20 40 60 80 100

Figure 8.13: Local vertex-frequency spectrum calculated using the LGFT and
vertex neighborhood windows, as in (14.35). This representation immediately shows
that the graph signal consists of three components located at spectral indices k = 8,
k = 66, and k = 27, with the corresponding vertex indices in their respective vertex
subsets V1, V2, and V3, where V1 ∪ V2 ∪ V3 = V. The marginal properties are also
given in the panels to the right and below the vertex-frequency representation, and
they differ from the ideal ones given respectively by |x(n)|2 and |X(k)|2.

A vertex domain window is next used to analyze the graph signal
from Figure 8.1. The vertex-frequency representation, S(n, k), obtained
with the LGFT and the vertex domain localization window is given
in Figure 8.13. Again, we can observe three constituent graph signal
components in three distinct vertex regions. The marginals of S(n, k)
are also shown in the right and bottom panels.

Remark 77: Directed graphs. The vertex neighborhood, as a set
of vertices that can be reached from the considered vertex by a walk
whose length is at most D, may be also defined on directed graphs. In
this case, this approach corresponds to one-sided windows in classical
signal analysis.

14.1. Localized Graph Fourier Transform (LGFT) 281

If we want to define two-sided window, then we should also include
all vertices from which we can reach the considered vertex by walk
whose length is at most D. This means that for a directed graph we
should assume that vertices with distance dmn = 1 from the considered
vertex m are the vertices from which we can reach vertex m with walk of
length 1. In this case A1 = A + AT where addition is logical operation
(Boolean OR). The matrix A2 is

A2 = (A�A + AT �AT) ◦ (1− I) ◦ (1−A1).

This procedure could be continued for walks up to the desired
maximal length D.

For a circular directed graph in this way, we will get the classical
STFT with symmetric window.

Window Parameter Optimization

The concentration of local vertex spectrum representation can be mea-
sured using the normalized one-norm (Stanković, 2001), as

M = 1
F

N−1∑
m=0

N−1∑
k=0
|S(m, k)| = 1

F
‖S‖1, (14.38)

where

F = ‖S‖F =

√√√√N−1∑
m=0

N−1∑
k=0
|S(m, k)|2

is the Frobenius norm of matrix S. Alternatively, any other norm ‖S‖pp,
with 0 ≤ p ≤ 1 can be used instead of ‖S‖1. Recall that norms with
p close to 0 are noise sensitive, while the norm with p = 1 is the
only convex norm, which hence allows for gradient based optimization
(Stanković, 2001).
Example 64: The concentration measure, M(τ) = ‖S‖1/‖S‖F , for
the signal from Figure 8.1, the window given in (14.2), and for various
τ is shown in Figure 8.14, along with the optimal vertex frequency
representation. This representation is similar to that shown in Figure 8.3,
where an empirical value of τ = 3 was used, with the same localization
window and kernel form.

282 Vertex-Frequency Representations

0 10 20 30
36

38

40

42

(a)
00.51

0

20

40

60

80

100

0

0.02

0.04

0.06

0 20 40 60 80 100
(b)

Figure 8.14: Principle of the optimization of localization window. (a) Measure of
the concentration of graph spectrogram for a varying spectral domain window param-
eter τ . (b) The corresponding optimal vertex-frequency representation, calculated
with τ = 7, together with its marginals.

The optimal τ can be obtained in only a few steps through the
iteration

τk = τk−1 − α(M(τk−1)−M(τk−2)),

with α a step-size parameter.

14.2. Inversion of the LGFT 283

The optimization of parameter τ can also be achieved through graph
uncertainty principle based techniques (Agaskar and Lu, 2013; Tsitsvero
et al., 2016).

14.2 Inversion of the LGFT

The inversion relation of the LGFT, calculated using any of the presented
localization (window) forms, will next be considered in a unified way;
the two approaches for the LGFT inversion here are: (i) inversion by
summation of LGFT and (ii) kernel based inversion.

Inversion by the Summation of the LGFT

The reconstruction of a graph signal, x(n), from its local spectrum,
S(m, k), can be performed through an inverse GFT of (14.5), based on
the graph windowed signal

x(n)hm(n) =
N−1∑
k=0

S(m, k)uk(n) (14.39)

followed by a summation over all vertices, m, to yield

x(n) = 1∑N−1
m=0 hm(n)

N−1∑
m=0

N−1∑
k=0

S(m, k)uk(n). (14.40)

Remark 78: If the windows, hm(n), for every vertex, n, satisfy the
condition

N−1∑
m=0

hm(n) = 1,

then the reconstruction does not depend on the vertex index, n, or in
other words such reconstruction is vertex independent. This becomes
clear from

x(n) =
N−1∑
m=0

N−1∑
k=0

S(m, k)uk(n) =
N−1∑
k=0

X(k)uk(n), (14.41)

where

X(k) =
N−1∑
m=0

S(m, k)

284 Vertex-Frequency Representations

is a projection of the LGFT onto the spectral index axis. For windows
obtained using the generalized graph shift in (14.33), this conditions is
always satisfied since H(0) = 1.

The condition ∑N−1
m=0 hm(n) = 1 can be enforced by normalizing the

elements of the matrix Ad, d = 1, 2, . . . , D − 1 in (14.33), prior to the
calculation of matrix PD, in such a way that the sum of each of its
columns is equal to 1, which allows us to arrive at

N−1∑
m=0

hm(n) =
N−1∑
m=0

PD(n,m) =
D−1∑
d=1

g(d) = const.

In general, the local vertex spectrum, S(m, k), can also be calculated
over a reduced set of vertices, m ∈M ⊂ V . In this case, the summation
over m in the reconstruction formula should be executed over only the
vertices m ∈M, while a vertex-independent reconstruction is achieved
if ∑m∈M hm(n) = 1.

Inversion of the LGFT with Band-Pass Functions

For the LGFT, defined in (14.18) as sk = ∑M−1
p=0 hp,kLpx, the inversion is

obtained by a summation over all spectral index shifts, k = 0, 1, . . . ,K,
that is

K∑
k=0

sk =
K∑
k=0

N−1∑
p=0

hp,kLpx =
K∑
k=0

Hk(L)x = x, (14.42)

if∑K
k=0Hk(L) = I. This condition is equivalent to the following spectral

domain form
K∑
k=0

Hk(Λ) = I (14.43)

since U∑K
k=0Hk(Λ)UT = I and UTU = I. The condition in (14.43) is

used to define the transfer functions in Figure 8.4.

Kernel-Based Inversion

Another approach to the inversion of the local vertex spectrum, S(m, k),
follows the Gabor expansion framework (Stanković et al., 2014), whereby

14.2. Inversion of the LGFT 285

the local vertex spectrum, S(m, k), is projected back to the vertex-
frequency localized kernels, Hm,k(n). The inversion for two forms of the
LGFT, defined as in (14.6) and (14.17), will be analyzed.

(a) For the LGFT defined in (14.6), the sum of all of its projections
to the localized kernels, Hm,k(n), is

N−1∑
m=0

N−1∑
k=0

S(m, k)Hm,k(n)

=
N−1∑
m=0

(N−1∑
k=0

S(m, k)hm(n)uk(n)
)

=
N−1∑
m=0

(N−1∑
i=0

IGFT
k→i
{S(m, k)}IGFT

k→i
{hm(n)uk(n)}

)

=
N−1∑
m=0

N−1∑
i=0

[x(i)hm(i)][hm(n)δ(n− i)]

=
N−1∑
m=0

x(n)h2
m(n) = x(n)

N−1∑
m=0

h2
m(n), (14.44)

where IGFT denotes the inverse GFT transform. Parseval’s theorem
for graph signals

N−1∑
n=0

x(n)y(n) =
N−1∑
k=0

X(k)Y (k)

was used in the derivation. In this form of the LGFT all possible spectral
shifts, k = 0, 1, . . . , N − 1, are used.

The inversion formula for the local vertex spectrum, S(m, k), which
yields the original graph signal, x(n), then becomes

x(n) = 1∑N−1
m=0 h

2
m(n)

N−1∑
m=0

N−1∑
k=0

S(m, k)Hm,k(n). (14.45)

Remark 79: This kind of kernel-based inversion is vertex-invariant if
the sum over all vertices, m, is invariant with respect to n and is equal
to 1, that is

N−1∑
m=0

h2
m(n) = 1. (14.46)

286 Vertex-Frequency Representations

If the LGFT, S(m, k), is calculated over a reduced set of vertices,
m ∈ M ⊂ V, then the vertex independent reconstruction condition
becomes ∑m∈M h2

m(n) = 1.
(b) For the LGFT with spectral shifted spectral windows, defined

in (14.17), the kernel based inversion is of the form

x(n) =
N−1∑
m=0

K∑
k=0

S(m, k)Hm,k(n) (14.47)

if the following condition
K∑
k=0

H2
k(λp) = 1 (14.48)

is satisfied for all λp, p = 0, 1, 2, . . . , N − 1.
The inversion formula in (14.47), with condition (14.48), follows

from
N−1∑
m=0

K∑
k=0

S(m, k)Hm,k(n)

=
N−1∑
m=0

K∑
k=0

N−1∑
p=0

X(p)Hk(λp)up(m)
N−1∑
l=0

Hk(λl)ul(m)ul(n). (14.49)

Since ∑N−1
m=0 up(m)ul(m) = δ(p− l), the last expression reduces to the

graph signal, x(n),
K∑
k=0

N−1∑
p=0

X(p)Hk(λp)Hk(λp)up(n) = x(n), (14.50)

if the transfer functions, Hk(λp), k = 0, 1, . . . ,K, satisfy the condition
in (14.48) for all λp.

Vertex-Varying Filtering

Filtering in the vertex-frequency domain may be implemented using a
vertex-frequency support function, B(m, k). The filtered LGFT is then
given by

Sf (m, k) = S(m, k)B(m, k),

14.2. Inversion of the LGFT 287

(a)

(b)

(c)

Figure 8.15: Vertex-varying filtering of a graph signal. (a) The original graph signal,
x(n), from Figure 8.1 (d). (b) The graph signal, x(n), corrupted by an additive white
Gaussian noise, at SNRin = 5.3 dB. (c) The graph signal, xf (n), after vertex-varying
filtering based on thresholding of the LGFT of noisy graph signal, S(m, k), with the
final signal-to-noise ratio SNRout = 10.36 dB.

and the filtered signal, xf (n), is obtained by the inversion of Sf (m, k)
using the above mentioned inversion methods. The filtering support
function, B(m, k), can be obtained, for example, by thresholding noisy
values of the local vertex spectrum, S(m, k).
Example 65: Consider the graph signal, x(n), from Figure 8.1(d),
also shown in Figure 8.15(a), and its version corrupted by an additive
white Gaussian noise, at the signal-to-noise ratio of SNRin = 5.3 dB,
given in Figure 8.15(b). The LGFT, S(m, k) of the noisy graph signal is
calculated according to (14.17), using shifted bandpass spectral transfer
functions, Hk(λp), k = 0, 1, . . . ,K, p = 0, 1, . . . , N − 1, given by (14.20)
without squares (Hk(λp)→ H2

k(λp)), which allows ∑K
k=0H

2
k(λp) = 1 to

288 Vertex-Frequency Representations

hold, instead of ∑K
k=0Hk(λp) = 1. In this way, the condition for the

inversion (14.48) is satisfied. The transfer functions, Hk(λp), otherwise
correspond to those shown in Figure 8.4(b) with K = 25.

The vertex-varying filtering is performed using Sf (m, k) = S(m, k) ·
B(m, k) for m = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K, with a simple
thresholding-based filtering support function

B(m, k) =

0, for |S(m, k)| < T

1, otherwise,

m = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K, with the threshold T = 0.09
set empirically. The output graph signal, xf (n), is obtained using the
inversion relation in (14.47) for the filtered LGFT, Sf (m, k), and shown
in Figure 8.15(c). The achieved output SNR was SNRout = 10.36 dB.

If the signal is filtered using the graphWiener filter, as in Section 13.3,
with the estimated noise level σε = 0.12, and the available noisy signal,
H(λk) = |X(k)|2/(|X(k)|2 + σ2

ε), with xf (n) = IGFT{X(k)H(λk)},
then the output SNR is SNRout = 7.80 dB. This value is lower that in
the vertex-varying filtering case. If we knew the signal without noise
and used it in the definition of the Wiener filter, the output SNR would
have been improved to 15.78 dB.

14.3 Uncertainty Principle for Graph Signals

In the classical signal analysis, the purpose of a window function is to
enhance signal localization in the joint time-frequency domain. However,
the uncertainty principle prevents an ideal localization in both time
and frequency. Various forms of the uncertainty principle in the signal
analysis have been defined, with surveys in Ricaud and Torrésani (2014)
and Perraudin et al. (2018). Various forms of the uncertainty principle
in graph signal processing are studied in Erb (2019).

These forms are closely related to the concentration measures in time-
frequency distributions; for a review see Stanković (2001). While the
common uncertainty principle form in time-frequency analysis (whose
quantum mechanical form is called the Robertson-Schrödinger inequal-
ity) establishes the lower bound for the product of effective signal

14.3. Uncertainty Principle for Graph Signals 289

widths (variances) in the time and the frequency domain (Cohen, 1995;
Stankovic, 1997), here we will use a form of the sparsity support measure
(Ricaud and Torrésani, 2014; Stanković, 2001) as the one which clearly
and in a simple way shows a significant difference in both classical
Fourier based analysis and graph signal transforms with respect to the
expected concentration in the joint vertex-frequency domain.

In classical signal analysis, the purpose of a window function is to
enhance signal localization in the joint time-frequency domain. However,
the uncertainty principle prevents the ideal localization in both time
and frequency. Indeed, in the classical DFT analysis the uncertainty
principle states that

‖x‖0‖X‖0 ≥ N, (14.51)
or in other words, that the product of the number of nonzero signal
values, ‖x‖0, and the number of its nonzero DFT coefficients, ‖X‖0,
is greater or equal than the total number of signal samples N ; they
cannot simultaneously assume small values.

To arrive at the uncertainty principle for graph signals, consider a
graph signal, x, and its spectral transform, X, in a domain of orthonor-
mal basis functions, uk(n). Then, the uncertainty principle states that
Tsitsvero et al. (2016), Agaskar and Lu (2013), Elad and Bruckstein
(2002), and Perraudin et al. (2018)

‖x‖0‖X‖0 ≥
1

maxk,m{|uk(m)|2} . (14.52)

This form of the uncertainty principle is generic, and indeed for the basis
functions uk(n) = 1√

N
exp(j2πnk/N), the standard DFT uncertainty

principle form in (14.51) follows. A simple derivation of the support
uncertainty principle shall be given in Section 14.5 (Stanković, 2020).
Remark 80: Note, however, that in graph signal processing, the eigen-
vectors/basis functions can assume quite different forms than in the
standard DFT case. For example, when one vertex is loosely connected
with other vertices, then max{|uk(m)|2} → 1 and even ‖x‖0‖X‖0 ≥ 1
is possible for the uncertainty condition in (14.52). This means that,
unlike the classical Fourier transform-based time and frequency domains,
a graph signal can be well localized in both the vertex and the spectral
domains.

290 Vertex-Frequency Representations

Example 66: For the graph shown in Figure 8.1, we have

max
k,m
{|uk(m)|2} = 0.8713

which indicates that even ‖x‖0‖X‖0 ≥ 1.1478 is possible. In other words,
a graph signal for which the number of nonzero samples, x(n), in the
vertex domain is just two, will not violate the uncertainty principle even
if it has just one nonzero GFT coefficient, X(k).

14.4 Graph Spectrogram and Frames

Based on (14.5), the graph spectrogram can be defined as

|S(m, k)|2 =
∣∣∣∣N−1∑
n=0

x(n)hm(n)uk(n)
∣∣∣∣2. (14.53)

Then, according to Parseval’s theorem, the vertex marginal property,
which is a projection of |S(m, k)|2 onto the vertex index axis, is given
by

N−1∑
k=0
|S(m, k)|2 =

N−1∑
k=0

S(m, k)
N−1∑
n=0

x(n)hm(n) uk(n)

=
N−1∑
n=0
|x(n)hm(n)|2,

which would be equal to the signal power, |x(m)|2, at the vertex m,
if hm(n) = δ(m− n). Since this is not the case, the vertex marginal
property of the graph spectrogram is equal to the power of the graph
signal in hand, smoothed by the window, hm(n).
Energy of graph spectrogram. For the total energy of graph spec-
trogram, we consequently have

N−1∑
m=0

N−1∑
k=0
|S(m, k)|2 =

N−1∑
n=0

(
|x(n)|2

N−1∑
m=0
|hm(n)|2

)
. (14.54)

If ∑N−1
m=0 |hm(n)|2 = 1 for all n, then the spectrogram on the graph is

energy unbiased (statistically consistent with respect to the energy),

14.4. Graph Spectrogram and Frames 291

that is
N−1∑
m=0

N−1∑
k=0
|S(m, k)|2 =

N−1∑
n=0
|x(n)|2 = ‖x‖2 = Ex. (14.55)

The LGFT viewed as a frame. A set of functions, S(m, k), is called
a frame for the expansion of a graph signal, x, if

A‖x‖2 ≤
N−1∑
m=0
|S(m, k)|2 ≤ B‖x‖2,

where A and B are positive constants. If A = B, the frame is termed
Parseval’s tight frame and the signal can be recovered as

x(n) = 1
A

N−1∑
m=0

N−1∑
k=0

S(m, k)hm(n)uk(n).

The constants A and B govern the numerical stability of recovering the
original signal x from the coefficients S(m, k).

The conditions for two forms of the LGFT, defined as in (14.6) and
(14.17), to represent frames will be analyzed next.

(a) The LGFT, defined as in (14.6), is a frame, since in this case Parse-
val’s theorem holds (Behjat et al., 2016; Girault, 2015; Hammond
et al., 2011a; Sakiyama and Tanaka, 2014), that is

N−1∑
m=0
|hm(n)|2 =

N−1∑
k=0
|H(k)|2|uk(n)|2, (14.56)

which allows us to write

1
N
H2(0) ≤

N−1∑
m=0
|hm(n)|2 ≤ max

n,k
|uk(n)|2

N−1∑
k=0
|H(k)|2 = γ2Eh,

(14.57)
where γ = maxn,k |uk(n)| and

Eh =
N−1∑
k=0
|H(k)|2.

292 Vertex-Frequency Representations

By multiplying both sides of the above inequalities by ‖x‖2, we
arrive at

1
N
H2(0)‖x‖2 ≤

N−1∑
m=0

N−1∑
k=0
|S(m, k)|2 ≤ ‖x‖2γ2Eh. (14.58)

A frame is termed a tight frame if the equality in (14.57) holds,
that is, if

N−1∑
m=0
|hm(n)|2 = 1,

which is the same condition as in (14.46).

(b) The LGFT defined in (14.17) is a tight frame if
K∑
k=0

N−1∑
m=0
|S(m, k)|2 =

K∑
k=0

N−1∑
p=0
|X(p)Hk(λp)|2 = Ex, (14.59)

where Parseval’s theorem for the S(m, k) as the GFT of X(p) ·
Hk(λp) was used to yield

N−1∑
m=0
|S(m, k)|2 =

N−1∑
p=0
|X(p)Hk(λp)|2.

This means that the LGFT in (14.17) is a tight frame if
K∑
k=0
|Hk(λp)|2 = 1 for p = 0, 1, . . . , N − 1.

This condition is used to define transfer functions in Figures 8.4(b)
and (c).
From (14.59), it is straightforward to conclude that the graph
spectrogram energy is bounded with

AEx ≤
K∑
k=0

N−1∑
m=0
|S(m, k)|2 ≤ BEx, (14.60)

where A and B are respectively the minimum and the maximum
of value of

g(λp) =
K∑
k=0
|Hk(λp)|2.

14.4. Graph Spectrogram and Frames 293

Graph Wavelet Transform Inversion

The wavelet inversion formula

x(n) =
N−1∑
n=0

K∑
i=0

ψ(n, si)W (n, si) (14.61)

can be derived in the same way and under the same condition as in
(14.47)–(14.48), where a set of discrete scales for the wavelet calculation,
denoted by s ∈ {s1, s1, . . . , sK}, is assumed, and ψ(n, s0) is used as a
notation for the scale function, φ(n), whose spectral transfer function is
G(λ), as explained in Remark 74. In the same way as in the LGFT case,
it can be shown that the wavelet transform represents a frame with

A‖x‖2 ≤
N−1∑
n=0

K∑
i=0
|W (n, si)|2 ≤ B‖x‖2, (14.62)

where (Leonardi and Van De Ville (2013), Hammond et al. (2019), and
Behjat and Van De Ville (2019))

A = min
0≤λ≤λmax

g(λ),

B = max
0≤λ≤λmax

g(λ),

and the function g(λ) is defined by

g(λ) =
K∑
i=1

H2(siλ) +G2(λ).

The low-pass scale function,G(λ), is added in the reconstruction formula,
since all H(siλ) = 0 for λ = 0, as explained in Example 61 and
Remark 74. It should be mentioned that the spectral functions of the
wavelet transform, H(siλ), form Parseval’s frame if

g(λ) = 1.

Since the number of wavelet transform coefficients, W (n, si), for each
n and i, is greater than the number of signal samples, N , this repre-
sentation is redundant, and this redundancy allows us to implement
the transform through a fast algorithm, rather than using the explicit

294 Vertex-Frequency Representations

computation of all wavelet coefficients (Behjat and Van De Ville, 2019;
Hammond et al., 2019). Indeed, for large graphs, it can be computation-
ally too complex to compute the full eigendecomposition of the graph
Laplacian. A common way to avoid this computational burden is to use
a polynomial approximation schemes for H(siλ), i = 1, 2, . . . ,K, and
G(λ). One such approach is the truncated Chebyshev polynomial ap-
proximation method which is based on the application of the continuous
spectral window functions with Chebyshev polynomials, which admit
order-recursive calculation (see Section 9.5 and Example 9.5). If, for a
given scale, si, the wavelet function is approximated by a polynomial
in the Laplacian, Pi(L), then the wavelet transform can be efficiently
calculated using

wi = Pi(L)x, (14.63)
where wi a column vector with elements W (m, si), m = 0, 1, . . . ,
N − 1. Note that this form corresponds to the LGFT form in (14.18).

14.5 Vertex-Frequency Energy Distributions

Like in time-frequency analysis, the distribution of graph signal en-
ergy, as a function of the vertex and spectral indices, is an alternative
way to approach vertex-frequency analysis without localization win-
dows. A graph form of the Rihaczek distribution is used as the basic
distribution to introduce the concepts of vertex-frequency domain en-
ergy parameters, such as the local smoothness and marginal properties.
The graph Rihaczek distribution is then used to derive the support
uncertainty principle and to define a class of reduced interference vertex-
frequency energy distributions which satisfy the graph signal marginal
properties.

The energy of a general signal is usually defined as

E =
N−1∑
n=0

x2(n) =
N−1∑
n=0

x(n)
N−1∑
k=0

X(k)uk(n).

This expression can be rearranged into

E =
N−1∑
n=0

N−1∑
k=0

x(n)X(k)uk(n) =
N−1∑
n=0

N−1∑
k=0

E(n, k), (14.64)

14.5. Vertex-Frequency Energy Distributions 295

where for each vertex, the vertex-frequency energy distribution, E(n, k),
is defined by Stanković et al. (2018b, 2019b)

E(n, k) = x(n)X(k)uk(n) =
N−1∑
m=0

x(n)x(m)uk(m)uk(n). (14.65)

Remark 81: The definition in (14.65) corresponds to the Rihaczek
distribution in classical time-frequency analysis (Boashash, 2015; Cohen,
1995; Stanković et al., 2014). Observe that based on the Rihaczek distri-
bution and the expression in (14.65), we may obtain a vertex-frequency
representation even without a localization window. This very important
property is also the main advantage (along with the concentration im-
provement) of classical time-frequency distributions with respect to the
spectrogram and STFT based time-frequency representations.

The marginal properties of the vertex-frequency energy distribution,
E(n, k), are defined as its projections onto the spectral index axis, k,
and the vertex index axis, n, to give

N−1∑
n=0

E(n, k) = |X(k)|2 and
N−1∑
k=0

E(n, k) = x2(n),

which correspond respectively to the squared spectra, |X(k)|2, and the
signal power, x2(n), of the graph signal, x(n).
Example 67: Figure 8.16 shows the vertex-frequency distribution,
E(n, k), of the graph signal from Figure 8.1, together with its marginal
properties. The marginal properties are satisfied up to the computer
precision. Observe also that the localization of energy is better than in
the cases obtained with the localization windows in Figures 8.3, 8.13,
and 8.14. Importantly, the distribution, E(n, k), does not employ a
localization window.

Smoothness Index and Local Smoothness

The smoothness index, l, in graph signal processing plays the role of
frequency, ω, in classical spectral analysis. For a graph signal, x, the
smoothness index is defined as the Rayleigh quotient of the matrix L

296 Vertex-Frequency Representations

00.51

0

20

40

60

80

100

0

0.2

0.4

0 20 40 60 80 100

Figure 8.16: Vertex-frequency energy distribution for the graph signal whose vertex-
frequency representation is given in Figure 8.3. No localization window was used
here.

and vector x, that is (see Section 4.2, Part I)

l = xTLx
xTx ≥ 0. (14.66)

Remark 82: The expression in (28.9) indicates that the smoothness
index can be considered as a measure of the rate of change of a graph
signal. Faster changing signals (corresponding to high-frequency signals)
have larger values of the smoothness index. The maximally smooth graph
signal is then a constant signal, x(n) = c, for which the smoothness
index is l = 0.

In the mathematics literature, the inverse of the smoothness index
is known as the curvature (curvature ∼ 1/l). While larger values of
the smoothness index correspond to graph signals with larger rates of

14.5. Vertex-Frequency Energy Distributions 297

change (less smooth graph signals), the larger values of curvature would
indicate smoother graph signals.

Notice that the smoothness index for an eigenvector, uk, of the
graph Laplacian, L, is equal to its corresponding eigenvalue, λk, that is

uTkLuk
uTk uk

= λk, (14.67)

since by definition Luk = λkuk.
Remark 83: If the above eigenvectors are the classical Fourier transform
basis functions, then the smoothness index corresponds to the squared
frequency of the considered basis function, λk ∼ ω2

k, while the curvature
corresponds to the squared period in harmonic signals.

This makes it possible to define the local smoothness index for a
vertex n, λ(n), in analogy with the standard instantaneous frequency,
ω(t), at an instant t, as Daković et al. (2019)

λ(n) = Lx(n)
x(n) , (14.68)

where it was assumed that x(n) 6= 0 and Lx(n) are the elements of the
vector Lx.

The properties of the local smoothness include:

1. The local smoothness index, λ(n), for a monocomponent signal

x(n) = αuk(n),

is vertex independent, and is equal to the global smoothness index,
λk, since

Lx(n) = αLuk(n) = αλkuk(n).
In the standard time-domain signal analysis, this property means
that the instantaneous frequency of a sinusoidal signal is equal to
its global frequency.

2. Assume a piece-wise monocomponent signal

x(n) = αiuki(n) for n ∈ Vi, i = 1, 2, . . . ,M,

where Vi ⊂ V are the subsets of the vertices such that Vi ∩Vj = ∅
for i 6= j, V1 ∪ V2 ∪ · · · ∪ VM = V, that is, every vertex belongs

298 Vertex-Frequency Representations

to only one subset, Vi. Given the monocomponent nature of this
signal, within each subset, Vi, the considered signal is proportional
to the eigenvector, uki(n).
Then, for each interior vertex, n ∈ Vi, i.e., a vertex whose neigh-
borhood lies in the same set, Vi, the local smoothness index is
given by

λ(n) =
αiLuki (n)
αiuki(n) = λki . (14.69)

3. An ideally concentrated vertex-frequency distribution (ideal dis-
tribution) can be defined as

I(n, k) ∼ |x(n)|2δ(λk − [λ(n)]),

whereby it is assumed that the local smoothness index is rounded
to the nearest eigenvalue.
This distribution can also be used as a local smoothness estimator,
since for each vertex, n, the maximum of I(n, k) is positioned
at λk = λ(n). An estimate of the spectral index at a vertex, n,
denoted by k̂(n), is then obtained as

k̂(n) = arg max
k
{I(n, k)},

so that the estimated local smoothness index becomes λ̂(n) =
λk̂(n). This type of estimator is widely used in classical time-
frequency analysis (Boashash, 2015; Cohen, 1995; Stanković et al.,
2014).

4. Local smoothness property. The vertex-frequency distribution,
E(n, k), satisfies the local smoothness property if∑N−1

k=0 λkE(n, k)∑N−1
k=0 E(n, k)

= λ(n). (14.70)

In that case, the centers of masses of the vertex-frequency dis-
tribution along the spectral index axis, k, should be exactly at
λ = λ(n), and can be used as an unbiased estimator of this graph
signal parameter.

14.5. Vertex-Frequency Energy Distributions 299

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Figure 8.17: Local smoothness index, λ(n), of the graph signal from Figure 8.1.

Example 68: The vertex-frequency distribution, defined by E(n, k) =
x(n)X(k)uk(n), satisfies the local smoothness property in (14.70), since∑N−1

k=0 λkE(n, k)∑N−1
k=0 E(n, k)

=
∑N−1
k=0 λkx(n)X(k)uk(n)∑N−1
k=0 x(n)X(k)uk(n)

= Lx(n)
x(n) = λ(n).

The above relation follows from the fact that∑N−1
k=0 λkX(k)uk(n) are the

elements of the IGFT of λkX(k). Upon employing the matrix form of the
IGFT of ΛX, we have UΛX = UΛ(UTU)X = (UΛUT)(UX) = Lx.
With the notation, Lx(n), for the elements of Lx, we next obtain

N−1∑
k=0

λkX(k)uk(n) = Lx(n).

The local smoothness index for the graph signal from Figure 8.1 is
shown in Figure 8.17.

Support Uncertainty Principle Derivation

From the energy condition for the Rihaczek distribution in (14.65) and
(14.64), for the case of unit energy, we have

1 ≤
N−1∑
n=0

N−1∑
k=0
|E(n, k)|. (14.71)

300 Vertex-Frequency Representations

Assume, as in Elad and Bruckstein (2002), that the support, M, of
the signal, x(n), is M = {n1, n2, . . . , nM}, meaning that x(n) 6= 0 for
n ∈M and x(n) = 0 for n /∈M, while the support of the graph Fourier
transform, X(k), is K = {k1, k2, . . . , kK}, where X(k) 6= 0 for k ∈ K
and X(k) = 0 for k /∈ K. By definition, we can write

‖x‖0 = card{M} = M and ‖X‖0 = card{K} = K. (14.72)

Upon applying the Schwartz inequality to the square of (14.71), we have

1 =
(∑
n∈M

∑
k∈K

E(n, k)
)2
≤
(∑
n∈M

∑
k∈K
|x(n)| |X(k)| |uk(n)|

)2

=
(∑
n∈M

∑
k∈K

(
√
|uk(n)||x(n)|) (

√
|uk(n)|X(k)|)

)2
(14.73)

≤
∑
n∈M

∑
k∈K
|uk(n)‖x(n)|2

∑
n∈M

∑
k∈K
|uk(n)‖X(k)|2 (14.74)

≤ max
n,k
{|uk(n)|2}KM = max

n,k
{|uk(n)|2}‖x‖0‖X‖0, (14.75)

from the unit energy of the graph signal, ∑n∈M |x(n)|2 = ∑
k∈K |X(k)|2

= 1.
The inequality in (14.75) results in the following support uncertainty

principle (Elad and Bruckstein, 2002)

‖x‖0‖X‖0 ≥
1

max
n,k
{|uk(n)|2}

. (14.76)

An improved bound of the support uncertainty principle was recently
derived in Stanković (2020), using the same relations.

Reduced Interference Distributions (RID) on Graphs

In order to emphasize the close relations with classical time-frequency
analysis, in this subsection we will use the complex-sensitive notation
for eigenvectors and spectral vectors. The frequency domain definition
of the energy distribution in (14.65) is given by

E(n, k) = x(n)X∗(k)u∗k(n) =
N−1∑
p=0

X(p)X∗(k)up(n)u∗k(n).

14.5. Vertex-Frequency Energy Distributions 301

Then, the general form of a graph distribution can be defined with the
help of a kernel φ(p, k, q), as Stanković et al. (2018a)

G(n, k) =
N−1∑
p=0

N−1∑
q=0

X(p)X∗(q)up(n)u∗q(n)φ(p, k, q). (14.77)

Observe that for φ(p, k, q) = δ(q−k), the graph Rihaczek distribution in
(14.65) follows, while the unbiased energy condition∑N−1

k=0
∑N−1
n=0 G(n, k) =

Ex is satisfied if
N−1∑
k=0

φ(p, k, p) = 1.

The so obtained distribution, G(n, k), may also satisfy the vertex
and frequency marginal properties, as elaborated below.

• The vertex marginal property is satisfied if
N−1∑
k=0

φ(p, k, q) = 1.

This is obvious from
N−1∑
k=0

G(n, k) =
N−1∑
p=0

N−1∑
q=0

X(p)X∗(q)up(n)u∗q(n) = |x(n)|2.

• The frequency marginal property is satisfied if

φ(p, k, p) = δ(p− k).

Then, the sum over all vertex indices produces
N−1∑
n=0

G(n, k) =
N−1∑
p=0
|X(p)|2φ(p, k, p) = |X(k)|2,

since ∑N−1
n=0 up(n)u∗q(n) = δ(p − q), that is, the eigenvectors are

orthonormal.

Reduced Interference Distribution Kernels

A straightforward extension of classical time-frequency kernels to graph
signal processing would be naturally based upon exploiting the relation
λ ∼ ω2, together with an appropriate exponential kernel normalization.

302 Vertex-Frequency Representations

20 40 60 80 100

20

40

60

80

100

Figure 8.18: The sinc kernel of the reduced interference vertex-frequency distribution
in the frequency domain.

The simplest reduced interference kernel in the frequency–frequency
shift domain, which would satisfy the marginal properties, is the sinc
kernel, given by

φ(p, k, q) =

1

1 + 2|p− q| , for |k − p| ≤ |p− q|,

0, otherwise,

which is shown in Figure 8.18 at the frequency shift corresponding to
k = 50.
Example 69: The sinc kernel was used for a vertex-frequency repre-
sentation of the signal from Figure 8.1(d), with the results shown in
Figure 8.19. This representation is a smoothed version of the energy
vertex-frequency distribution in Figure 8.16, whereby both (vertex and
frequency) marginals are preserved.

Remark 84:Marginal properties of graph spectrogram. A general
vertex-frequency distribution can be written for the vertex–vertex shift
domain as a dual form of (14.77), to yield

G(n, k) =
N−1∑
m=0

N−1∑
l=0

x(m)x∗(l)uk(m)u∗k(l)ϕ(m,n, l), (14.78)

14.5. Vertex-Frequency Energy Distributions 303

00.51

0

20

40

60

80

100

0

0.2

0.4

0 20 40 60 80 100

Figure 8.19: Reduced interference vertex-frequency distribution of a signal whose
vertex-frequency representation is given in Figure 8.3. The marginal properties are
given in the panels to the right and below the vertex-frequency representation, and
are equal to their corresponding ideal forms given by |x(n)|2 and |X(k)|2.

where ϕ(m,n, l) is the kernel in this domain (the same mathematical
form as for the frequency–frequency shift domain kernel). The frequency
marginal is then satisfied if ∑N−1

n=0 ϕ(m,n, l) = 1 holds, while the vertex
marginal is met if ϕ(m,n,m) = δ(m − n). The relation of this distri-
bution with the vertex domain spectrogram (14.1) is simple, and is
given by

ϕ(m,n, l) = hn(m)h∗n(l).

However, this kernel cannot satisfy both the frequency and vertex
marginal properties, while the unbiased energy condition ∑N−1

n=0 ϕ(m,n,
m) = 1 reduces to (14.46).
Remark 85: Classical time-frequency analysis follows as a special
case from the general form of graph distributions in (14.77), if the
considered graph is a directed circular graph. This becomes obvious

304 Vertex-Frequency Representations

upon recalling that the adjacency matrix eigendecomposition produces
complex-valued eigenvectors of the form uk(n) = exp(j2πnk/N)/

√
N .

With the kernel choice

φ(p, k, q) = φ(p− q, k − p) =
N−1∑
n=0

c(p− q, n)e−j
2πnk
N ej

2πnp
N

in (14.77), the classical (Rihaczek based) Cohen class of distributions
directly follows, where c(k, n) is the distribution kernel in the ambiguity
domain (Boashash, 2015; Cohen, 1995; Stanković et al., 2014).

A comparison of various vertex-frequency method may be found in
Stanković et al. (2020b).

A interesting combination of the time and vertex signal variations
into time-vertex signal processing is done in Grassi et al. (2017) and
Bohannon et al. (2019).

15
Conclusion

Fundamental ideas of graph signals and their analysis have been in-
troduced starting from an intuitive multisensor estimation example,
frequently considered in traditional data analytics. The concept of sys-
tems on graphs has been defined using graph signal shift operators,
which generalize the signal shift concepts in traditional signal processing.
In Part II of our monograph, the Graph Discrete Fourier Transform
(GFT) has been at the core of the spectral domain representation of
graph signals and systems on graphs, and has been defined based on
both the adjacency matrix and graph Laplacian. These spectral domain
representations have been used as the basis to introduce graph signal
filtering concepts. Methods for the design of graph filters have been
presented next, including those based on the polynomial approximation.
Various ideas related to the sampling of graph signals, and particularly,
the challenging topic of the subsampling, have also been addressed
in this part of the monograph. This is followed by conditions for the
recovery of signals on graphs, from a reduced number of samples. The
concepts of time-varying signals on graphs and basic definitions and
methods related to processing random graph signals have also been
introduced.

305

306 Conclusion

While traditional approaches for graph signal analysis, clustering
and segmentation consider only graph topology and spectral properties
of graphs, when dealing with signals on graphs, localized analyzes should
be employed in order to consider both data on graphs and the graph
topology. Such a unified approach to define and implement graph signal
localization methods, which takes into account both the data on graph
and the corresponding graph topology, is at the core of the presented
vertex-frequency analysis. Like in classical time-frequency analysis,
main research efforts have been devoted to linear representations of
the graph signals which include a localization window for enhanced
signal discrimination. Several methods for the definition of localization
widows in the spectral and vertex domain have been addressed in
Part II of this monograph. Optimization of the window parameters,
uncertainty principle, and inversion methods have also been discussed.
Following classical time-frequency analysis, energy forms of vertex-
frequency energy and reduced interference distributions, which do not
use localization windows, have also been considered, together with the
elaboration of their role as an estimator of the local smoothness index.

Part III

Machine Learning on
Graphs, from Graph

Topology to Applications

16
Introduction

Graph data analytics have already shown enormous potential, as their
flexibility in the choice of graph topologies (irregular data domains) and
connections between the entities (vertices) allows for both a rigorous
account of irregularly spaced information such as locations and social
connections, and also for the incorporation of semantic and contextual
cues, even for otherwise regular structures such as images.

In Part I and Part II of this monograph, it was assumed that
the graph itself is already defined prior to analyzing data on graphs.
The focus of Part I has been on defining graph properties through the
mathematical formalism of linear algebra, while Part II introduces graph
counterparts of several important standard data analytics algorithms,
again for a given graph. However, in many modern applications, graph
topology is not known a priori (Cioacă et al., 2019; Das et al., 2017;
Dong et al., 2015, 2016; Epskamp and Fried, 2018; Friedman et al., 2008;
Hamon et al., 2019, Meinshausen et al., 2006; Pavez and Ortega, 2016;
Pourahmadi, 2011; Rabiei et al., 2019; Stanković et al., 2018, 2020),
and the focus of this part is therefore on simultaneous estimation of
data on a graph and the underlying graph topology. Without loss of
generality, it is convenient to assume that the vertices are given, while

309

310 Introduction

the edges and their associated weights are part of the solution to the
problem considered and need to be estimated from the vertex geometry
and/or the observed data (Bohannon et al., 2019; Caetano et al., 2009;
Camponogara and Nazari, 2015; Dal Col et al., 2019; Gu and Wang,
2019; Mao and Gu, 2019; Pasdeloup et al., 2019; Slawski and Hein, 2015;
Segarra et al., 2016; Stanković and Sejdić, 2019; Stanković et al., 2017a;
Tanaka and Sakiyama, 2019; Thanou et al., 2014; Ubaru et al., 2017;
Yankelevsky and Elad, 2016; Zhao et al., 2012; Zheng et al., 2011).

Three scenarios for the estimation of graph edges from vertex geom-
etry or data are considered in this part of the monograph.

• Based on the geometry of vertex positions. In various sensor net-
work setups (such as temperature, pressure, and transportation),
the locations of the sensing positions (vertices) are known before-
hand, while the vertex distances convey physical meaning about
data dependence and thus may be employed for edge/weight
determination.

• Based on data association and data similarity. Various statisti-
cal measures are available to serve as data association metrics,
with the covariance and precision matrices most commonly used.
A strong correlation between data on two vertices would indicate
a large weight associated with the corresponding edge. A small
degree of correlation would indicate nonexistence of an edge (after
weight thresholding).

• Based on physically well defined relations among the sensing
positions. Examples include electric circuits, power networks, linear
heat transfer, social and computer networks, spring-mass systems,
to mention but a few. In these cases, edge weighting can usually
be well defined based on the underlying context of the considered
problem.

After a detailed elaboration of graph definition and graph topology
learning techniques, a summary of graph topology learning from data
using probabilistic generative models is given. This followed by an
account of graph neural networks (GNN), with a special emphasis on

311

graph convolutional networks (GCN). The analysis is considered from
the perspective of graph signal filtering presented in Part II. Graph
data analysis is further generalized to the tensor representation of
lattice-structured graphs, whereby the graph vertices reside on a high-
dimensional tensor structure. Finally, two applications of graph-based
data analysis are given: (i) an example where domain knowledge is
incorporated into financial data analysis (the investment analysis), by
means of portfolio cuts; (ii) London underground transportation system.
The latter example demonstrates how graph theory can be used to
identify the stations in the London underground network which have
the greatest influence on the functionality of the traffic, and also to
assess the impact of a station closure on service levels across the city.

17
Geometrically Defined Graph Topologies

For a graph that corresponds to a network with geometrically distributed
vertices, it is natural to relate the edge weights with the distance between
vertices. Consider vertices m and n whose locations in space are defined
by the position vectors (coordinates) rm and rn. The Euclidean distance,
rmn, between these two vertices is then

rmn = distance(m,n) = ‖rm − rn‖2.

A common way to define the graph weights in such networks is through
an exponentially decaying function of the distance, rmn, for example as

Wmn =

e−r
2
mn/τ

2
, for rmn ≤ κ

0, for rmn > κ or m = n,
(17.1)

where τ and κ are suitably chosen constants. This is also physically well
justified, as based on e−r2

mn/τ
2 the weights tend to 1 for closely spaced

vertices and diminish for distant vertices.
The rationale for this definition of edge weights is the assumption

that the signal value measured at a vertex n is similar to signal values
measured at its neighboring vertices. Then, the estimation of a signal at
a vertex n should also involve neighboring vertices which are connected

313

314 Geometrically Defined Graph Topologies

with larger weights (close to 1), while the signal values sensed at farther
vertices would be less relevant, and are associated with smaller weighting
coefficients or are not included at all. A physical interpretation of the
weights in (17.1), within the heat distribution and the heat kernel
frameworks, can be found in Belkin and Niyogi (2003), where the
constant τ2 = 4t is considered as the heat kernel parameter, t. Moreover,
the Laplacian induced from such weight definition can converge to
the continuous Laplace–Beltrami operator if the data is random and
uniformly distributed and the number of data point is infinite (Belkin
and Niyogi, 2008).

The Gaussian function, used in (17.1), is appropriate in many appli-
cations, however, other forms to penalize data values associated with
the vertices which are far from the considered vertex may also be used.
Examples of such functions include various kernels, such as the kernel
given by Chen et al. (2015, 2016)

Wmn =

e−rmn/τ , for rmn ≤ κ
0, for rmn > κ or m = n

(17.2)

or the inverse Euclidean distance between vertices m and n, given by

Wmn =

1
rmn

, for rmn ≤ κ

0, for rmn > κ or m = n.

(17.3)

Obviously, the simplest form for the edge weighting coefficients is a
binary scheme

Wmn = Amn =

1, for rmn ≤ κ
0, for rmn > κ or m = n,

(17.4)

which corresponds to an unweighted graph, with W = A. This form
can be obtained from (17.1) as τ2 →∞ (or the heat kernel parameter
approaches infinity).
Example 70: We shall illustrate the geometry-based formation of
graph structure on the well-known Swiss roll manifold as a domain for
data acquisition. This is a three-dimensional surface with the space
coordinates, (x, y, z), defined as functions of two parameters, ξ and ζ,

315

in the following form

x = 1
4πζ cos(ζ)

y = ξ (17.5)

z = 1
4πζ sin(ζ).

The Swiss roll manifold shown in Figure 8.1(a) was created for the
parameters, ξ and ζ, ranging within the intervals −1 ≤ ξ ≤ 1 and
π ≤ ζ ≤ 4π.

More specifically, we considered a graph with N = 100 vertices,
which were randomly placed on the Swiss roll surface, with the coordi-
nates (xk, yk, zk), k = 1, 2, . . . , N , whereby

ξk was uniformly random within − 1 ≤ ξk ≤ 1
ζk was uniformly random within π ≤ ζk ≤ 4π.

The vertices were connected with edges, with the corresponding edges
defined as in (17.1), that is

Wmn = exp(−r2
mn/τ

2),

for rmn > 0.6, with Wmn = 0 for rmn ≤ 0.6, as well as for m = n;
τ = 1/2. The symbol rmn denotes the shortest geodesic distance between
the vertices m and n, measured along the Swiss roll manifold, in the
following way

r2
mn = l2mn + (ym − yn)2,

where the arc length, lmn, of the parametric curve in (17.5) is

lmn =
∫ ζn

ζm

√√√√(dx
dζ

)2
+
(
dz

dζ

)2
dζ

= 1
4π

∫ ζn

ζm

√√√√(d(ζ cos(ζ))
dζ

)2
+
(
d(ζ sin(ζ))

dζ

)2
dζ

= 1
4π

∫ ζn

ζm

√
1 + ζ2dζ = 1

4π

(1
2ζ
√
ζ2 + 1 + 1

2 ln
(√

ζ2 + 1 + ζ
))∣∣∣∣ζn

ζm

.

Small weight values were hard-thresholded to zero, in order to reduce
the number of edges associated with each vertex.

316 Geometrically Defined Graph Topologies

-1

0

1

0.5
0

-0.5

10-1

(a)

-1

0

1

0.5
0

-0.5

10-1

(b)

Figure 8.1: Concept of graph definition based on problem geometry. (a) Vertices
(points) on a three-dimensional manifold called the Swiss roll surface. (b) A graph
representation on the Swiss roll manifold. (c) Two-dimensional presentation of the
three-dimensional graph from (b) obtained by unfolding the original 3D surface.
(d) Vertices colored using the spectral vector, qn = [u1(n), u2(n)], formed from the
two smoothest generalized eigenvectors of the graph Laplacian, u1 and u2. (e) Vertices
colored using the spectral vector, qn = [u1(n), u2(n), u3(n)], formed from the three
smoothest eigenvectors of the graph Laplacian, u1, u2, and u3. The vertex indexing
in (d) and (e) is performed based on the sorted values of the smoothest (Fiedler)
eigenvector, u1.

317

01 2

3

4
5 6

7

8
910

11

1213

14

15 161718 19 2021

22

23
24

25

26

27

28

29 30 31

32

33 34

3536 3738 3940

41 42 43 44

454
647 48

49

50 51 5
253

5455
5657

5859

60 6162

63

6465
66 67

68

69

70 71 72 7374 75

7677
78

79

8081

828384

8586

8788 89 9091

929394

95

96 9798

99

01 2

3

4
5 6

7

8
910

11

1213

14

15 161718 19 2021

22

23
24

25

26

27

28

29 30 31

32

33 34

3536 3738 3940

41 42 43 44

454
647 48

49

50 51 5
253

5455
5657

5859

60 6162

63

6465
66 67

68

69

70 71 72 7374 75

7677
78

79

8081

828384

8586

8788 89 9091

929394

95

96 9798

99

(c) (d) (e)

Figure 8.1: Continued.

The so produced three-dimensional graph is shown in Figure 8.1(b),
and its two-dimensional presentation in Figure 8.1(c). The vertices
were ordered so that the values of the Fiedler eigenvector, u1(n), were
nondecreasing; the vertices were colored based on the two-dimensional
and three-dimensional spectral vectors, qn = [u1(n), u2(n)] and qn =
[u1(n), u2(n), u3(n)], of the Swiss roll in Figures 8.1(d) and (e). This

318 Geometrically Defined Graph Topologies

kind of vertex indexing can also be used for clustering with, for example,
the k-means clustering presented in Part I, Remark 30.
Classical Gaussian filter within graph topology formulation.
To illustrate this classical operation on the discrete-time domain data,
assume that we desire to perform classical smoothing of a discrete-time
domain signal, x(n), at a vertex/instant n, through a moving average
operation on data observed at neighboring vertices/instants, x(m), using
a truncated Gaussian weighting function given by

g(m,n) = e−(m−n)2/τ2

for |m−n| ≤ κ and g(m,n) = 0 for |m−n| > κ. The smoothed discrete-
time domain signal, y(n), can be expressed in classical data analysis as

y(n) =
∑
m

e−
(m−n)2

τ2 x(m) (17.6)

where the summation is performed for instants/vertices, m, such that
|n−m| ≤ κ.

We shall now reformulate this classical data processing problem
within the graph topology framework. The distance between the sam-
pling instants/vertices, distance (m,n), plays a crucial role in signal
smoothing, and is defined as

distance(m,n) = rmn = ‖m− n‖2 = |m− n|.

The corresponding edge weights can be defined based on the Gaus-
sian smoothing function, and are given byWmn = e−r

2
mn/τ

2 for rmn ≤ κ,
and Wmn = 0 for rmn > κ and m = n.

The classical smoothed signal, y(n), defined in (17.6) can now be
expressed in the form appropriate for the graph framework as

y(n) = x(n) +
∑
m

x(m)Wmn = x(n) +
∑
m

e−
(m−n)2

τ2 x(m)

where the summation is performed for vertices m such that |m−n| ≤ κ
and m 6= n. This operation can be defined within the graph analysis
framework as a simple first order system on graph, given by

y = W0x + W1x

319

Figure 8.2: Graph which corresponds to the weighted moving average operator
with Gaussian weights given in (17.6).

where the edge weights between the vertices m and n are defined
by Wmn.

For example, for τ = 2 and κ = 2, the edge weights Wmn are
shown in Figure 8.2 and this graph-based formulation is identical to the
classical discrete-time domain weighted moving average

y(n) = x(n) +
∑
m

Wmnx(m) =
n+2∑

m=n−2
e−

(m−n)2
4 x(m), (17.7)

with the output signal samples, y(n), equal to the output of a first-order
system on the graph given by

y = W0x + W1x = 3.29L0x− L1x,

where W0 and L0 are identity matrices, by definition.
For image input data, where the vertices correspond to the pixel

positions and the Euclidean distance between pixels is used to model
the image domain as a graph, the previous example would model a
moving average filtered image, using a radial Gaussian window.
Example 71: Consider the benchmark Minnesota roadmap graph, for
which the connectivity map (adjacency matrix) is designated by the
road connections and the vertices are located at the road crossings. The
edges are defined by the adjacency matrix and were weighted according
to their Eucledian distances using the weighting scheme in (17.2), with

320 Geometrically Defined Graph Topologies

τ = 25 km, to give
Wmn = e−r

2
mn/τ

2
,

where the threshold κ was not used since the connectivity is already
determined by the given adjacency matrix.

We considered a simulated temperature signal in the Minnesota area
(normalized temperature filed) which was calculated as

x(n) = 0.9
(

0.1 + 0.8e−
(
x−150

100

)2
−
(
y−400

200

)2
,

+ 0.5e−
(
x−450

200

)2
−
(
y−400

100

)2
+ e−

(
x−500

250

)2
−
(
y−150

200

)2)
+ ν(n)

where ν(n) is white Gaussian noise with a standard deviation σν = 0.3.
The noise-free and noisy versions of this graph temperature signal are
given respectively in Figures 8.3(a) and (b). The noisy signal was filtered
in the vertex domain by a low-pass filter implemented using Taubin’s
α − β algorithm (presented in Part II, Section 6.2) with α = 0.15
and β = 0.1, and the so enhanced temperature signal is shown in
Figure 8.3(c). The output SNR of 19.34 dB was achieved for the input
SNR of 9.35 dB, a gain of 10 dB.

321

(a)

(b)

(c)

Figure 8.3: Temperatures simulated on the Minnesota roadmap graph. (a) Original
synthetic temperature field signal. (b) Noisy temperature signal. (c) Low-pass filtered
temperature signal from (b). The signal values are designated by the corresponding
vertex color.

18
Graph Topology Based on Signal Similarity

In the previous sections, graph weights were defined on the assumption
that the geometric distance of vertices, where the signal is sensed, is a
reliable indicator of data similarity, or some other more general data
association. Indeed, this is the case with, for example, the measure-
ments of atmospheric temperature and (barometric) pressure when the
terrain configuration has no influence on the similarity of measured
data. However, in general, the geometric distance between vertices may
not be a good indicator of data similarity.

One such example is in image processing, where the pixel color
values themselves can be used as an indicator of signal similarity; this
can be achieved in combination with the distances between pixels, which
play the role of vertices. If the intensity values at pixels indexed by m
and n are denoted by x(m) and x(n), then the difference of intensities
is defined by

Intensitydistance(m,n) = rmn = |x(m)− x(n)|,

and the corresponding weights may be defined as

Wmn =

e−(x(m)−x(n))2/τ2
, for rmn ≤ κ and ρmn ≤ γ

0, for rmn > κ or ρmn > γ or m = n,

323

324 Graph Topology Based on Signal Similarity

where ρmn is a geometric distance between the considered pixels/vertices
and τ , κ, and γ are chosen constants.

More reliable measures of data similarity can be defined when it is
possible to collect more than one snapshot of data for a given set of
sensing points/vertices. Assume that at every vertex n = 0, 1, . . . , N − 1
we have acquired P signal values, denoted by xp(n), p = 1, 2, . . . , P .
Such a dataset may be equally treated as multivariate data or signal
measurements in a sequence. Then, an appropriate similarity measure
for a real-valued signal at vertices m and n may be

r2
mn =

∑P
p=1(xp(m)− xp(n))2∑N−1

m=1
∑N−1
n=1

∑P
p=1(xp(m)− xp(n))2 (18.1)

so that ∑N−1
m=1

∑N−1
n=1 r

2
mn = 1.

The graph weights can again be defined using any of the previous
forms, for example, as

Wmn =

e−r
2
mn/τ

2
, for rmn ≤ κ

0, for rmn > κ or m = n,

or

Wmn =

e−rmn/τ , for rmn ≤ κ
0, for rmn > κ or m = n.

The geometric distance between the considered pixels/vertices, ρmn,
can also be included in the weight definition.

Random observations. When the signal values, xp(n), acquired over
P observations, p = 1, 2, . . . , P at N vertices n = 0, 1, . . . , N − 1, are
drawn from zero-mean random noise with equal variances, σ2

x = 1, the
similarity measure can be defined by

r2
mn =

∑P
p=1(xp(m)− xp(n))2√∑P
p=1 x

2
p(m)∑P

p=1 x
2
p(n)

= 2(1−Rx(m,n))

where

Rx(m,n) = 1
P

P∑
p=1

xp(m)xp(n)

325

represents the normalized sample autocorrelation function and σ2
x =

1
P

∑P
p=1 x

2
p(n) = 1 for sufficiently large P .

Similarity metrics for images. The same structure can be used for
other applications, such as in image classification or handwritten letter
recognition. In these cases, the distance between an image m and an
image n is equal to

rmn = Imagedistance(m,n) = ‖xm − xn‖F , (18.2)

where
‖x‖F =

√∑
m

∑
n

|x(m,n)|2,

is the Frobenius norm of an image matrix x (that is, the square root of
the sum of squared image values over all pixels).
Block collaborative image processing. A class of recent efficient
image processing algorithms is based on detecting similar blocks within
an image, followed by collaborative processing using those similar blocks.
Image enhancement algorithms then assume that the basic images are
also similar within these blocks, while the corresponding noise is not
related and can be averaged out. The similarity between the image
blocks, xm and xn, may then be defined similar to (18.2), using their
distance given by

rmn = Blockdistance(m,n) = ‖xm − xn‖F .

The similarity among the blocks in an image can be modeled by a
graph, and such graph models may be used as bases for collaborative
processing of image blocks. Recall that a block of B × B pixels is an
example of a vertex in a B2-dimensional space, since it is defined by
B ×B independent pixel values (vertex coordinates/dimensions).
Generalized distance measure. The Euclidean distance is typically
used in the calculation of the distance between two blocks of data,
xm and xn. It may be generalized by introducing the inner product
matrix, H, into distance calculation to yield

r2
mn = (xm − xn)TH(xm − xn),

326 Graph Topology Based on Signal Similarity

where the data sets xm and xn are represented in the column vector
form. When the inner product matrix, H, is an identity matrix, H = I,
the standard Euclidean distance is obtained. If we use, for example,
H = UCUT

C , where UC is the matrix with cosine transform basis
functions as its columns, we will arrive at

r2
mn = (xm − xn)TUCUT

C(xm − xn)
= (Cm −Cn)T (Cm −Cn) = ‖Cm −Cn‖22,

where Cn is the 2D discrete cosine transform (2D DCT) of xn, written
in a vector column format. By virtue of this representation, problem
dimensionality can straightforwardly be reduced using only the K

slowest-varying basis functions, U(K)
C , instead of the full 2D DCT

transformation matrix (this operation corresponds to low-pass filtering of
xn in the 2D DCT domain, by keeping theK slowest-varying coefficients).
In this case, the distance, r2

mn, is of the form

r2
mn = (xm − xn)TU(K)

C U(K)T
C (xm − xn)

= ‖C(K)
m −C(K)

n ‖22,

and is calculated based on the reduced original dimensionality of xn or
Cn to the dimensionality K of C(K)

n .
Another interesting form of the inner product matrix is the in-

verse covariance matrix H = Σ−1, which will be discussed later in
Sections 19.4 and 21.8.
Example 72: A noisy image with a designated set of 29 blocks of pixels
is shown in Figure 8.1(a). The similarity between any two of the blocks
was defined based on the distance

r2
mn = 1

B2 ‖Cm −Cn‖2F ,

where Cn represents the matrix form of the 2D DCT of the image
block xn.

The 2D DCT was then hard-thresholded, with a threshold equal
to 0.1 max |Cn|, to reduce the influence of noise (and dimensionality
problems), that is, all 2D DCT coefficients bellow this threshold were

327

0
1

2 3

4

5

6

78 9
10

11

12
13 14

15

16
17

18
19

20

21

22

23

24

25

26
27 28

(a)

0

1

2

3
4

5

6

7
8

9

10

11 12

13

14

15

16
17

18

19
20

21

22 23

24

25

26 27

28

(b)

Figure 8.1: Graph learning based on the similarity of blocks of image data. (a) Orig-
inal image with designated blocks of pixels. (b) The graph produced from the blocks
in (a). Notice that the resulting graph consists of seven disconnected subgraphs,
which correspond to the seven different groups of blocks.

328 Graph Topology Based on Signal Similarity

set to zero, to give

Cn(k, l) =

Cn(k, l), if |Cn(k, l)| > 0.1 max |Cn|
0, elsewhere.

The edge weights, Wmn, for a graph representation of the considered
blocks (as vertices) were then calculated as

Wmn = exp(−r2
mnB),

for rmn ≤ 0.26, and Wmn = 0 for rmn > 0.26, or m = n, with B = 16.
The so obtained graph, which indicates block similarity, is given in

Figure 8.1(b). This graph representation is very convenient for collabo-
rative image processing, since the graph structure will ensure that the
processing is performed independently on the sets of blocks which share
relevant information (connected subgraphs). Notice that the blocks
within each subgraph can be considered as a 3D signal of RGB com-
ponents. Then, for example, a simple averaging over similar blocks
(within one subgraph), will not significantly degrade the image detail,
while at the same time it will reduce the corresponding noise, as it is
uncorrelated in different blocks.

This is precisely the principle of the Block-Matching and 3D filtering
(BM3D) algorithm, where the noise and the image are estimated from
the set of similar blocks (in our example, from the blocks within a
subgraph). The estimation of the related set of blocks in the image
and the estimation of noise power is then used to define the Wiener
filter. Such Wiener filter is used to filter all related blocks (within the
subgraph). The procedure is repeated for each set of similar blocks
(subgraphs). Of course, in the case of the BM3D algorithm, for each
considered (reference) block, xn, it is desirable to search over the whole
image and to find as many similar blocks as possible in order to obtain
the best possible Wiener filter and consequently achieve maximum
possible noise reduction.

In this example, the blocks and the threshold for edge weights, Wmn,
were selected so as to produce disconnected graph components and a
clear segmentation scheme. If this was not the case, vertex clustering
and graph segmentation could be performed using the theory presented
in Part I.

329

Recall that in Part I, Example 24 the structural similarity index
(SSIM), was used instead of the simple difference/distance, to relate
and cluster images.
Example 73: Eight images with the hand-written letter “b” were
considered and the task was to create their graph representation. The
SSIM was calculated for each pair of images and the edge-weights were
equal to the calculated SSIM values, as shown in Figure 8.2(a). For the
graph from Figure 8.2(b), the generalized eigenvectors of the Laplacian
were calculated and the vertices were colored using first the smoothest
(Fiedler) eigenvector, u1, and then using the two smoothest eigenvectors
u1 and u2, as a basis for image clusterings, as respectively shown in
Figure 8.2(c) (left) and (right).

330 Graph Topology Based on Signal Similarity

(a)

0

1

2

3

4

5

6

7

(b)

(c)

Figure 8.2: Graph representation of a set of hand-written images of the let-
ter “b”. The images serve as vertices, while the weight matrix for the edges is
defined through the structural similarity index metric (SSIM) between the images,
with Wmn = SSIM(m,n). The vertices are colored in (c) using first the smoothest
(Fiedler) eigenvector, u1, and then the two smoothest eigenvectors, u1 and u2, of the
generalized eigenvectors of the Laplacian (with the corresponding spectral vectors
qn = [u1(n)] and qn = [u1(n), u2(n)]) respectively shown in Figure 8.2(c) (left) and
(right).

19
Learning of Graph Laplacian from Data

Consider a graph signal for which we have available P independent
observations. Denote by xp(n) the observed signal at a vertex, n, and
for an observation, p. The column vector with graph signal samples
from the pth observation is denoted by xp. All observations from this
graph signal can then be arranged into an N × P matrix, given by

XP = [x1,x2, . . . ,xP].

Designate the (n+ 1)-th row of this matrix by a row vector, yn, which
corresponds to the vertex n, that is

yn = [x1(n), x2(n), . . . , xP (n)]. (19.1)

Then, the matrix of observations can also be written as

XP =

y0
y1
...

yN−1

 .

331

332 Learning of Graph Laplacian from Data

The correlation coefficient between vertices m and n, estimated by
averaging over the set of P observations, is then given by

Rx(m,n) = 1
P

P∑
p=1

xp(m)xp(n) = 1
P

ymyTn

or in a matrix form
Rx = 1

P
XPXT

P . (19.2)

If the observations are not zero-mean, then we should use the covariance
matrix, Σ, with elements

Σx(m,n) = 1
P

P∑
p=1

(xp(m)− µ(m))(xp(n)− µ(n)), (19.3)

where µ(n) is the mean of the observations at the vertex n.
Remark 86: Since the correlation matrix in (19.2) includes contribution
from signals at all vertices, it accumulates correlations obtained through
all possible walks from the current vertex, n, to any other vertex, m.
This also means that the correlation coefficient between two vertices will
produce misleading results if there exists one or more other vertices, q,
where the signal is strongly correlated with both of the considered
vertices, m and n. This is why the naive use of correlation tends to
overestimate the strength of direct vertex connections; this renders it a
poor metric for establishing direct links (edges) between vertices. To
resolve this issue, either additional conditions should be imposed on the
correlation matrix, or other statistical parameters may be used for edge
weight estimation.
Example 74: Consider four random graph signals observed at the
vertices n = 0, 1, 2, 3, and given by

xp(0) = ν0(p)
xp(1) = xp(0) + ν1(p)
xp(2) = xp(1) + ν2(p)
xp(3) = xp(2) + ν3(p),

(19.4)

where ν0(p), ν1(p), ν2(p), ν3(p) are mutually uncorrelated, white ran-
dom variables with zero mean and unit variance. The elements of the

333

correlation matrix for the above signals can be calculated as, for example
Rx(0, 1) = E{xp(0)xp(1)} = E{xp(0)(xp(0) + ν1(p))} = 1

or
Rx(0, 2) = E{xp(0)xp(2)} = E{xp(0)(xp(1) + ν2(p))}

= E{xp(0)(xp(0) + ν2(p) + ν2(p))} = 1.
Observe from (19.4) that, although the signal value xp(2) is not directly
related to xp(0), the correlation coefficient, Rx(0, 2), is nonzero and
even equal to Rx(0, 1), since there is an indirect link between these two
signal values through xp(1). In practical applications, it is therefore
desirable to avoid this indirect cumulative contribution to the correlation
coefficient which results in an overestimated edge weight.

All correlation coefficients for the above example can be written in
a matrix form as

Rx =

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

 , (19.5)

with the inverse correlation matrix, called the precision matrix, as

C = R−1
x =

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

 . (19.6)

Remark 87: Observe that while the autocorrelation in (19.5) overesti-
mates the strength of edge links, the precision matrix in (19.6) produces
the desired results, since for example, C(0, 2) = 0, which indicates that
there is no direct relation between xp(0) and xp(2), although xp(2) is
indirectly linked to xp(0) through xp(1).

Similar to the normalized correlation, the normalized precision
matrix, C(N), is defined by C(N)

mn = Cmn/
√
CmmCnn to produce

C(N) =

1 −0.5 0 0

−0.5 1 −0.5 0
0 −0.5 1 −1/

√
2

0 0 −1/
√

2 1

 . (19.7)

334 Learning of Graph Laplacian from Data

19.1 Imposing Sparsity on the Connectivity Matrix

The minimization of the sparsity of the weight matrix keeps the number
of its nonzero values to the minimum (Stanković, 2001; Stanković et al.,
2018b), thus resulting in graphs with the smallest possible number of
edges.

Consider the vertex n = 0 and the graph signal observation vector
as in (19.1), at this vertex. We can estimate the edge weights from this
vertex to all other vertices, β0m, m = 1, 2, 3, . . . , N − 1, by minimizing
the cost function (Epskamp and Fried, 2018; Meinshausen et al., 2006;
Pourahmadi, 2011),

J0 =
∥∥∥∥y0 −

N−1∑
m=1

β0mym
∥∥∥∥2

2
+ ρ

N−1∑
m=1
|β0m|. (19.8)

Physically, the first term promotes the correlation between the observa-
tions y0 at the considered vertex (n = 0) and the observations ym at all
the other vertices, for m = 1, 2, 3, . . . , N − 1; the second term promotes
sparsity in the coefficient vector β0 (number of nonzero coefficients
β0m), while the parameter ρ balances between these two criteria.

The matrix form of the cost function (19.8) is given by
J0 = ‖yT0 −YT

0 β
T
0 ‖22 + ρ‖β0‖1, (19.9)

where Y0 is obtained from the matrix XP after the first row is removed
and used as y0, with

β0 = [β01, β02, . . . , β0N−1].

Example 75: For the correlation matrix from Example 74 and the
observation vector, y0, at the vertex n = 0, given by

y0 = [x1(0), x2(0), . . . , xP (0)] = [ν0(1), ν0(2), . . . , ν0(P)],
we can find the solution to (19.9) with ρ = 0, which corresponds to the
two-norm minimization of the error function, given by

∂J0
∂βT0

= 2Y0(yT0 −YT
0 β

T
0) = 0

or

βT0 = (Y0YT
0)−1Y0yT0 =

2 2 2
2 3 3
2 3 4

−1 1

1
1

 =

0.5
0
0

 ,

19.1. Imposing Sparsity on the Connectivity Matrix 335

since Y0YT
0 and Y0yT0 are submatrices of the correlation matrix Rx,

given in (19.5).
In the same way, the other three coefficient vectors, βT1 , βT2 , βT3 ,

were calculated to produce (with added zero-values at the diagonal) the
coefficient matrix

β =

0 0.5 0 0

0.5 0 0.5 0
0 0.5 0 0.5
0 0 1 0

 . (19.10)

Since this procedure does not guarantee the symmetry of βnm = βmn,
the edge weights could have also been calculated through the geometric
mean,

Wnm =
√
βnmβmn, (19.11)

to produce

W =

0 0.5 0 0

0.5 0 0.5 0
0 0.5 0 1/

√
2

0 0 1/
√

2 0

 . (19.12)

This weight matrix is symmetric and corresponds to an undirected
graph.

The graph Laplacian, L = D−W, is then obtained by changing the
signs of the elements in W and adding appropriate diagonal elements, D,
such that the sum for each row or column is zero, that is

L =

0.5 −0.5 0 0
−0.5 1 −0.5 0

0 −0.5 1.207 −0.707
0 0 −0.707 0.707

 .
Notice that the structure of nonzero off-diagonal elements in this matrix
is the same as in the normalized precision matrix in (19.7), although
the corresponding values were obtained through two quite different
approaches to the estimation of the relations among graph data observed
at different vertices.
LASSO approach. In general, the problem in (19.9) can be solved
using the well established least absolute shrinkage and selection opera-
tor (LASSO) type minimization, the regression analysis method that

336 Learning of Graph Laplacian from Data

performs both variable selection and regularization, as

β0 = lasso(YT
0 ,yT0 , ρ).

For more detail on the derivation and implementation of LASSO see
Section 20 and Algorithm 2.

Algorithm 2. LASSO (ISTA variant), B=lasso(Y,y, ρ)
Input:

• Observation column vector y, P × 1
• Observation matrix Y, P ×N
• Sparsity promotion parameter ρ

1: B← 0N×1
2: α← 2 max{eig(YTY)}
3: repeat
4: s← 1

α
YT (y−YB) + B

5: for k ← 1 to N do

6: B(k)←

s(k) + ρ, for s(k) < −ρ
0, for |s(k)| ≤ ρ
s(k)− ρ, for s(k) > ρ

7: end for
8: until stopping criterion is satisfied

Output:
• Reconstructed coefficients B

For the data from Example 75, the LASSO approach yields

β0 = lasso(YT
0 ,yT0 , 0.01) = [0.49, 0, 0].

This result is almost the same as the first row (excluding the first
element assumed to be zero) in the matrix β in (19.10), as was expected
since the solution in the first row in (19.10) is already with maximum
sparsity. Since in this setting the number of independent observations,
P , could be significantly larger than the number of coefficients, β0m,

19.1. Imposing Sparsity on the Connectivity Matrix 337

for this case the least squares estimation is optimal and there are no
additional degrees of freedom available to improve the sparsity of the
solution (the solution, in this case is already with one nonzero element,
that is, with the maximum possible sparsity). On the other hand, ways
to promote sparsity would be necessary if the number of observations
is smaller than the number of vertices (compressive sensing theory
framework).

The minimization in (19.9) was performed for the vertex n = 0, and
should be repeated for all vertices n = 1, 2, . . . , N − 1, through the cost
function

Jn = ‖yTn −YT
nβn‖22 + ρ‖βn‖1,

to obtain
βn = lasso(YT

n ,yTn , ρ).

In general, if the resulting weight matrix, β, is not symmetric then
the edge weights could be calculated asWnm =

√
βnmβmn, as mentioned

in (19.11).
Example 76: As an example for graph learning from data using the
LASSO approach, consider the graph from Figure 2.2, Part I and
P = 3,000 observations, which were simulated by assuming external
white Gaussian sources with zero-mean and variance σ2 = 1, located at
two randomly chosen vertices (see Section 20 and Figure 8.2). An N×P
matrix of observed signal values, XP , was then formed, and from its rows
the vector yn and matrix Yn were obtained. The matrix of coefficients
β = [βmn]N×N follows from lasso(YT

n ,yTn , ρ) with n = 0, 1, 2, 3, 4, 5, 6, 7
and ρ = 0.2, to yield

β =

0 0.0 0.75 0.16 0 0 0 0
0.03 0 0.35 0 0.19 0 0 0.18
0.75 0.35 0 0.10 0.11 0 0 0
0.16 0 0.10 0 0 0 0.45 0
0 0.19 0.11 0 0 0.74 0 0
0 0 0 0 0.74 0 0 0.19
0 0 0 0.45 0 0 0 0.58
0 0 0 0 0 0.19 0.58 0

.

338 Learning of Graph Laplacian from Data

Ground truth LASSO with ρ = 0.2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

)b()a(

LASSO with ρ = 0.05 LASSO with ρ = 1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

)d()c(

Figure 8.1: Estimation of the weight matrix for the graph from Figure 2.2 in Part I
with color-coded element values. (a) Ground truth weight matrix. (b) Estimated
weight matrix with LASSO and ρ = 0.2. (c) Estimated weight matrix with LASSO
and ρ = 0.05. (d) Estimated weight matrix with LASSO and ρ = 1.

The ground truth weights and the weights estimated through the
LASSO are shown in Figures 8.1(a), (b). The estimation was repeated for
the cases of (i) a smaller value of balance parameter ρ = 0.05 (reducing
the sparsity contribution and resulting in an increased number of nonzero
weights, as in Figure 8.1(c)), and (ii) a larger balance parameter ρ = 1
(strengthening the sparsity contribution and resulting in a reduced
number of nonzero weights, as Figure 8.1(d)).

The same experiment was next repeated for the unweighted graph
from Figure 2.1(a) in Part I, and the result is shown in Figure 8.2. In

19.2. Smoothness Constrained Learning of Graph Laplacian 339

Ground truth LASSO with ρ = 0.2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

)b()a(

Figure 8.2: Adjacency matrix for the unweighted graph from Figure 2.1(a) in Part
I. (a) Ground truth adjacency matrix. (b) Estimated adjacency matrix with LASSO
and ρ = 0.2.

this case, the obtained values of β were used to decide whether Amn = 1
or Amn = 0.

Example 77: The graph topology in the temperature estimation ex-
ample in Part II, Section 2 was determined based on the geometry
and geographic distances of the locations/vertices where the temper-
ature is sensed (Stanković et al., 2019b). Now, we shall revisit this
example by simulating the temperature field, X, at the locations shown
in Figure 8.3(a) and over a period of time with the aim to learn the
graph topology from this data. The simulated temperature field over
P = 150 days is shown in Figure 8.3(b). The weight matrix calculated
from the geographic positions of the vertices is denoted as the ground
truth weight matrix, W, and shown in Figure 8.3(c). The corresponding
weight matrix, which is learned from data in Figure 8.3(b) using the
column LASSO with ρ = 0.2, is given in Figure 8.3(d). Before the
calculation of the correlation matrices, the mean value of the sensed
temperatures was removed from xp(n), for each observation p.

19.2 Smoothness Constrained Learning of Graph Laplacian

Consider a set of noisy graph data, xp(n), measured over P observations,
p = 1, 2, . . . , P , at N vertices n = 0, 1 . . . , N−1, of an undirected graph.

340 Learning of Graph Laplacian from Data

0
1

2
3

4

5

6

7

8

9

10

11

12

13
14

15

(a)

30 60 90 120 150

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

-10

0

10

20

30

(b)

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

)d()c(

Figure 8.3: Data-based learning of graph topology in the temperature sensing
example from Part II, Section 17. (a) Sensing locations in a geographic region along
the Adriatic sea. (b) Temperatures measured at N = 16 sensing locations over
P = 150 days. (c) Ground truth weight matrix, W, obtained through geographic
properties of the sensing locations as in Part II, Section 17. (d) The weight matrix,
W, estimated solely based on the analysis of data from (b) and using the LASSO
approach.

19.2. Smoothness Constrained Learning of Graph Laplacian 341

The aim is to learn the graph connectivity (its graph Laplacian) from
the observed data. To this end, it is necessary to find a signal, yp(n),
that is close to the observations, xp(n), under the condition that yp(n)
is as smooth as possible on a graph. This formulation is similar to that
addressed in Part I.
Remark 88: The smoothness condition may be imposed based on the
physically meaningful assumption that the data at close and strongly
related vertices should have similar values, that is, without abrupt
changes in signal values from vertex to vertex. This requirement imposes
gradual change of data over the graph domain, as is the case in many
practical applications (Chepuri et al., 2017; Dong et al., 2016, 2019;
Kalofolias, 2016; Sadhanala et al., 2016).

The graph signal, yp(n), can now be found by minimizing the cost
function

Jp = 1
2‖yp − xp‖22 + αyTp Lyp, for p = 1, 2, . . . , P,

whereby the first term aims at finding yp which is as close as possible to
xp, while the second term, yTp Lyp, promotes the smoothness of graph
signal yp.
Remark 89: The difference in the problem considered here from the
smoothing problem addressed in Part I is that here the graph Laplacian
(graph edges and their weights) is not known. In other words, the graph
Laplacian, L, has to be determined along with the output signal yp,
that is, the graph topology has to be learned from data.

Since we have available P graph-wise observations, we can form the
N × P matrices

XP = [x1,x2, . . . ,xP]

and
YP = [y1, y2, . . . ,yP].

Notice that here the vectors yn above have to be calculated, and they
are not related to the rearranged signal vectors, defined with the same
notation, in the previous section.

342 Learning of Graph Laplacian from Data

19.3 Graph Topology Estimation with the Graph Laplacian
Energy Condition

In addition to the signal smoothness, it is very useful to introduce the
energy of graph Laplacian as an optimization condition, since none of
the above conditions is sensitive to the scaling of the graph Laplacian
elements and their possibly large values. Such cost function is then of
the following form, Dong et al. (2016, 2019)

J =
P∑
p=1

[1
2‖yp − xp‖22 + αyTp Lyp

]
+ β‖L‖2F ,

where the penalty for the energy (squared Frobenius norm of a matrix)
of the graph Laplacian, given by

‖L‖2F =
∑
m

∑
n

L2
mn

is involved in order to keep its values as low as possible.
The cost function for the whole set of P observations can now be

written in a compact form as

J = 1
2‖YP −XP ‖2F + αTrace{YT

PLYP }+ β‖L‖2F , (19.13)

where Trace{YT
PLYP } is a scalar which can be written as

P∑
p=1

yTp Lyp = Trace{YT
PLYP }.

The above analysis assumes that the Laplacian has been first nor-
malized. In order to avoid trivial solutions, the condition

Trace{L} = N (19.14)

is also used (as the diagonal elements of the ground truth normalized
graph Laplacian are Lnn = 1), along with the condition that the off-
diagonal elements are either zero or negative, that is

Lmn = Lnm ≤ 0 for n 6= m. (19.15)

19.4. Learning of Generalized Laplacian-Graphical LASSO 343

As with any Laplacian matrix, the sum of the graph Laplacian elements
over every row or column is zero, that is

N−1∑
m=0

Lnm = 0 and
N−1∑
n=0

Lnm = 0. (19.16)

Remark 90: The optimization problem in (19.13) aims to learn the
graph topology from the graph data by finding the Laplacian of a
graph which is most likely to generate the observed graph data. The
formulation in (19.13) is obviously jointly convex with respect to both
the observed signal and the Laplacian, and can be solved through an
iterative two-step procedure, given in Algorithm 3.

Algorithm 3. Iterative procedure for solving the problem of graph
learning from data, given in (19.13)
1: Assume that

YP = XP .

2: Estimate the graph Laplacian, L, by minimizing

J1 = αTrace{YT
PLYP }+ ‖L‖2F

with the conditions given in (19.14)–(19.16), for the normalized
graph Laplacian form.

3: For the Laplacian obtained in the Step 2, the signal YP is calculated
by minimizing

J2 = 1
2‖YP −XP ‖2F + αTrace{YT

PLYP }.

Iteratively repeat Step 2 and Step 3.
Step 3 has a closed form solution explained in Part I.

19.4 Learning of Generalized Laplacian-Graphical LASSO

The generalized Laplacian, Q, is defined as Dong et al. (2016, 2019)

Q = αI−N,

344 Learning of Graph Laplacian from Data

where N is a nonnegative symmetric matrix and Q is a symmetric
positive semidefinite matrix. Any generalized Laplacian can be written
as a sum of a standard Laplacian, L, and a diagonal matrix, P, that is

Q = L + P.

Remark 91: The generalized Laplacian allows for the existence of
self-loops on the vertices; these self-loops are defined by matrix P.
Example 78: For the data in Example 74, the precision matrix is of
the form

C = R−1
x =

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

 .
It may be considered as a generalized graph Laplacian since

R−1
x =

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

=

1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

+

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

= L + P.

This means that R−1
x in this example may be interpreted as standard

graph Laplacian with a self-loop at the vertex n = 0.
We will next show that owing to its physically relevant properties,

the precision matrix, C = R−1
x , can be used as an estimate of the

generalized Laplacian, Q.
Estimation of graph Laplacian through precision matrix. Con-
sider a set of noisy signals xp(n) acquired over P observations, p =
1, 2, . . . , P , at N vertices, n = 0, 1 . . . , N − 1, of an undirected graph.
Our aim is to learn the graph connectivity (its Laplacian) based on the
condition that the observed graph signal in the pth realization, xp, is

19.4. Learning of Generalized Laplacian-Graphical LASSO 345

as smooth as possible on the graph defined by a generalized Laplacian,
Q, as explained in Remark 88. The cost function to achieve this goal
can be conveniently defined by the signal smoothness function

Jp = xTp Qxp, for p = 1, 2, . . . , P.

The cumulative smoothness for all data xp, p = 1, 2, . . . , P , is then
expressed as

J = 1
P

P∑
p=1

xTp Qxp, (19.17)

while the correlation matrix of the all considered observations can be
written as

Rx = 1
P

P∑
p=1

xpxTp

= 1
P

[x1,x2, . . . ,xP][x1,x2, . . . ,xP]T

= 1
P

XPXT
P .

The smoothness index for all observations is now of the following form

J = 1
P

P∑
p=1

xTp Qxp = Trace{RxQ},

since

J = 1
P

P∑
p=1

xTp Qxp

= 1
P

Trace{[x1, x2, . . . ,xP]TQ[x1, x2, . . . ,xP]}

= 1
P

Trace{XT
PQXP } = 1

P
Trace{XPXT

PQ}

= Trace{RxQ}.

To avoid a trivial solution, the conditions for the generalized Lapla-
cian should be incorporated. For symmetric positive definite matrices,
all eigenvalues are positive, and since for any matrix, Q, the product

346 Learning of Graph Laplacian from Data

of its eigenvalues is equal to det(Q), this condition can be included by
adding the term ln(det(Q)) to the cost function, to give

J = − ln(det(Q)) + Trace{RxQ}. (19.18)

Maximum likelihood interpretation. The interpretation of the
cost function in (19.18) within the theory of Gaussian random signals
and maximum likelihood estimation is given in Section 21.8. If we
assume that the graph data at N vertices are N -dimensional random
variables, with zero-mean and an unknown precision matrix Q, then their
N -dimensional probability density function is given by

P (xp) = 1√
(2π)p

√
det(Q) exp

(
−1

2xTp Qxp
)
.

Within the maximum likelihood framework, the goal is to find the
unknown parameter (matrix) Q so that the distribution fits the data
in an optimal form. This optimal parameter matrix is obtained by
differentiating the probability or its logarithm (log-likelihood) function,

− ln
{
P (xp)

√
(2π)p

}
= − ln

{√
det(Q) exp

(
− 1

2xTp Qxp
)}

= −1
2 ln{det(Q)}+ 1

2xTp Qxp, (19.19)

and setting the obtained derivative to zero.
Example 79: The concept of finding the best precision,Q, the reciprocal
of the variance of Gaussian distribution, Q = 1/σ2, to fit the data will
be now illustrated on a simple setup. Assume that four observations
of signal xp(n), p = 1, 2, 3, 4, at the vertex n = 0 are available, and are
given by x1(0) = 0.2, x2(0) = −0.3, x3(0) = −0.4, and x4(0) = −0.5.
It is also known that the data are zero-mean. The goal is to find the
precision, Q = 1/σ2, or variance, σ2, of the Gaussian distribution of
the observed data, given by

P (xp(0)) = 1
σ
√

2π
exp

(
−
x2
p(0)
2σ2

)
=
√
Q

2π exp
(
− 1

2xp(0)Qxp(0)
)

which corresponds to the best fit to the observed data. The log-likelihood
function of the joint distribution of these four observed data points is

19.4. Learning of Generalized Laplacian-Graphical LASSO 347

then

J = − ln(P (x1(0))P (x2(0))P (x3(0))P (x4(0)))

= − ln
(1

4π2Q
2e−

1
2 0.22Qe−

1
2 0.32Qe−

1
2 0.42Qe−

1
2 0.52Q

)
= 2 ln(2π)− 2 ln(Q) + 1

2(0.22 + 0.32 + 0.42 + 0.52)Q

= 2 ln(2π)− 2 ln(Q) + 1
20.54Q.

The differentiation of this expression with respect to Q = 1/σ2 produces
−2/Q+ 1

20.54 = 0 or Q = 4/0.54 = 7.4 and

σ =
√

1/Q = 0.36.

The same value would have been produced by a simple standard devia-
tion estimator, σ =

√
(0.22 + 0.32 + 0.42 + 0.52)/4.

Example 80: Similar analysis, as in the previous example, can be
performed for P observations at two vertices, n = 0 and n = 1,
[xp(0), xp(1)]T . The goal is to estimate the parameters of the preci-
sion matrix

Q =
[
Q11 Q12
Q21 Q22

]
of the joint Gaussian distribution of [xp(0), xp(1)]T , defined as

P ([xp(0), xp(1)]T) =
√

det(Q)
2π e−

1
2 [xp(0),xp(1)]Q[xp(0),xp(1)]T (19.20)

=
√
Q11Q22 −Q12Q21

2π
× e−

1
2 (Q11x2

p(0)+(Q12+Q21)xp(0)xp(1)+Q22x2
p(1)).

(19.21)

Using P available realizations,

[x1(0), x1(1)], [x2(0), x2(1)], . . . , [xP (0), xP (1)]

and the corresponding P -variate normal distribution of two variables as
a product of P distributions as in (19.21), we can find the parameters
Q11, Q12, Q21, Q22 which produce the best distribution fit, using the
partial derivatives of the log-likelihood function.

348 Learning of Graph Laplacian from Data

For example, a partial derivative of the log-likelihood function with
respect to Q11 would produce

−P2
Q22√

Q11Q22 −Q12Q21
+ 1

2(x2
1(0) + x2

2(0) + · · ·+ x2
P (0)) = 0.

Observe that the term
Q22√

Q11Q22 −Q12Q21
= Q22√

det(Q)
is just the first element of the inverse of matrix Q, while the term
(x2

1(0) + x2
2(0) + · · · + x2

P (0)) is the first element of the correlation
matrix Rx, multiplied by P . In a similar way, the derivations over Q12,
Q21, and Q22, will produce the remaining elements of the inverse of
matrix Q and the correlation matrix Rx. In the matrix notation, the
solution to the so obtained system of the four equations is given by

Q−1 = 1
P

P∑
p=1

x2
p(0)

P∑
p=1

xp(0)xp(1)

P∑
p=1

xp(1)xp(0)
P∑
p=1

x2
p(1)

 = Rx.

Notice that at least P = 2 independent observations, P ≥ N , are needed,
since for P = 1 observation, P < N , and the rank of the correlation
matrix, Rx, would be 1, which is lower than its dimension. In that case,
the correlation matrix would not be invertible.

The cost function in (19.18) minimizes the logarithm of the joint
probability density function of a graph signal xp under the Gaussian
assumption. The minimization of the cost function J with respect to Q,
with ∂J/∂Q = 0, produces

∂J

∂Q = ∂

∂Q(− ln(det(Q)) + Trace{RxQ}). (19.22)

In order to find this derivative, we will use the relation among the trace
of a positive semidefinite matrix, its eigenvalues, λk, and the trace of
the eigenvalue matrix, Λ, in the form

ln(det(Q)) =
N∑
k=1

ln(λk)

= Trace(ln(Λ)) = Trace(ln(Q)). (19.23)

19.4. Learning of Generalized Laplacian-Graphical LASSO 349

Note also that for a differentiable matrix function, f(Q), the following
holds

∂

∂Q(Trace{f(Q)}) = ∂f(Q)
∂Q . (19.24)

Having in mind the properties in (19.23) and (19.24), we can write

∂J

∂Q = −Q−1 + Rx. (19.25)

The best estimate of Q follows from ∂J/∂Q = 0, and has the form

Q = R−1
x . (19.26)

Remark 92: The solution in (19.26), being equal to the precision
matrix, can be used as the generalized Laplacian estimate in order to
obtain the underlying graph structure.
Example 81: The weight matrix which corresponds to the inverse of
the correlation matrix Rx, for which the positive and small off-diagonal
values were set to zero, is shown in Figure 8.4(b). Here, we consider
the graph from Figure 2.2 in Part I and P = 10,000 observations.
The observations were simulated by assuming white Gaussian external
sources with zero-mean and variance σ2 = 1, located at a randomly
chosen vertex (as described in more detail in Section 19).

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

)b()a(

Figure 8.4: Weight matrix for the graph from Figure 2.2 in Part I. (a) Ground truth
weight matrix. (b) Estimated weight matrix using the inverse correlation (precision)
matrix.

350 Learning of Graph Laplacian from Data

Remark 93: Notice that the correlation matrix, Rx, may be singular.
The correlation matrix, Rx, is always singular when the number of
observations, P , is lower than the number vertices (dimension of the
correlation matrix, N) that is, N > P . This follows from the fact
that the correlation matrix is formed as a combination of P signals,
Rx = 1

P

∑P
p=1 xpxTp , which means that its dimensionality is spanned

over at most P independent vectors (eigenvectors), and therefore its
rank is equal to or lower than P (see Example 88 in Section 20).

Also, this form will not produce a matrix satisfying the conditions
for a generalized Laplacian. The inverse correlation function may also
have positive off-diagonal values. Therefore, for a reliable solution, the
cost function in (19.18) should have additional constraints. Here, we
will present two of such constraints.

Graphical LASSO. In this approach, the classical reconstruction
formulation of a sparse signal is used as the additional constraint on the
precision matrix and the cost function from (19.18) (Friedman et al.,
2008). The sparsity constraint on the generalized Laplacian is added
to achieve the solution with the smallest possible number of nonzero
entries in the estimated graph weight matrix – the smallest number of
edges. The sparsity condition also allows for the problem solution with
a reduced correlation matrix rank (as within the compressive sensing
framework described in Part II). The cost function, with the included
sparsity penalty function, ‖Q‖1, is then defined as

J = − ln(det(Q)) + Trace{RxQ}+ ρ‖Q‖1. (19.27)

This minimization problem can be solved in many ways, one of which is
the graphical LASSO algorithm, an extension of the standard LASSO
algorithm to graph problems (see Algorithm 4 for the implementation
and Section 20 for the derivation of graphical LASSO).
Example 82: For the same signal as in Example 81, the weight matrix
obtained using the graphical LASSO,

W = glasso(Rx, 0.3),

where both positive and small element values are set to zero, is shown
in Figure 8.5(b) (see also Example 88).

19.4. Learning of Generalized Laplacian-Graphical LASSO 351

Algorithm 4. Graphical LASSO, Q = glasso(R, ρ)
Input:

• Correlation matrix R
• Regularization parameter ρ

1: Mi ← 100, Ep ← 0.0001
2: [p, n]← size(R)
3: Cp ← mean(|R − diag(diag(R))|)Ep
4: V0 = R + ρI
5: V = V0
6: for r = 1 to Mi do
7: for j = p to 1 step −1 do
8: V11 ← V
9: V11 ← V11 with removed jth row

10: V11 ← V11 with removed jth column
11: v22 ← V (j, j)
12: r12 ← jth column of R
13: r12 ← r12 with removed jth element
14: A←

√
V11

15: b← (
√

V11)−1r12

16: β = lasso(A,b, ρ), as in Algorithm 2

17: v12 ← V11β

18: V← V with v12 inserted as the jth column
19: v12 ← vT12 with v22 inserted as the jth element
20: V← V with v12 inserted as the jth row
21: end for
22: if mean(|V−V0| < Cp) break, end
23: V0 = V
24: end for
25: Q = V−1

• Estimated precision matrix Q

Generalized Laplacian constrained approach. Another possible
approach employs the Lagrange multipliers, B, which are added in such

352 Learning of Graph Laplacian from Data

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

)b()a(

Figure 8.5: Weight matrix for the graph from Figure 2.2 in Part I. (a) Ground
truth weight matrix. (b) Estimated weight matrix using the graphical LASSO and
inverse correlation (precision) matrix.

a way that these values do not change the diagonal elements of Q, and
ensure that all

Qmn = Qnm ≤ 0
for n 6= m, with Bnm = Bmn ≥ 0. The diagonal elements of matrix B
are therefore Bnn = 0. Finally, the condition BnmQnm = 0 for all n and
m is used. In this case, the minimization solution for the generalized
Laplacian is obtained as

Q = (Rx + B)−1

based on the cost function

J = − ln(det(Q)) + Trace{RxQ}+ Trace{BQ}.

The results obtained in this case are similar to those obtained with the
graphical LASSO approach.

19.5 Graph Topology Learning Based on the Eigenvectors

Assume that the available observations of a graph signal, xp(n), are
graph wide sense stationary (GWSS), that is, they can be considered
as the output of a linear system H(L), driven by white noise, εp, as
the input. In other words, the signal on a graph is formed using a
linear combination of a white noise realization, εp, and its graph shifted

19.5. Graph Topology Learning Based on the Eigenvectors 353

versions. The output signal after M such graph shifts, defined by the
normalized Laplacian, is given by

xp = (hMLM + hM−1LM−1 + · · ·+ h1L1 + h0L0)εp. (19.28)

This graph signal can be written in a compact form

xp = H(L)εp,

with its correlation matrix given by (for σ2
ε = 1)

Rx = 1
P

P∑
p=1

xpxTp = 1
P

P∑
p=1

H(L)εpεTpHT (L)

= H(L)
(1
P

P∑
p=1

εpε
T
p

)
HT (L)

= H(L)HT (L) = UT |H(Λ)|2U (19.29)

where εp is a white noise with unit variance, and U is the matrix of
graph Laplacian eigenvectors, L = UTΛU.

From (19.29), it is now obvious that we can learn about the graph
eigenvectors from the decomposition of the autocorrelation matrix. The
same holds for the precision matrix, Q = R−1

x , since the inverse matrix
has the same eigenvectors as the original matrix.

For the normalized graph Laplacian, it is straightforward to relate
the Laplacian, LN , based shift and the normalized weight matrix, WN ,
based shift since

LpN = (I−WN)p = I− pWN + · · ·+ (−1)pWp
N .

Therefore from (19.29), in order to estimate the graph connectivity
(estimate its Laplacian or adjacency matrix) we can use the eigenvectors
of the autocorrelation matrix.
Remark 94: Since we do not know H(Λ), it is natural to assume that
the graph is defined by the eigenvalues, Λ, that produce the smallest
number of edges. This can be achieved by minimizing the number of
nonzero values in L for the given eigenvectors (Marques et al., 2017;
Segarra et al., 2017).

354 Learning of Graph Laplacian from Data

The minimization problem of determining a graph now becomes

min
λk
‖L‖0 subject to L =

N−1∑
k=0

λkukuTk , (19.30)

while the convex (norm-one) form of this minimization problem is

min
λk
‖L‖1 subject to L =

N−1∑
k=0

λkukuTk . (19.31)

Remark 95: The convex norm-one based form in (19.31) can produce
the same solution as the original norm-zero form in (19.30) if the Lapla-
cian sparsity is low and the Laplacian satisfies some other conditions
(in the sense discussed in Section 19.2).

Since the eigenvectors are obtained from the decomposition of the
correlation matrix, spectral analysis performed in this way is related to
principal component analysis (PCA), where the signal is decomposed
through the set of eigenvectors of the correlation matrix.

This approach to graph topology learning can be summarized
through the following steps.

1. For a given set of graph signal observations, xp, p = 1, 2, . . . , P ,
calculate the correlation matrix

Rx = 1
P

P∑
p=1

xpxTp . (19.32)

2. Perform the eigen decomposition of the correlation matrix, in the
form

Rx = UTΛRxU
ΛRx = URxUT .

(19.33)

3. Find the eigenvalues, λk, of the graph Laplacian, L = UTΛU, such
that it assumes the sparsest possible form, using the minimization

min
λk
‖L‖1 subject to L =

N−1∑
k=0

λkukuTk . (19.34)

19.5. Graph Topology Learning Based on the Eigenvectors 355

Dimensionality-reduction methods. It is often reasonable to assume
that the observed graph signals are generated by exciting a low-order
graph system with white noise as the input. However, the problem of
estimating the polynomial coefficients from its samples at unknown
(eigenvalue) positions is under-determined and cannot be directly solved.
By adding the constraint that true eigenvalue positions should produce
a sparse graph Laplacian, the solution becomes tractable within the
compressive sensing framework (Stanković et al., 2020a).

In this way, instead of the minimization over N variables, λk, k =
0, 1, . . . , N − 1, we can find the Laplacian eigenvalues starting from the
eigendecomposition of the correlation matrix of a signal produced by a
system on a graph, that is,

Rx = U|H(Λ)|2UT = UΛRxUT . (19.35)

Assume that the transfer function of the graph system is of a polynomial
form

H(λk) = h0 + h1λk + h2λ
2
k + · · ·+ hMλ

M
k (19.36)

with M � N . From the correlation matrix eigendecomposition in
(19.35), we have N values of H(λk) obtained as square roots of the
eigenvalues of the correlation matrix, λ(Rx)

k . Without loss of generality,
we will assume a nondecreasing H(λk), that is H(λk−1) ≤ H(λk).
The problem now boils down to the determination of the Laplacian
eigenvalues, λk, k = 0, 1, . . . , N − 1, having in mind that λ0 = 0,∑N−1
k=0 λk = N and that there exist (unknown) coefficients hi, i =

0, 1, . . . ,M such that (19.36) is satisfied for each k, while the true values
λk produce the sparsest graph Laplacian, L.

The estimation of the system coefficients, Laplacian eigenvalues and
Laplacian itself is performed using this polynomial fitting method
in the following way.

1. Select (M + 1) indices m0 = 0 < m1 < · · · < mM = N with the
corresponding transfer function values H(λmi), for i = 0, 1, . . . ,M .
Assume that (M + 1) eigenvalues are λ̄0 = 0, λ̄m1 = ξ1, λ̄m2 =
ξ2, . . . , λ̄mM−1 = ξM−1, λ̄mM = 1, where 0 < ξ1 < ξ2 < · · · <
ξM−1 < 1.

356 Learning of Graph Laplacian from Data

2. Then, the coefficients of an Mth order polynomial

P (λ̄) = a0 + a1λ̄+ a2λ̄
2 + · · ·+ aM λ̄

M

can be found such that P (λ̂i) = H(λmi), for i = 0, 1, . . . ,M , is a
Lagrange polynomial of Mth order defined by (M + 1) points.

3. Now, the eigenvalues λ̄k, for each k, can be calculated as a solution
of

P (λ̄) = H(λk), 0 ≤ λ̄ ≤ 1
for the unknown λ̄. Note that this solution is unique if the poly-
nomial P (λ̂) is an increasing function for 0 ≤ λ̂ ≤ 1.

4. Having in mind that ∑N−1
k=0 λk = N , the eigenvalues, λ̂k, can be

found by scaling the obtained values, λ̄k, for each k, as λ̂k =
Nλ̄k/

∑N−1
k=0 λ̄k.

5. For the so obtained estimates of the eigenvalues, λ̂k, the normalized
graph Laplacian can be calculated as L = UΛ̂UT , where Λ̂ is a
diagonal matrix with λ̂k on the diagonal.

6. The above procedure should be repeated for various 0 < ξ1 < ξ2 <

· · · < ξM−1 < 1 and the final solution is obtained by minimizing
the energy normalized sparsity condition, given by

min
ξ1,ξ2,...,ξM−1

‖L‖1√
‖L‖2

.

Notice that for M = 1, we should consider only two points in
Step 1, and there is no need for the minimization of variables ξi. For
M = 2, we have one minimization variable 0 < ξ1 < 1. For M = 3, the
minimization is performed over only two variables, 0 < ξ1 < ξ2 < 1.
Given that dimensionality of the minimization problem is (M − 1),
and since M � N , the dimensionality reduction of this method when
compared to (19.34) is evident.

The spectral indices 0 = m0,m1, . . . ,mM = N , selected in Step 1,
should be equally spaced over N possible values. For M = 2, the index
m1 should be close to (N − 1)/2, while for M = 3 the indices m1 and
m2 should be close to (N − 1)/3 and 2(N − 1)/3, respectively.

19.5. Graph Topology Learning Based on the Eigenvectors 357

Example 83: Consider a graph with N = 8 vertices, for which the
weight matrix is given in Figure 8.6(a). AnN×P matrix of the simulated
signal, XP , was formed by calculating the graph signal as in (19.28),
with a given graph, its weight matrix, W = I− L, the normalized
Laplacian, L, system order M , and system coefficients, h0, h1, . . . , hM .
White Gaussian external sources, εp, with zero-mean and variance
σ2 = 1 were assumed in all P = 10,000 realizations.

The presented polynomial fitting method was implemented for the
assumed degreeM = 2 of the polynomial H(λ), with h0 = 0.3, h1 = 0.2,
and h2 = 0.5 used in the graph signal simulation, according to (19.28).
By forming Rx from XP and after its eigendecomposition, the eigenvec-
tors U were estimated, while the eigenvalues of the correlation matrix
were used to calculate H(λk) =

√
λ

(Rx)
k .

Observe that the polynomial fitting method reduces to the one-
dimensional minimization over variable 0 < ξ1 < 1, as shown in
Figure 8.7. After the minimum value of the sparsity measure is found,
the eigenvalues are calculated with the corresponding parameter, ξ1.
The Laplacian then follows from L = UTΛU.

In this case, the obtained error in the weight matrix elements (abso-
lute value of the off-diagonal elements of the Laplacian) is characterized
by the MSE = −35.1 dB, with the results presented in Figure 8.6. The
true weight matrix, W = I− L, along with the estimated one, is given
in Figures 8.6(a) and (b), and the sparsity measure function is plotted
in Figure 8.6(c), while the true and the estimated Laplacian eigenvalues
are given in Figure 8.6(d).

Example 84: The experiment from Example 83 was repeated for a low
number of observations, P = 8NL = 256, where NL = 32 is the sparsity
of the Laplacian matrix according to practical hints for the number of
measurements and sparsity (Candès et al., 2006). The reconstruction
using the polynomial fitting produced the MSE = −18.0 dB.

In this experiment, we assumed M = 3 and h0 = 0.4, h1 = 0.5,
h2 = 0.4, and h3 = 0.2 when simulating the graph signal, XP . The
correlation matrix was estimated using this simulated signal, along with
its eigenvectors and eigenvalues. We now have two minimization vari-
ables ξ1 and ξ2, 0 < ξ1 < ξ2 < 1. The results for the polynomial fitting

358 Learning of Graph Laplacian from Data

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

)b()a(

0 0.5 1
4.5

5

5.5

6

6.5

0 2 4 6 8
0

0.5

1

1.5

2

)d()c(

MSE

Figure 8.6: Estimation of the weight matrix, W = I− L, for the graph with N = 8
vertices. (a) Ground truth weight matrix. (b) Estimated weight matrix using sparsity
minimization of the normalized Laplacian. (c) Sparsity measure minimization, as
a function of parameter ξ1. (d) The exact (blue lines) and estimated (red crosses)
eigenvalues of the normalized Laplacian.

method are presented in Figures 8.8(a)–(d). The obtained estimation er-
ror was MSE = −34.9 dB. The sparsity measure function (Figure 8.8(c))
is now two-dimensional and is calculated only when unique solutions
are obtained in Step 3 of the polynomial fitting method. These results
were compared with those obtained using the rows of the correlation
matrix, βn = lasso(YT

n ,yTn , 0.2) (Figure 8.8(e)) and graphical LASSO,
Q = glasso(Rx, 0.3) (Figure 8.8(f)), with the optimized values of the
parameter ρ. In these cases, the obtained error in the weight matrix
elements was characterized by MSE = −10.3 dB and MSE = −14.5 dB,
respectively.

19.5. Graph Topology Learning Based on the Eigenvectors 359

Figure 8.7: Illustration of eigenvalue calculation based on their second order

polynomial, obtained from H(λk) =
√
λ

(Rx)
k .

Example 85: Finally, the polynomial fitting method was tested on a
larger scale graph, with N = 50 and M = 2. The original and estimated
weight matrices are shown in Figure 8.9.

So far, the examples related to classical data analytics have used
Fourier analysis and a circular directed graph. The problem formulation
presented in this section can also be used to define a graph such that
the spectral analysis on this graph leads to some other well known
transforms.
Example 86: We shall illustrate the method of defining a graph which
corresponds to the classical Hadamard transform with N = 8, and with

360 Learning of Graph Laplacian from Data

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

)b()a(

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0 2 4 6 8
0

0.5

1

1.5

2

)d()c(

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

)f()e(

MSE

MSEMSE

Figure 8.8: Estimation of the weight matrix for the graph with N = 8 vertices.
(a) Ground truth weight matrix. (b) Estimated weight matrix using the polynomial
fitting method. (c) Sparsity measure minimization, as a function of parameters ξ1
and ξ2. (d) The exact (blue lines) and estimated (red crosses) eigenvalues of the
normalized Laplacian. (e) Estimated weight matrix using the LASSO minimization.
(f) Estimated weight matrix using the graphical LASSO.

19.5. Graph Topology Learning Based on the Eigenvectors 361

0 10 20 30 40
0

10

20

30

40

0 10 20 30 40
0

10

20

30

40

)b()a(

Figure 8.9: Estimation of the weight matrix for a graph with N = 50 randomly
positioned vertices. (a) Ground truth weight matrix. (b) Estimated weight matrix
using sparsity minimization of the normalized Laplacian and the polynomial fitting
method.

the eigenvectors

U = 1√
8

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

.

If the eigenvalues are found so as to minimize the number of nonzero
elements in the Laplacian, we obtain the graphs for N = 8 and N = 16,
as shown in Figure 8.10.

A methodology to estimate the underlying graph topology by means
of capturing both spatial and time dependencies among multiple time
series was introduced in Mei and Moura (2016), whereby time depen-
dencies among data channels are modeled by an auto-regressive (AR)
process, while spatial dependencies are estimated by describing the
matrix coefficients of the AR process as graph polynomial filters. These
authors present three algorithms to estimate the graph adjacency matrix
and parameters of the graph polynomial filters.

362 Learning of Graph Laplacian from Data

0.125

0.25

0.5

0.125
0.25

0.5
1

Figure 8.10: Graphs for which the Laplacian eigenvectors are the Hadamard
transform basis functions for N = 8 (left) and N = 16 (right). Different colors and
widths of the edges correspond to specific indicated weights.

Another important aspect is that the physical process at hand may
dictate that graph topologies need to “jump” between a finite number
of discrete states, as manifested by sudden changes in their behavior,
the problem considered in Baingana and Giannakis (2016). This type of
analysis was inspired by the modeling of contagions, such as the spread of
popular news stories or infectious diseases, which propagate in cascades
over dynamic graphs/networks. For example, an e-mail network may
switch topologies from predominantly work-based connections during
the week to friend-based connections over the weekend. In such settings,
approaches which assume that network dynamics arise as a result of
slow topology variations may yield unpredictable results. To this end,
Baingana and Giannakis (2016) employ prior knowledge to introduce
novel structural equation models with switched dynamics to effectively
capture such causal relationships.

20
From Newton Minimization to Graphical

LASSO, via LASSO

Most current approaches to the learning of graph topology from the
available data are based on the regression method of the least absolute
shrinkage and selection operator (LASSO), with its extension to graphs
called the graphical LASSO (GLASSO). This class of methods has
already been used in the previous section to learn graph topologies.
Because of their importance, they will now be derived and explained in
detail, starting from simple one-dimensional Newton minimization.

20.1 Newton Method

We shall first briefly review the Newton iterative algorithm for finding
the minimum of a convex function. Consider a function, f(x), and
assume that it is differentiable. Denote the position of the minimum of
f(x) by x∗. The first derivative of f(x) at the minimum point position

x∗ = x+ ∆x

can be expanded into a Taylor series around an arbitrary position x,
using the linear model (which is exact if f ′′′(x) = 0 for all x), as

f ′(x∗) = f ′(x) + f ′′(x)∆x. (20.1)

363

364 From Newton Minimization to Graphical LASSO, via LASSO

Since f ′(x∗) = 0, by definition, with ∆x = x∗ − x, the relation in (20.1)
can be rewritten as

x∗ − x = − f
′(x)

f ′′(x) .

This formula is used to define an iterative procedure (called Newton’s
iterative method) for finding the position of the minimum of function
f(x), denoted by x∗, starting from an x = x0, as

xk+1 = xk − αf ′(xk). (20.2)

The parameter α is commonly used instead of 1/f ′′(x) to control the
iteration step, and its value should be

0 < α ≤ max(|1/f ′′(x)|),

for the considered interval of x. This is the form of the well-known
steepest descent method for convex function minimization.

Notice that the value x∗ = x− αf ′(x) would also be obtained as a
result of the minimization of a cost function defined by the quadratic
form

x∗ = arg min
z
G(z)

= arg min
z

(
f(x) + f ′(x)(z − x) + 1

2α(z − x)2
)
.

Namely, from the zero-value of the derivative of this cost function

d

dz

(
f(x) + f ′(x)(z − x) + 1

2α(z − x)2
)

= 0

we would arrive at

z = x− αf ′(x) = x∗.

Next, assume that we wish to minimize the cost function

J(x) = 1
2α(x− y)2 + ρ|x|,

where ρ is a parameter. This cost function corresponds to the minimiza-
tion of the squared difference between x and y, that is (x− y)2, with

20.2. Standard LASSO 365

an additional sparsity constraint on x, given by |x|. From

dJ(x)
dx

= 1
α

(x− y) + ρsign(x) = 0

we immediately obtain

x+ ραsign(x) = y.

Soft-thresholding, denoted as soft(y, αρ), may be used as a solution to
this equation, to yield

x = soft(y, αρ) =

y + αρ, for y < −αρ
0, for |y| ≤ αρ
y − αρ, for y > αρ.

(20.3)

This form could be considered as the LASSO method for one-dimensional
variables. Now, we can proceed with deriving the LASSO method for
N -dimensional variables.

20.2 Standard LASSO

For the LASSO minimization with N -dimensional variables, we will
consider the cost function

J(X) = ‖y−AX‖22 + ρ‖X‖1
= ‖y‖22 − 2XTATy + XTATAX + ρ‖X‖1,

where y is an M × 1 column vector, X is an N × 1 column vector, and
A is an M ×N matrix (Stanković, 2015).

The minimization of this cost function with respect to the
N -dimensional variable, X, will produce a value which minimizes
‖y − AX‖22, meaning that AX is as close to y as possible, while
at the same time promoting the sparsity of X, through the term ‖X‖1
in the minimization. The balance between these two requirements is
governed by the parameter ρ.

Consider first the differentiable part of the cost function J(X)
denoted by

JD(X) = ‖y−AX‖22 = (y−AX)T (y−AX). (20.4)

366 From Newton Minimization to Graphical LASSO, via LASSO

Its derivatives are
∂JD(X)
∂XT

= −2ATy + 2XTATA

and
∂2JD(X)
(∂XT)2 = 2ATA.

A linear model for the first derivative of JD(X) around its minimum, X∗,
which corresponds to (20.1), is given by

∂JD(X∗)
∂XT

= 0 = ∂JD(X)
∂XT

+ (∆X)∂
2JD(X)
(∂XT)2 .

By replacing the inverse of the second order derivative, 1/
(∂2JD(X)

(∂XT)2
)
, by

a constant diagonal matrix αI, as in (20.2), we have

∆X = X∗ −X = −
∂JD(X)
∂XT

∂2JD(X)
(∂XT)2

= −α∂JD(X)
∂XT

,

or
X∗ = X− α∂JD(X)

∂XT
, (20.5)

with

0 < α <
1

max ‖2ATA‖ = 1
2λmax

,

where λmax is the maximum eigenvalue of matrix ATA.
In order to find Z = X∗ that minimizes the complete cost function

J(X) we can minimize the squared value of the difference

Z−
(

X− αI∂JD(X)
∂XT

)
and the norm-one of Z, by forming the cost function, G(Z), as

G(Z) = 1
2α

∥∥∥∥Z− (X− αI∂JD(X)
∂XT

)∥∥∥∥2

2
+ ρ‖Z‖1.

The minimization of G(Z) will produce Z which is as close as possible to
the desired solution in (20.5), while minimizing its norm-one (maximum
sparsity) at the same time, with ρ as the balance parameter.

20.2. Standard LASSO 367

If we use the notation

Y =
(

X− αI∂JD(X)
∂XT

)
,

the solution of

X∗ = arg min
Z
G(Z) = arg min

Z

1
2α‖Z−Y‖22 + ρ‖Z‖1

is obtained from
1
α

(X∗ −Y) + ρsign(X∗) = 0.

Using the soft-thresholding function as in (20.3), we can further write

X∗ = soft(Y, αρ).

Next, we can replace the value of Y by

Y =
(

X− αI∂JD(X)
∂XT

)
= X− αI(−2ATy + 2XTATA)

= 2αATy + (I− 2αATA)X.

The iterative formula for the solution of the so defined minimization
problem is obtained by replacing X∗ = Xk+1 and X = Xk, to yield

Xk+1 = soft(2αAT (y−AXk) + Xk, αρ). (20.6)

This formula can be rewritten for each element of Xk and implemented
as in Algorithm 2. This is the essence of the LASSO (Least Absolute
Shrinkage and Selection Operator) iterative algorithm. Notice that
X0 = ATy is commonly used as the initial estimate.
Example 87: Consider a sparse signal, X(k), with N = 60 elements.
In general, to calculate these signal elements we need at least M = 60
measurements (linear combinations of signal elements). A signal can
be reconstructed from a reduced set of M < N measurements if it is
sparse, with K � N nonzero elements at unknown positions.

Assume that the original sparse signal of the total length N = 60 has
the values in the transform domain given by X(k) = 0 for all k except
for X(5) = 1, X(12) = 0.5, X(31) = 0.9, and X(45) = −0.75, and that

368 From Newton Minimization to Graphical LASSO, via LASSO

it is measured with a matrix A with only M = 40 < N measurements
stored in vector y.

The measurement matrix A is formed as a Gaussian random matrix
of the size 40 × 60, with elements N (0, σ2), where σ2 = 1/40 is used.
All 60 signal values were reconstructed using these 40 measurements, y,
and the matrix A, in 1000 iterations. In the initial iteration, X0 = ATy,
was used; then for each next iteration k, the new values of X were
calculated using (20.6) and Algorithm 2, given the data y and matrix A.
The results for ρ = 0.1 and ρ = 0.001 are shown in Figure 8.1. For a
very small ρ = 0.001, the result is not sparse, since the constraint is too
weak.

20.3 Graphical LASSO

In graph model learning, the corresponding cost function of the form

J(Q) = − ln(det Q) + Trace(QRx) + ρ‖Q‖1

may be used. Here, Q is the N ×N generalized Laplacian matrix, while
Rx is the available N ×N data correlation matrix. Physical meaning
of these terms is explained in Section 19.4.

The derivative of the cost function with respect to the elements of
Q can be written as

−Q−1 + Rx + ρsign(Q) = 0 (20.7)

at ∂J(Q)/∂Q = 0.
Upon introducing the notation

V = Q−1

or
VQ = I

we can write

V =
[
V11 v12
vT12 v22

]
Q =

[
Q11 q12
qT12 q22

]
(20.8)

20.3. Graphical LASSO 369

0 10 20 30 40 50 60
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0 10 20 30 40 50 60
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1
=0.001

0 10 20 30 40 50 60
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1
=0.1

Figure 8.1: A sparse signal with N = 60 samples and K = 4 nonzero elements,
which is reconstructed using a reduced set of M = 40 observations and the LASSO
iterative algorithm. The top panel shows the result for the matched filter (initial
estimate), X0 = ATy, and the middle and bottom panel for the LASSO iterative
algorithm with ρ = 0.1 and ρ = 0.001. Observe a poor reconstruction for a very
small ρ = 0.001, which according to (20.6) could not yield a sparse signal.

370 From Newton Minimization to Graphical LASSO, via LASSO

and [
V11 v12
vT12 v22

] [
Q11 q12
qT12 q22

]
=
[

I 0
0T 1

]
, (20.9)

where Q11 and V11 are (N − 1) × (N − 1) matrices, v12 and q12 are
(N − 1)× 1 column vectors, and v22 and q22 are scalars.

After multiplying the first row of blocks in V with the last column
of blocks in Q, we have

V11q12 + v12q22 = 0

which gives
v12 = −V11q12/q22 = V11β, (20.10)

where
β = −q12/q22 (20.11)

is normalized with q22 > 0.
Now, from the derivative Equation (20.7) we may write

−
[
V11 v12
vT12 v22

]
+
[
R11 r12
rT12 r22

]
+ ρsign

([
Q11 q12
qT12 q22

])
= 0.

For the upper right block we have

−v12 + r12 + ρsign(q12) = 0,

while after replacing v12 = V11β and q12 = −β/q22 from (20.10) and
(20.11) we arrive at

−V11β + r12 − ρsign(β) = 0. (20.12)

The solution to this equation for β has been already defined within the
LASSO framework, and is given by

βiV11(i) = soft
(
r12(i)−

∑
k 6=i

V11(k, i)βk, ρ
)
. (20.13)

In order to apply the LASSO as in (20.6), we can interpret the mini-
mization of the difference

AT (y−AX) = ATy−ATAX

20.3. Graphical LASSO 371

in (20.6) as the task of finding the least-squares estimate of ATy by
ATAX. Now, we can adjust (20.12) to assume a similar form

−V1/2
11 V1/2

11 β + V1/2
11 V−1/2

11 r12 − ρsign(β) = 0. (20.14)

In this case, the matrix V1/2
11 plays the role of A in (20.6) and V−1/2

11 r12
plays the role of y. Therefore, the standard LASSO should be calculated
using

β = lasso(V1/2
11 ,V

−1/2
11 r12, ρ) (20.15)

as in Algorithm 4.
Now, the graphical LASSO (GLASSO) iterative algorithm can be

summarized as follows.

• In the initial step, use

V = Rx + ρI.

• For each coordinate, j = 1, 2, . . . , N , the matrix equation of the
form (20.9) is written. For each j, the reduced matrix V11 is
formed by omitting the jth row and the jth column. Then, the
matrix Rx is rearranged accordingly.

• Equation (20.13) is solved using (20.15).

• The matrix V is updated for each j by inserting the jth column

v12 = V11β,

and inserting at the jth row vT12 with the element v22 at the jth
position.

• After all j indices are used in the calculation, the final estimate
of the generalized Laplacian is obtained as Q = V−1.

This calculation procedure is also presented in Algorithm 4.
Remark 96: Notice that the value of matrix Q = V−1 is updated for
each j and in the last iteration, using the column vector

q12 = −βq22,

372 From Newton Minimization to Graphical LASSO, via LASSO

where q22 can be calculated from vT12q12 + v22q22 = 1 or −vT12βq22 +
v22q22 = 1, finally producing the values

q22 = 1
v22 − vT12β

,

and
q12 = β

vT12β − v22

which are used to update the jth column and row of the matrix Q in
the same as the update of matrix V.

This algorithm can be used for iterative matrix inversion with ρ = 0.
Example 88: Consider a graph with N = 50 vertices and with a small
number of edges, so that the weight matrix, W, is sparse. The ground
truth weight matrix, W, is shown in Figure 8.2(a). This matrix was
then estimated from a large number, P = 1000, of observations of a
signal on this graph. Both the precision matrix, R−1, and the graphical
LASSO, given in Figures 8.2(b) and (c), produce good estimation of the
weight matrix, W. Next, the number of observations was significantly
reduced to P = 40 < N = 50, a case when the correlation matrix, R, is
singular and of rank lower or equal to P = 40. In this case, the sparsity
of the weight matrix is crucial for the solution. Here, only the graphical
LASSO, which includes the sparsity constraint, was able to produce
good result, as shown in Figure 8.2(e), while the precision matrix could
be calculated only through a pseudo-inverse, and cannot be used as the
weight matrix estimate, as can be seen from Figure 8.2(d).

20.3. Graphical LASSO 373

0 10 20 30 40 50

0

10

20

30

40

50

(a)

10 20 30 40 50

10

20

30

40

50
0 10 20 30 40 50

0

10

20

30

40

50

)c()b(

10 20 30 40 50

10

20

30

40

50
0 10 20 30 40 50

0

10

20

30

40

50

)e()d(

0 10 20 30 40 50

0

10

20

30

40

50

(a)

10 20 30 40 50

10

20

30

40

50
0 10 20 30 40 50

)c()b(

10

20

30

40

50

Figure 8.2: Estimation of the weight matrix, W, for a graph with N = 50 randomly
positioned vertices. (a) Ground truth weight matrix, W. (b) Precision matrix, for
a large number of observations, P = 1000� N = 50. (c) Estimated weight matrix
using the graphical LASSO, for a large number of observations, P = 1000� N = 50.
(d) Precision matrix, for a small number of observations, P = 40 < N = 50 (the
correlation matrix, R, is singular and with a rank lower or equal to P , so that
pseudo-inversion is used). (e) Estimated weight matrix using the graphical LASSO,
for a small number of observations, P = 40 < N = 50.

21
Physically Well Defined Graphs

The simplest scenario for graph connectivity consideration is when the
graph associated with a problem at hand is physically well defined.
Examples of such graphs are manifold, including electric circuits, power
networks, linear heat transfer, social and computer networks, and spring-
mass systems, all of which will be addressed in this section.

21.1 Resistive Electrical Circuits

Graph theory based methods for the analysis and transformations of
electrical circuits have long been part of classical courses and textbooks.
It is also interesting that some general information theory problems can
be interpreted and solved within the graph approach to basic electric
circuits. In such cases, the underlying graph topology is well defined
and is a part of the problem statement.

The graph Laplacian can also be considered within the basic electric
circuit theory. In this case, since the graph Laplacian can be derived
based on the Kirchhoff’s laws, it is also known as the Kirchhoff matrix.

Graph Representation of Electric Circuits

Consider a resistive electric circuit, and the electric potential in the
circuit vertices (nodes), denoted by x(n). The vertices in an electrical

375

376 Physically Well Defined Graphs

circuit are connected with edges, where the weight of an edge connecting
the vertices n and m is defined by the edge conductance, Wnm. The
conductances are the reciprocal values to edge resistances

Wnm = 1
Rnm

.

The current in the edge from vertex n to vertex m is then equal to

inm = x(n)− x(m)
Rnm

= Wnm(x(n)− x(m)).

In addition to the edge currents, an external current generator may
be attached to every vertex, and can be considered as a source of signal
change in the vertices; the external current at a vertex n is denoted by
in.

Since the sum of all currents going in/from a vertex n, n = 0, 1, . . . ,
N − 1, must be 0, that is

−in +
∑
m

inm = 0,

the current of the external generator at a vertex n must be equal to the
sum of all edge currents going in/from this vertex, to give

in =
∑
m

Wnm(x(n)− x(m)) = dnx(n)−
∑
m

Wnmx(m),

n = 0, 1, . . . , N − 1,

where

dn =
∑
m

Wnm =
N−1∑
m=0

Wnm

is the degree of vertex n. The summation over m can be extended to all
vertices, m = 0, 1, . . . , N − 1, since Wnm = 0 if there is no edge between
vertices n and m.

The above equations can be written in a matrix form as

i = Dx−Wx

or
Lx = i (21.1)

21.1. Resistive Electrical Circuits 377

where L = D−W is the Laplacian of a graph representing an electric
circuit and i is the vector of currents at every vertex.

If the Laplacian matrix is decomposed as L = UΛUT , from (21.1)
we have ΛUTx =UT i, and

ΛX = I, (21.2)

where X = UTx and I = UT i are the GDFT of graph signals x and i
(see Part II, Section 3.6).

From (21.2), the components of the spectral transform vector, X,
satisfy

λkX(k) = I(k)

for each k.
A signal measured on an electrical circuit graph can be related to

the above theory in several ways. For example, potentials on all vertices
could be measured under some measurement noise, which calls for data
filtering on a graph. Another possible case is when external conditions
are imposed, for example external sources are applied to some vertices.
We are then interested in the values of electric potential at all vertices,
a problem which corresponds to graph signal reconstruction.

For nontrivial solutions, there should be an external source on at
least two vertices. If we assume that a vertex with an external source is
chosen as a reference vertex, then the signal or external source values at
these vertices (with external sources) are sufficient to find signal values
at all other vertices.
Example 89: Consider the graph and signal sensed on the graph
presented in Figure 8.1. The signal values are

x = [6.71, 6.88, 7.13, 5.25, 6.67, 8.18, 2.62, 0]T

and the graph Laplacian (as a matrix operator) applied to the signal
yields

Lx = [0, 0, 1, 0, 0, 2, 0,−3]T .

Observe that in this case the vertices indexed by 0, 1, 3, 4, 6 are not
active, and their values can be obtained as linear combinations of the

378 Physically Well Defined Graphs

Figure 8.1: Electric potential, x(n), as a signal on an electric circuit graph.

signals at neighboring active vertices, that is

1.21x(0)− 0.23x(1)− 0.74x(2)− 0.24x(3) = 0
−0.23x(0) + 0.81x(1)− 0.35x(2)− 0.23x(4) = 0
−0.24x(0)− 0.26x(2) + 0.82x(3)− 0.32x(6) = 0 (21.3)

−0.23x(1)− 0.24x(2) + 1.12x(4)− 0.51x(5)− 0.14x(7) = 0
−0.32x(3) + 0.64x(6)− 0.32x(7) = 0.

After solving this system with known signal values x(2) = 7.13,
x(5) = 8.18, and x(7) = 0 at the active vertices, we obtain the remaining
signal values

xp = [x(0), x(1), x(3), x(4), x(6)]T = [6.71, 6.88, 5.25, 6.67, 2.62]T .

Graph Transformations

A graph with one or more inactive vertices (where the elements of Lx
are equal to zero) can be simplified by removing these vertices using
the well-known transformations of edges connected in series, parallel, or
star-to-mesh transforms. This process corresponds to the downsampling
of the graph signal (see also Part II). The reduction of an electrical
network via a Schur complement of the associated conductance matrix
is known as the Kron reduction, whereby the vertices are separated into
two groups: active vertices and inner vertices. The inner vertices can

21.1. Resistive Electrical Circuits 379

Figure 8.2: Electric potential, x(n), as a signal on an electric circuit graph observed
at the three vertices with nonzero external sources. For this graph, all other values
of x(n) in Figure 8.1 can be calculated based on the signal values at vertices n = 2,
n = 5, and n = 7.

be eliminated from the graph without changing the electric network
conditions; this is achieved via equivalent transformations, such as the
“star-mesh” transformations (Dorfler and Bullo, 2012).

Similar procedure can be used to add inactive vertices, either by
inserting a vertex within an edge or by transforming meshes to stars, in
what corresponds to the interpolation of the graph signal.
Example 90: For the graph and the graph signal from Example 89,
the active vertices are n = 2, 5, 7, as shown in Figure 8.2, while the
signal values at all vertices are given in Figure 8.1. Notice that the
existing signal values will not change, for the given external sources, if
the graph is “downsampled”, as shown in Figure 8.3, or if the graph
signal is “interpolated” by adding new vertices, as shown in Figure 8.4.
This is closely related to link prediction, that will be addressed later.

Graph Data Denoising for Sparse External Sources

The set of external sources are considered sparse if their number is much
smaller than the number of vertices, N . For this scenario, the norm-zero
of the external sources vector, Lx, is such that ‖Lx‖0 � N . If the noisy
observations, y, of data on graph, x, are available and we know that the
number of external sources is small, then the cost function for denoising

380 Physically Well Defined Graphs

Figure 8.3: Graph signal, x(n), from Figure 8.1, observed on a graph with a
reduced number of vertices (“downsampling”), whereby the vertices n = 6 and n = 1
are removed (crosses in green dots). Observe that the signal values at the active
vertices, n = 2, n = 5, and n = 7, are not changed. The edge weights in gray
shade are the equivalent values obtained using the standard resistor, Rmn = 1/Wmn,
transformations.

Figure 8.4: Graph signal, x(n), from Figure 8.1 observed on a graph with an
extended number of vertices (“interpolation”). Observe that the signal values at all
vertices, n = 0, 1, 2, 3, 4, 5, 6, 7, from Figure 8.2 are not changed. In the locations
where the new vertices n = 8 and n = 9 are added, the graph signal is interpolated
using x(2), x(5), and x(7), as in (21.3), and the corresponding edge weights are
shown in gray.

can be written in the form
J = ‖y− x‖22 + ρ‖Lx‖0. (21.4)

21.1. Resistive Electrical Circuits 381

This minimization problem can be solved either using the corresponding
norm-one form

J = ‖y− x‖22 + ρ‖Lx‖1 (21.5)

or using a kind of matching pursuit, as presented in the next example
within a classical data denoising scenario.
Example 91: Consider the classical time domain and a piece-wise
linear signal, of which noisy observations are available, as shown in
Figure 8.5(a). In standard analysis, the graph representation of the
domain of this signal is an undirected and unweighted path graph,
where the elements of Lx play the role of external sources, as shown in
Figure 8.5(b). We shall assume that n = 0 is the reference vertex with
x(0) = 0.

The data denoising problem is then solved in the following way.
The initial estimate of the external sources is calculated as Ly. Since
we assumed that the external sources are sparse, we will consider the
positions, k1, k2, k3, k4, and k5, of K = 5 largest absolute values of the
initial estimate.

The largest K nonzero values of the external source vector, Ly, are
denoted by JK , with the elements i(k1), i(k2), . . . , i(kK). The value of
JK is found in such a way that it minimizes the difference between the
estimated data, L(−1)

K JK , and the observations, y, that is

minJK‖y− L(−1)
K JK‖22,

where L(−1)
K is obtained from the inverse transform of the graph Lapla-

cian (after the reference row and column, at n = 0 are omitted) by
keeping only K columns which correspond to the nonzero positions in
the external source vector, JK . The solution therefore becomes

JK = pinv(L(−1)
K)y.

After the nonzero external sources are found, the full external source
vector, [i(1), i(2), . . . , i(N − 1)]T , is formed using the calculated nonzero
values in JK and inserting zero values at the remaining positions, as
shown in Figure 8.5(c).

382 Physically Well Defined Graphs

0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60

-1

0

1

0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

)b(

)c(

)d(

)a(

Figure 8.5: Original piece-wise linear noisy signal (top) and the reconstructed signal
(bottom), with the Laplacian of the noisy observations and its re-estimated sparse
version (middle panels).

Finally, the reconstructed signal is obtained from
L11 L12 . . . L1,N−1
L21 L22 . . . L2,N−1
...

...
LN−1,2 LN−1,2 . . . LN−1,N−1

x(1)
x(2)
...

x(N − 1)

 =

i(1)
i(2)
...

i(N − 1)

21.3. Spring-Mass Systems 383

as, x = L−1J, with the result shown in Figure 8.5(d). Note that the
matrix L is obtained from the graph Laplacian matrix by removing the
reference vertex row and column.

Remark 97: The crucial advantage over the standard total variation
(TV) minimization approach in the compressive sensing based denoising
is that the cost function used in Example 91 does not penalize for the
linear changes of the signal, while the TV approach promotes piece-wise
constant signals.

21.2 Heat Transfer

The same model as in resistive electrical circuits can be used for a
heat transfer network. In this case, the signal values are the measured
temperatures, x(n) = T (n), while the heat flux is defined as

qnm = (T (n)− T (m))Cnm = (x(n)− x(m))Wnm,

where Cnm are the heat transfer constants, which represent edge weights
in the underlying graph, Cnm = Wnm.

Then, the input heat flux in a vertex n can be written as

qn =
∑
m

Wnm(x(n)− x(m)) = dnx(n)−
N−1∑
m=0

Wnmx(m),

with
q = Lx.

Active vertices are those with an external heat flux, while the passive
vertices are those where all heat flux coming to a vertex is forwarded to
other vertices, through the edges. An example of a heat transfer graph
is given in Figure 8.6.

21.3 Spring-Mass Systems

A spring mass system can also be modeled as a graph. Consider a
system of N = 4 masses which correspond to a path graph, as in
Figure 8.7. Assume that all displacements and forces are aligned with
springs. According to Hook’s law, the displacements, x(n), and the

384 Physically Well Defined Graphs

Figure 8.6: Temperature, x(n) = T (n), as a signal on a heat transfer graph, with
q1, q2, . . ., q7, as the external heat flux values at the corresponding vertices.

Figure 8.7: Spring-mass system on a path graph.

forces, Fn, at the steady state are related as

k1(x(1)− x(2)) = F1

k1(x(2)− x(1)) + k2(x(2)− x(3)) = F2

k2(x(3)− x(2)) + k3(x(3)− x(4)) = F3

k3(x(4)− x(3)) = F4

or in a matrix form
k1 −k1 0 0
−k1 k1 + k2 −k2

0 −k2 k2 + k3 −k3
0 0 −k3 k3

x1
x2
x3
x4

 =

F1
F2
F3
F4

Lx = F.

These equations define a weighted graph and its corresponding graph
Laplacian.

Given that the graph Laplacian is a singular matrix, in order to
solve this system for unknown displacements (graph signal), we should

21.4. Social Networks and Linked Pages 385

introduce a reference vertex with a fixed position (zero displacement).
Then, the system Lx = F can be solved.

21.4 Social Networks and Linked Pages

Social networks are also examples of well defined graphs, where the
vertices are network members and the edges define their relationships
within a social network. If two members in a social network are related,
then the corresponding edge weight is 1, and the weight matrix is equal
to the adjacency matrix. An example of a small social network with the
corresponding member links is shown in Figure 8.8.

Pages with hyper-links can also be considered as a well defined
directed graph; an example of links between N = 8 pages is given
in Figure 8.9. An interesting parameter for this kind of graphs is the
PageRank.

Figure 8.8: An example of a small social network represented as an undirected
graph.

386 Physically Well Defined Graphs

Figure 8.9: Hyper-linked internet pages in a holiday search scenario, which can be
represented as a directed graph. The vertices 0 to 7 reflect the nature of web search,
as follows. 0: Venue search results. 1: Places to visit at the venue from 0. 2: Search
for road trip. 3: Google search engine. 4: Car hire website. 5: Trustpilot ranking of
car rental agent. 6: Personalized roadmap for the trip. 7: Review of sites of interest.

21.5 PageRank

The PageRank was defined by Google to rank the web pages. For a
directed graph, PageRank of a vertex n is defined as a graph signal
satisfying the relation

x(n) =
∑
m

1
dm

Wmnx(m),

where Wmn are weights of the directed edges connecting vertices m and
n, and dm is the outgoing degree of a vertex m. This means that the
PageRank of each vertex is related to the PageRank of the vertices
connected to it.

The PageRank is usually calculated using an iterative procedure
defined by

xk+1(n) =
∑
m

1
dm

Wmnxk(m), (21.6)

21.5. PageRank 387

starting from an arbitrary PageRank, for example x0(n) = 1. In the
original definition by Google, the scaling factors of 0.15 and 0.85 were
added, to give

xk+1(n) = 0.15 + 0.85
∑
m

1
dm

Wmnxk(m). (21.7)

Example 92: Consider the graph from Figure 8.9 (the same graph
as in Part I, Figure 2.1(b)). In this case, the vertices represent pages
on the Internet, while the directed edges designate their relations. For
example, the page which corresponds to vertex 0 cites (gives a hyper-link
to) page marked with 1, while it is cited (hyper-linked) by pages at
vertex 2 and vertex 3. All other vertices are connected by the edges in
the same way. Intuitively, we can expect that the rank in this network
is higher for the pages that are highly cited (hyper-linked) with other
also highly cited (hyper-linked) pages. To find the rank of the pages
in this graph/network, we first need to calculate the PageRank for all
pages/vertices. The weight/adjacency matrix of this graph, W = A, is
given by (see also Part I, Equation (2.2))

W =

0
1
2
3
4
5
6
7

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 1
1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0

. (21.8)

The outgoing vertex degrees are calculated as sums of columns of
the matrix WT , that is dm = ∑7

n=0Wmn, with their values

d = [1 1 4 1 3 1 2 2].

Now, the PageRank values for vertices can be obtained through an
iterative procedure, as in (21.6), starting with the initial page ranks
x0 = [1, 1, 1, 1, 1, 1, 1, 1]. After a few iterations, the results for PageRank

388 Physically Well Defined Graphs

are as follows

xT0
xT1
xT2
...

xT5
...

xT11

=

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.25 1.33 1.83 0.75 0.25 0.33 0.50 1.75
1.21 1.33 2.29 0.71 0.46 0.08 0.87 1.04

...
1.29 1.68 2.10 0.80 0.52 0.17 0.46 0.99

...
1.33 1.53 2.14 0.80 0.55 0.18 0.48 0.99

.

The matrix form of the iterations in (21.6) is

xk+1 = WNxk,

where WN is obtained from WT by dividing all elements of the mth
column, m = 0, 1, . . . , N − 1, by dm. The mean-values of matrix WN

columns are normalized.
Example 93: The normalized adjacency/weighting matrix from Exam-
ple 92, is

WN =

0 0 1
4 1 0 0 0 0

1 0 0 0 1
3 0 0 0

0 1 0 0 1
3 0 0 1

2

0 0 1
4 0 0 0 1

2 0

0 0 1
4 0 0 0 0 0

0 0 0 0 1
3 0 0 0

0 0 0 0 0 0 0 1
2

0 0 1
4 0 0 1 1

2 0

.

21.6. Random Walk 389

The final, steady state, PageRank x can then be obtained from

x = WNx,

and represents the eigenvector of the matrix WN which corresponds to
the eigenvalue equal to 1.
Example 94: The eigenvalue decomposition of the matrix WN in
Example 92 results in the eigenvector which corresponds to eigenvalue
λk = 1, whose elements are

xT = [1.33 1.52 2.18 0.79 0.55 0.18 0.48 0.97].

The eigenvector is normalized by its mean value, and is obtained via
the iterative solution after 11 iterations.

21.6 Random Walk

Assume that the signal, x(n), represents the probability that a random
walker is present at a vertex n. The random walker will then transit from
the vertex n to one of its neighboring vertices, m, with probability pnm.
There are several ways to define this probability and the corresponding
forms of random walk; for an extensive review see Masuda et al. (2017).
Here, we consider two random-walk definitions:

• vertex-centric random walk, and

• edge-centric random walk.

In the vertex-centric random walk, the probability, pnm, that a
random walker will transit from the vertex n to one of its neighboring
vertices, m, is defined by

pnm = Wnm∑
mWnm

= 1
dn
Wnm, (21.9)

where Wnm are the affinities of the walker to transit from a vertex n
to a vertex m, and dn = ∑

mWnm is the degree of a vertex n. The
probability, xp+1(m), that a walker is at the vertex m at the time step
(p+ 1) is then equal to the sum of all probabilities that a walker was at
one the vertices, n, with the distance equal to one (neighboring vertices

390 Physically Well Defined Graphs

to the vertex m) multiplied by the probabilities that the walker transits
from the vertex n to the vertex m, that is

xp+1(m) =
∑
n

xp(n)pnm =
∑
n

xp(n) 1
dn
Wnm. (21.10)

The calculation of the signal x(n) can now be naturally considered
within the graph framework, where Wnm are edge weights.

The probabilities at the stage (p+ 1) of the random walk transition
are calculated starting from the probabilities at the previous stage as
in (21.10), which, in the compact matrix form, is given by

xp+1 = WD−1xp

or
D−1/2xp+1 = D−1/2WD−1/2D−1/2xp,

where the matrix W is a matrix of weighting coefficients and D is the
degree matrix.

In the steady state, when xp+1 = xp = x, we have

y = D−1/2WD−1/2y

where y = D−1/2x. The solution is the smoothest eigenvector of the
normalized Laplacian, LN = I−D−1/2WD−1/2, calculated from

(I−D−1/2WD−1/2)y = 0,

and is given by y = [1, 1, . . . , 1]T /
√
N or

x = D1/2[1, 1, . . . , 1]T /
√
N.

Note that the vector x is not constant, and its elements are given by
x(n) =

√
dn/N .

In the edge-centric random walk, the probability, pnm, is defined
by

xp+1(m) =
∑
n

xp(n)pnm = 1
dm

∑
n

xp(n)Wnm. (21.11)

In this case, the in-flow probability ∑n xp(n)Wnm for the vertex m is
equal (balanced) to the out-flow probability of this vertex, xp+1(m)dm =∑
n xp+1(m)Wnm. This model of random walk is also called the fluid

21.6. Random Walk 391

model and it has a simple interpretation within the electric circuits
framework, since the probabilities (if considered as the electric poten-
tials) satisfy the first Kirchoff low for the vertex m serving as an electric
circuit node, that is∑

n

(xp+1(m)− xp(n))Wnm = 0.

The matrix form of the edge-centric random walk is given by

xp+1 = D−1Wxp

or Dxp+1 = Wxp. In the steady state, for xp+1 = xp = x, we have

Dx = Wx

or
Lx = 0. (21.12)

The solution to this equation is the smoothest (constant) eigenvector of
the graph Laplacian, x = [1, 1, . . . , 1]T /

√
N .

The presented graph theory framework admits for various problem
formulations and solutions.
Example 95: Consider the graph from Figure 2.2 in Part I and the
case where we desire to find the probabilities, x(n), that the walker
reaches vertex 5 before it reaches vertex 7, starting from any vertex n,
and assuming that transition probabilities may be defined according
the edge-centered random walk model. We therefore have to solve the
system Lx = 0, with x(5) = 1 and x(7) = 0.

In the same way, we can solve another practically interesting problem.
A piece of information has reached a member of the social network in
Figure 8.10 at vertex 4 (in green circle), but it has not reached the
member at vertex 3 (in red circle). The task is to find probabilities that
the information is known to a vertex n.

Since the information is present at vertex 4, then x(4) = 1 is a
certain event, and the fact that the information has not reached vertex
3 means that x(3) = 0. Again, according to the analysis from (21.9)
to (21.12), we have to solve the system Lx = 0, with x(4) = 1 and

392 Physically Well Defined Graphs

Figure 8.10: A small social network from Figure 8.8, where we are interested in the
probability that a piece of news has reached vertex 4 (policeman, in green circle),
but has not reached vertex 3 (chef, in red circle). Example 95 considers this scenario
within the framework of random walk on graphs.

x(3) = 0, that is

3 −1 −1 −1 0 0 0 0
−1 3 −1 0 −1 0 0 0
−1 −1 4 −1 −1 0 0 0
−1 0 −1 3 0 0 −1 0
0 −1 −1 0 4 −1 0 −1
0 0 0 0 −1 2 0 −1
0 0 0 −1 0 0 2 −1
0 0 0 0 −1 −1 −1 3

x(0)
x(1)
x(2)

0
1

x(5)
x(6)
x(7)

= 0, (21.13)

where the corresponding columns and rows are removed (rows for the
known signal values, x(3) and x(4), and the column for the zero-valued
signal, x(3)), while the green font designates the column to be moved
on the right side of the equation for the known signal value, x(4) = 1.

21.7. Hitting and Commute Time 393

The solution is obtained from

3 −1 −1 0 0 0
−1 3 −1 0 0 0
−1 −1 4 0 0 0
0 0 0 2 0 −1
0 0 0 0 2 −1
0 0 0 −1 −1 3

x(0)
x(1)
x(2)
x(5)
x(6)
x(7)

=

0
1
1
1
0
1

, (21.14)

with the inserted values x(4) = 1 and x(3) = 0, in the following form

x = [0.375, 0.625, 0.5, 0, 1, 0.875, 0.375, 0.75]T .

This means that the information is most probably available to the
vertex 5, with probability x(5) = 0.875, while the lowest probability is
that the information is available to the vertices 0 or 6, with probability
x(0) = x(6) = 0.375, as can be expected from an intuitive analysis of
this graph with a small number of vertices.

21.7 Hitting and Commute Time

The random walk problem is closely related to the hitting and commute
time. The hitting time, h(m,n), from a vertex m to any vertex n is
defined as the expected number of steps for a random walker to travel
from the vertex m to a vertex n. Denote by x(m)

p (l) the hitting time
from the reference vertex m to the vertices l which are the neighboring
vertices of the considered vertex n. Then, the random walker will arrive
from a vertex l to the vertex n in one step with the probability that it
chooses to transit from the specific l to the considered n. The probability
that a random walker is at the neighboring vertex l, and then transits
to the vertex, n, is given by

pln = Wln∑
kWnk

= 1
dn
Wln.

The hitting time for a vertex n is equal to the sum of all hitting times
of neighboring vertices, with one step added, that is

x
(m)
p+1(n) =

∑
l

x(m)
p (l)pln + 1 = 1

dn

∑
l

x(m)
p (l)Wln + 1.

394 Physically Well Defined Graphs

The matrix form of this equation is

x(m)
p+1 = D−1Wx(m)

p +

1
1
...
1

 .
In the steady state, we have

Dx(m) = Wx(m) + d,
where d = D[1, 1, . . . , 1]T is a degree vector. Finally the hitting time,
h(m,n) = x(m)(n), is a solution to the linear system of equations

Lmx(m) = d (21.15)
with the reference vertex m, where x(m) = 0 is removed from the vector
x to form x(m) with elements h(m,n), n = 0, 1, . . . , N − 1, n 6= m.
The equation for vertex m is also removed, so that the system is of an
(N − 1)-order and the matrix Lm is obtained from the graph Laplacian,
L, by removing its mth row and mth column.
Example 96: We shall calculate the hitting time for all vertices, n,
from the vertex m = 3 for the graph from Figure 2.2 in Part I. For this
graph, we have

1.21 −0.23 −0.74 0 0 0 0
−0.23 0.81 −0.35 −0.23 0 0 0
−0.74 −0.35 1.59 −0.24 0 0 0
0 −0.23 −0.24 1.12 −0.51 0 −0.14
0 0 0 −0.51 0.66 0 −0.15
0 0 0 0 0 0.64 −0.32
0 0 0 −0.14 −0.15 −0.32 0.61

h(3, 0)
h(3, 1)
h(3, 2)
h(3, 4)
h(3, 5)
h(3, 6)
h(3, 7)

=

1.21
0.81
1.59
1.12
0.66
0.64
0.61

and this matrix is obtained from the graph Laplacian by removing the
row and column corresponding to m = 3. The hitting times from the
vertex m = 3 are then obtained as

h(3, 0)
h(3, 1)
h(3, 2)
h(3, 4)
h(3, 5)
h(3, 6)
h(3, 7)

=

9.0155
11.3003
9.5942
12.6594
13.1427
6.1930
10.3860

.

21.7. Hitting and Commute Time 395

The commute time, CT (m,n) between vertices m and n is defined
as the expected time for the random walker to reach a vertex n starting
from vertex m, and then to return (see Part I, Section 4.5), to give

CT (m,n) = h(m,n) + h(n,m).

Example 97: We consider the task of finding the commute time be-
tween the vertices m = 0 and n = N − 1 = 7 for the graph from
Figure 2 in Part I, also shown in Figure 8.11. If we desire to use the full
Laplacian matrix and the electric circuit framework for the calculation
of the hitting time, then we should include the mth equation with
h(m,m) = x(m) = 0. Since the sum of all external sources (on the
right side of the Equation (21.15)) must be zero, this means that for
the vertex m = 0, the right side terms should be (d0 −D), and the full
Laplacian form of (21.15) for the vertex m = 0 becomes

L

0
h(0, 1)

...
h(0, 6)
h(0, 7)

=

d0 −D
d1
...
d6
d7

,

where D = ∑N−1
i=0 di, and di = ∑

nWin are the degrees of vertices, i.
The same relation can be written for m = 7 (or any other vertex

m), to yield

L

h(7, 0)
h(7, 1)

...
h(7, 6)

0

=

d0
d1
...
d6

d7 −D

.

The difference between the two previous systems of equations is

L

−h(7, 0)
h(0, 1)− h(7, 1)

...
h(0, 6)− h(7, 6)

h(0, 7)

=

−D
0
...
0
D

.

396 Physically Well Defined Graphs

Figure 8.11: Electric circuit interpretation of the commute time, CT (m,n) =
DR

(m,n)
eff .

This system can be interpreted within the electric circuit framework as
the electric circuit with an external source at m = 0 whose current is
i(0) = −D. This external source is closed at m = 7 with the current
i(7) = D, while there are no sources at any other vertex. The difference
of voltages in this electric circuit at m = 0 and m = 7 is equal to the
difference of the seventh element, h(0, 7), and the first element, −h(0, 7),
to yield

x0,7 = h(0, 7)− (−h(7, 0)) = h(0, 7) + h(7, 0)

= CT (0, 7) = R
(0,7)
eff i(7)

where R(0,7)
eff is the effective electric resistance between m = 0 and

m = N − 1 = 7, as illustrated in Figure 8.11.
Finally, the previous relation holds for any two vertices, m and n,

that is
CT (m,n) = DR

(m,n)
eff

where D = ∑N−1
i=0 di.

Example 98: The commute time between vertices m = 0 and n = 7
for the graph from Figure 2.2 in Part I, also shown in Figure 8.11, can
be obtained by calculating the hitting times h(0, 7) and h(7, 0), as in
Example 96. The result is

CT (7, 0) = h(0, 7) + h(7, 0) = 10.7436 + 19.6524 = 30.3960.

The same result can be obtained by finding the effective resistance
between vertices m = 0 and n = 7 in the electric circuit from Figure 8.11

21.8. Relating Gaussian Random Signal to Electric Circuits 397

using the elementary calculations for the effective resistance, R(7,0)
eff , to

give
R

(7,0)
eff = 4.0745.

With D = ∑7
i=0 di = 7.46, the commute time, CT (7, 0) = DR

(7,0)
eff =

30.3960, follows.

21.8 Relating Gaussian Random Signal to Electric Circuits

Consider a random graph signal, x(n), and assume that each sample
is Gaussian distributed with mean, µn, and standard deviation, σn.
Assuming that the signal values are correlated, the pdf of the signal x
is given by

P (x) = 1√
(2π)N

√
det(Σ−1

x) exp
(
−1

2(x− µ)TΣ−1
x (x− µ)

)
. (21.16)

The inverse of the autocovariance matrix is the precision matrix
Q = Σ−1

x . Note that the term precision comes from the one-dimensional
case where the precision is inversely proportional to the variance, that
is Q = 1/σ2.

The maximum likelihood estimate of x is then obtained from (21.16)
by minimizing

Ex = 1
2(x− µ)TΣ−1

x (x− µ)

and the solution is
Σ−1
x (x− µ) = 0. (21.17)

For a zero-mean random signal, µ = 0 and Σ−1
x x = 0, and the solution

in (21.17) corresponds to minimizing the energy of the change (maximal
smoothness) in the graph.

The generalized Laplacian corresponding to the precision matrix is
defined by

Σ−1
x = Q = L + P

where P is a diagonal matrix such that the sum of columns of the
Laplacian is zero.

The edge weights can now be extracted from the Laplacian matrix.
Since the Laplacian is defined using the observed graph signal values,

398 Physically Well Defined Graphs

this is a point where the presented analysis meets the discussion from
the previous section (see also Examples 79 and 80). The electric circuit
form of the minimization condition is obtained from

(L + P)(x− µ) = 0

or
Lx = −Px + (L + P)µ.

In terms of the external current generators, we can define the problem as

Lx = ix + ig,

where ix = −Px are voltage-driven current generators and ig =
(L + P)µ = Qµ are constant external current generators. Therefore,
the steady-state solution can be interpreted and solved in the same way
as we solve the described electric circuit. For example, if the observed
state is x(7) = 1 and µ(n) = 0, we can solve the system for other values
of x(n) for a given matrix Σ−1

x = Q = L + P.

22
Graph Learning from Data and External Sources

In the seminal work on graph topologies by Gabriel Kron, all vertices
are assumed to be separable into two groups: active vertices and inner
vertices. Active vertices are exposed to external sources which may be
of different natures, depending on the physical system represented by a
graph. Scenarios which admit the grouping into the active and inner
vertices include the following.

• In a graph representing an electric circuit, active vertices are
characterized by external currents/voltages which supply the
network with energy, which is consumed in its resistive edges.

• For graphs representing heat transfer, active vertices must include
sources/sinks of heat energy.

• In a transportation network, active vertices are those stations
where new influx of passengers can be generated, in contrast with
e.g., the transition hubs, where the passengers can only change
the lines, and cannot exit or enter the station.

• Active and inner vertices can also be recognized in the postal
service network. Here, the external vertices are the points where

399

400 Graph Learning from Data and External Sources

the mail is accepted and/or delivered from/to outside world, while
the inner vertices are places where the mail is only in transit
(sorted and redirected).

• In a computer network, the inner vertices are the servers with
no external input/output function, but only have the store and
data transfer functionality. Computers that can generate input
or output data would be active vertices (vertices with external
sources).

Notice that the external sources drive the system (graph), while the
inner sources can be organized in various ways to improve the efficiency
of the system. In the Kron reduction of graphs, inner vertices are
commonly reorganized by appropriate transformations of graphs, such
as the “star-mesh” transformations.

In the previous section, learning of graph topology from data on
the graph has been considered based on the correlation and precision
matrices. The fundamental additional assumption is that the graph
signal is smooth over the vertices. Notice that if we were able to measure
the graph signal and external sources in the active vertices, then this
would make it possible to learn graph topology in an exact way.

Consider the pth observation of a signal on a graph,

xp = [xp(0), xp(1), . . . , xp(N − 1)]T ,

and the corresponding external sources,

ip = [ip(0), ip(1), . . . , ip(N − 1)]T .

Without loss of generality, assume that the (N − 1)th vertex is a
reference, where xp(N − 1) = 0 and ip(N − 1) = −∑N−2

n=0 ip(n). These
elements will be removed from the data and equations and only the
data on remaining vertices will be considered, and denoted as xp =
[xp(0), xp(1), . . . , xp(N−2)]T and ip = [ip(0), ip(1), . . . , ip(N−2)]T . The
electric circuit equation in (21.1) for the reduced set of data is then

l0
l1
...

lN−2

xp = ip,

401

where
li = [Li0, Li1, . . . , Li,N−2]

are the rows of the graph Laplacian matrix, L, with the elements ranging
from n = 0 to n = N − 2. In other words, the last element and the last
row in the graph Laplacian, which correspond to the reference vertex,
n = N − 1, are omitted.

If P sets of observations are available, then we can write this system
in the form

l0
l1
...

lN−2

 [x1,x2, . . . ,xP] = [i1, i2, . . . , iP].

or
l0
l1
...

lN−2

XN−1,P = JN−1,P

The matrices XN−1,P and JN−1,P represent respectively the signal on
the graph and external source matrices of dimensionality (N − 1)× P .

Now, we can consider the following cases.

• With P ≥ N − 1 independent available observations, the exact
form of the graph Laplacian (its first (N − 1) rows and columns)
follows from

l0
l1
...

lN−2

 = JN−1,P pinv{XN−1,P }. (22.1)

The last column and the last row of the graph Laplacian, L, are
formed in such a way that the sum over every column or row is
zero.

• A more complex case arises when P < N − 1. Then, the number
of observations is not sufficient to recover the graph Laplacian.

402 Graph Learning from Data and External Sources

However, if we assume that the graph Laplacian is sparse, with a
small number of nonzero elements (edges), the solution is achiev-
able within the compressive sensing framework. In order to adapt
the system in (22.1) to suit the standard LASSO algorithm, we
shall rewrite it in the form

XT
N−1,P

l0
l1
...

lN−2

T

= JTN−1,P .

Now, LASSO minimization can be performed for each data column,
lTk , and the corresponding column of the external source matrix
JTN−1,P , denoted by ik, in the form

lk = lasso(XT
N−1,P , ik, ρ).

Another approach would be to transform the matrices with graph
Laplacian rows, ik, and external source matrix, JTN−1,P , into
column vectors to have

XT
N−1,P 0 . . . 0

0 XT
N−1,P . . . 0

...
...

0 0 . . . XT
N−1,P

lT0
lT1
...

lTN−2

 =

i0
i1
...

iN−2

 .
Using the notation

(IN−1,N−1 ⊗XT
N−1,P) lvec = ivec

for the matrix and the vectors in the above equation (where
IN−1,N−1 is the identity matrix), this system can be solved using

lvec = lasso(IN−1,N−1 ⊗XT
N−1,P , ivec, ρ).

Example 99: Consider a graph with N = 50 vertices, and with a
small number of edges. Such a sparse graph Laplacian, L, is shown in
Figure 8.1(a). The graph Laplacian was estimated using a large number,
P = 60, of observations of the graph signal and external sources. Both

403

Ground truth

10 20 30 40

10

20

30

40

(a)
Norm-two

10 20 30 40

10

20

30

40

LASSO

10 20 30 40

10

20

30

40

)c()b(

)e()d(

Norm-two

10 20 30 40

10

20

30

40

LASSO

10 20 30 40

10

20

30

40

Figure 8.1: Estimation of the graph Laplacian, L, for a graph with N = 50 randomly
positioned vertices and a small number of edges. (a) Ground truth graph Laplacian, L.
(b) Estimated graph Laplacian using the norm-two for a large number of observations,
P = 60 > N = 50. (c) Estimated graph Laplacian using the LASSO, for a large
number of observations, P = 60 > N = 50. (d) Estimated graph Laplacian using the
norm-two, for a small number of observations, P = 40 < N = 50. (e) Estimated graph
Laplacian using the LASSO, for a small number of observations, P = 40 < N = 50.

404 Graph Learning from Data and External Sources

the norm-two and the LASSO estimates of the graph Laplacian were
accurate, as shown in Figures 8.1(b) and (c). Next, the number of
observations was reduced to P = 40 < N = 50. In this case, the sparsity
of the graph Laplacian is crucial for the solution. The LASSO algorithm,
which includes the sparsity constraint, was still able to produce a good
result, as seen from Figure 8.1(e). The norm-two was calculated using
the pseudo-inverse of the data matrix, XT

N−1,P , and was not appropriate
as the graph Laplacian estimator, as seen in Figure 8.1(d).

Finally, we should mention that in Example 99 we have not used the
conditions that the graph Laplacian is a symmetric matrix and that the
elements of the weight matrix, Wmn, from which the graph Laplacian
elements are formed, are nonnegative. These conditions can be used
within linear programming formulations to improve the estimation.

23
Random Signal Simulation on Graphs

This section addresses ways to simulate graph signals, as for testing
of any new method for learning graph topology based on the available
data, we have to show that the method is reliable and accurate on
simulated graphs and graph signals. To this end, we have to assume a
graph (randomly structured) and then to simulate data on such a graph.
Such data should exhibit a desired degree of randomness, in order to
infer the influence of graph connections to the signal form. Notice that
a graph signal should be influenced by the structure of a graph in an
implicit way. This influence is then used as the basis for graph topology
learning. Graph signal simulation is not straightforward and certainly
not a unique process. Some of the presented approaches to graph signal
simulation are based on the previously introduced analysis of signals on
graphs with physically well-defined topology in Section 21.

The representation of a graph and graph signal within the circuit
theory framework can be used to simulate random signals on graphs.
While several approaches are possible, we will here present some of the
most frequently used ones.

(1) Assume that the graph is initiated by external sources that are
random variables. In that case, the pth observation of a random

405

406 Random Signal Simulation on Graphs

signal on this graph is simulated as a solution of the system of
equations

Lxp = εp,

with ip = εp. Note that one of the external sources (randomly
chosen for each observation p) should compensate for all other
sources, to ensure ∑N−1

n=0 εp(n) = 0.
Since the graph Laplacian matrix is singular, the graph signal
value (the electric potential in the electric circuit case) at a vertex,
for example, for n = 0, should be considered as a reference and
its value should be assumed, for example, x(0) = 0. This strategy
may be used whenever the inversion of the graph Laplacian is
required.

(2) The graph is excited at only one of its vertices (and one
additional reference vertex) with a random external zero-mean
white source. The position of these vertices is randomly selected
for each p. Then, the random signal observation on a graph is
obtained as a solution to

Lxp = ip

where ip(n) = εpδ(n − ni) − εpδ(n − nj) and ni and nj are two
randomly selected vertices at each observation.

(3) A minimal information needed to calculate a random graph signal
is the knowledge of signal values at two randomly positioned
vertices. Assuming that xp(n) = εpδ(n − ni) + εpδ(n − nj) and
ni and nj are two randomly selected vertices at each observation;
then we may solve the system for all other signal samples, based on

Lxp = 0.

With the two assumed values, xp(n), at n = ni and n = nj , we
can solve this system for all other signal values. In the case of
external sources, the values should be compensated (their sum
should be zero), as mentioned earlier. In this case, there is no
need for compensation, which means that εp and εp could be
independent random variables.

407

(4) The signal on a graph is formed using a linear combination of
white noise εp and its graph shifted versions. The output signal
after M such graph shifts, defined by the normalized Laplacian,
is given by

xp = (hMLM + hM−1LM−1 + · · ·+ h1L1 + h0L0)εp. (23.1)

The resulting graph signal can be written in the form

xp = H(L)εp.

(5) Analysis based on the adjacency matrix and graph shifts. Assume
that an undirected graph with the adjacency matrix A, is excited
at Na randomly chosen vertices n1, n2, . . . , nNa , η = Na/N , with
spikes δ(n − ni), i = 1, 2, . . . , Na. After shifting these spikes K
times, we obtain

x = AK
Na∑
i=1
δni ,

where δni is a graph signal with a nonzero value at n = ni only.
The parameters K and Na define the resulting signal smoothness.
An example of one realization of such a signal is presented in Part
II, Figure 3.6 for η = 1/8, K = 1 (upper subplots) and η = 2/8,
K = 1 (lower subplots) using the spikes aiδ(n− ni), where ai are
the spike amplitudes.

(6) Signals are commonly simulated as sums of the harmonic basis
functions, as in classical Fourier analysis. This kind of simulation
may be used in graph signal processing, too. Such a signal on a
graph can be written as

x =
K∑
i=1

akiuki

where uk are the eigenvectors of the Laplacian or adjacency matrix,
and ak are random constants. This kind of graph signal simulation,
with or without an additive noise, has been often used in this
part.

24
Summary of Graph Learning from Data Using

Probabilistic Generative Models

Analytics of data on graphs with known or given topologies are feasible
for applications that involve physically meaningful structures, such as
citation networks, transport networks and observable social networks.
In those applications, various vertex or spectral domain techniques,
as mentioned in Part II of this monograph, have been successfully
implemented and developed to filter, analyze or visualize graph signals.
However, in many situations where the graph topology cannot be directly
observed or even when the data is partially observed, the inference of
graph structure is a key first step.
Remark 98: Given the observed graph data, graph topology learning
is an ill-posed problem. In other words, totally different graphs can
generate the same data, while one set of observed data can result in
different graph topologies, depending on the graph learning method
used. Thus, to infer graph topology we need to employ some priors,
for example, to match statistics by imposing sparsity or smoothness
conditions on the graph.

Previous sections in this monograph have introduced various sparsity
promotion techniques, such as the graphical LASSO (GLASSO) and
smoothness constrained graph learning, mostly from the perspective

409

410 Summary of Graph Learning from Data

of linear algebra (Dong et al., 2019; Giannakis et al., 2018; Mateos
et al., 2019). However, it is more natural to connect and summarise
such techniques under the umbrella of probabilistic generative models.
A straightforward approach would be on the basis of some fundamen-
tal statistical models, such as the covariance or precision matrices of
Gaussian distribution (due to their positive definiteness property), the
Gaussian Markov random fields with local independence prior, or a
factor analysis models with smoothness assumption. We also envisage
further progress of generative models to be based on the concept of
diffusion processes on graphs, whereby the signal generating process
can be regarded as the graph signal that has been diffused by some
graph kernels (for example, polynomial kernels) from a white Gaussian
distributed noise.

Generally speaking, graph learning can be treated as an inverse
operation to the graph data generation process, that is, x = fG(z),
where x denotes the observed data. Here, the data are considered to be
the output of an unknown transform (denoted by fG) of some initial
state, z, on the graph G. Existing literature on learning a graph can be
thought of as an attempt to infer the generative process, fG , by matching
the data statistics, x, with different priors that are imposed on z. We
should point out that in this section we discuss the problem of learning
graphs from fully observed graph data because of its underpinning role in
a number of advanced techniques, such as graph learning with partially
observed data (Grotas et al., 2019; Wai et al., 2019) and dynamic graph
learning (Chen et al., 2011; Ioannidis et al., 2019b; Kaplan, 2008).

24.1 Basic Gaussian Models

The simplest way of constructing a graph would be to associate edge
weights with the covariance of data observed on a graph; this is reason-
able under the Gaussian assumption, since the first two moments fully
capture the whole statistics of the distribution. Indeed, the non-zero
elements of the covariance matrix of graph data naturally provide con-
sistent estimation of the connectivity within a graph. This method is
explained within the introductory part of Section 19.

24.1. Basic Gaussian Models 411

Given a set of P independent and identically distributed (i.i.d.)
observed data vectors, x1, x2, . . . ,xP , the empirical sample covariance
is calculated as

Σx(m,n) = 1
P

P∑
p=1

(xp(m)− µ(m))(xp(n)− µ(n)), (24.1)

or

Σ = 1
P

P∑
p=1

(xp − x)(xp − x)T , (24.2)

where x is the mean value of the observed samples. Alternatively, a
normalized version of Σ can also be employed in order to produce the
edge weights as

σx(m,n) = Σx(m,n)√
Σx(m,m)Σx(n, n)

. (24.3)

For this empirical statistics, we can employ a threshold, τ , to designate
the non-zero connections of the adjacency weight, in a way similar
to (17.1), to yield

Wm,n =
{
σx(m,n), |σx(m,n)| ≥ τ
0, |σx(m,n)| < τ.

(24.4)

A more sophisticated approach would be to use hypothesis testing via
setting a false alarm rate, whereby

H0: σx(m,n) = 0 versus H1: σx(m,n) 6= 0. (24.5)

In these scenarios, the empirical covariance is a common choice of test
statistics. Although the density of σx(m,n) may have closed-form rep-
resentation, it typically needs numerical integration when calculating
the p-values; however, transformations of σx(m,n) can relax this is-
sue to obtain closed-form densities. For example, under the Gaussian
distribution and H0, the weighting

s(m,n) = σx(m,n)
√
P − 2√

1− σ2
x(m,n)

would satisfy a student t-distribution of (P − 2) degrees of freedom, and

s(m,n) = tanh−1(σx(m,n))

412 Summary of Graph Learning from Data

would then result in a Gaussian distribution with zero mean and 1/(P−3)

variance (see Chapter 7.3.1 Kolaczyk, 2009). In those transformed
test statistics, the statistical significance can be easily adjusted to
meet the false alarm rate. However, the limitation of this model is
that by employing individual tests, the number of implementations in
inferring the graph grows as O(N2). This is computational prohibitive
for relatively large graphs; on the other hand, this leads to increasingly
false judgments even with a constant false alarm rate.

A further possible misleading due to the correlation models stems
from the fact that the correlation does not mean the causation. In other
words, the mth and nth vertices can show a strong correlation when
they are both highly influenced by an intermediate vertex, however,
they are not the causation of one another, as illustrated in Example 74.

24.2 Gaussian Graphical Model

To address the issues with the correlation and causation, and to be able
to construct a graph that reflects only direct relationships among its
vertices, one classical method employs the partial correlation, whereby
the correlation of two vertices is calculated by eliminating associations
of other contributing vertices. Under the assumption that vertices
satisfy some mild distributions such as elliptical distributions, the
partial correlation coincides with the conditional correlation (Baba
et al., 2004), and further equals to the conditional independence under
the Gaussian assumption on vertices; this allows the partial correlation
to be explicitly related to the precision matrix. The so established
relationship is crucial in understanding other techniques such as the
GLASSO, graph regression and other generative models.

24.2.1 Partial Correlation Model

In order to simplify the notation, and without loss of generality, we
shall consider vertices n = 0 and m = 1. The set of all other vertices,
except for the mth and the nth vertex, is denoted by V\{m,n} =
{2, 3, . . . , N − 1}. Define the data vectors at each vertex by yn, as in
(19.1), and denote by ŷ0 and ŷ1 the best linear approximations to the

24.2. Gaussian Graphical Model 413

signal samples y0 and y1, obtained based on the data at other vertices,
y2,y3, . . . ,yN−1. The new data values are then defined as

z0 = y0 − ŷ0

z1 = y1 − ŷ1.

Now, the (empirical) partial correlation between the vertices m = 0
and n = 1 can be defined as

σz(0, 1) = Σz(0, 1)√
Σz(0, 0)

√
Σz(1, 1)

. (24.6)

In a similar way, all other partial correlations, σz(m,n), between pairs
of vertices m and n are calculated. Then, one way of hypothesis testing
is as follows

H0: σz(m,n) = 0 versus H1: σz(m,n) 6= 0, (24.7)

where σz(m,n) is employed as the test statistics. Other choices of test
statistics, such as the Fisher’s transform s(m,n) = tanh−1(σz(m,n)),
also obtain an asymptotically Gaussian distribution (Chapter 7.3.2
Kolaczyk, 2009).

24.2.2 Gaussian Markov Random Field

A further assumption which can be imposed on the partial correlation
model is that of the Gaussian distribution, which in many cases is
a common setting as this facilitates closed-form solutions and ease
of analysis. For example, under the Gaussian distribution, the partial
correlation coincides with the conditional correlation (Baba et al., 2004),
or equivalently, conditional independence; this in turn forms the pairwise
Markov property of random fields, which constitutes a Gaussian Markov
random field.

We shall denote the mth and the nth elements of graph signal
samples by yA, and all other elements except for the mth and the nth
element by yB. The covariance of yA is then designated by ΣAA, and
is of the size 2× 2. The so obtained block structure of (24.2) becomes

Σ =
[
ΣAA ΣAB

ΣBA ΣBB

]
. (24.8)

414 Summary of Graph Learning from Data

The covariance of the corresponding yA conditioned on yB is then easily
obtained as

ΣA |B = ΣAA −ΣABΣ−1
BBΣBA, (24.9)

which is also called the Schur complement. On the other hand, to rewrite
the expression in (24.8) with regard to the precision matrix, Q = Σ−1,
we can use the following block-wise matrix property

Q = Σ−1 =

 Σ−1
A |B −Σ−1

A |BΣABΣ−1
BB

−Σ−1
BBΣABΣ−1

A |B Σ−1
BBΣABΣ−1

A |BΣABΣ−1
BB

=
[
QAA QAB

QBA QBB

]
. (24.10)

From (24.10), observe that ΣA |B = Q−1
AA if the inverse of QAA

exists. In other words, to obtain the partial correlations in (24.9), it is
more convenient to use the precision matrix than the covariance matrix.
Thus, one feasible way to associate the edge weights is via

Wm,n = − Q(m,n)√
Q(m,m)Q(n, n)

, (24.11)

where Q = Σ−1 is the empirical precision matrix. Then, the association
of edge weights can be used to infer non-zero elements of Wm,n, which
is also known as the covariance selection problem (Dempster, 1972).
One feasible method is to recursively update the graph by testing the
hypotheses in the form

H0: Wm,n = 0 versus H1: Wm,n 6= 0, (24.12)

where the Wm,n is used as the test statistic. For large-scale graphs,
however, this model also shows limitations which are similar to those of
correlation models in Section 24.1. Although this model can relax the
vagueness regarding the correlation and causation, it has one additional
limitation, in that it requires the number of samples to be larger than
the dimension of covariance to ensure a proper inverse of covariance;
this does not necessarily hold, especially for large-scale graphs, as stated
in Remark 93. The graphical LASSO and linear regression methods
may be used to solve this issue.

24.2. Gaussian Graphical Model 415

24.2.3 Graphical LASSO and Regression Models

A common way of overcoming the problem of rank deficiency is to
involve a regularization term when estimating the precision matrix.

Given the set of independent and identically distributed samples,
x1,x2, . . . ,xP , the log-likelihood of a Gaussian distribution with zero
mean and precision matrix Q is represented as in (19.19)

J =
P∑
p=1

(
− 1

2xTp Qxp −
P

2 ln(2π) + 1
2 ln |Q|

)
(24.13)

∝ P ln |Q| −
P∑
p=1

(xTp Qxp), (24.14)

where |Q| = det(Q). The maximization of this log-likelihood yields the
attained optimum in the form

Q−1 = 1
P

P∑
p=1

xpxTp ,

as in (19.25)–(19.26).
However, when P is smaller than the dimension of xp, the term∑P

p=1(xpxTp) is not full rank, which causes the singularity of Q. One
way of avoiding this issue is to use the l1 norm to promote sparsity in
(24.13), in a similar form to (19.27), to yield

J = P ln |Q| −
P∑
p=1

(xTp Qxp)− ρ‖Q‖1, (24.15)

which is known as a GLASSO problem. As shown in Yuan and Lin
(2007), in this way the correct graph can be inferred with the probability
approaching one, when the parameter ρ is chosen to satisfy ρ · P →∞
and ρ ·

√
P → 0, for P →∞.

Remark 99: Apart from the l1 norm, other regularization strategies can
also be employed in (24.15). For example, solving (24.15) could result
in negative values, which of course have no meaning when associating
the edge weights. Thus, constraining edge weights to be non-negative
is also a common regularization approach in graph learning (see also

416 Summary of Graph Learning from Data

Section 19.3). For more detail, we refer to Friedman et al. (2008),
Banerjee et al. (2008), and Yuan and Lin (2006).
Graph regression. Another perspective of learning the Gaussian graph-
ical model (described in Section 19.1 and Example 75) is via a regression
of data observed at each vertex, ym, given the data observations at other
vertices, yn, n ∈ {0, 1, 2, . . . ,m− 1,m+ 1, . . . , N − 1} = V\{m}. The
aim of the regression here is to learn a graph that yields the minimum
mean square error, given the observed samples. More specifically, the
values βnm, n = V\{m}, that minimize

Jm =
∥∥∥∥ym − N−1∑

n=0,n6=m
βnmyn

∥∥∥∥2

2
(24.16)

follow from (
ym −

N−1∑
n=0,n6=m

βnmyn
)

yTk = 0

or ∑N−1
n=0,n6=m βnmΣx(n, k) = Σx(m, k), for k, n ∈ V\{m}. A matrix

solution to this equation is

βm = Σ−1
mmΣ1m,

where Σ1m is a vector with (N − 1) elements Σx(m, k), k = V\{m},
and Σmm is an (N − 1) × (N − 1) matrix with elements Σx(n, k),
k, n = V\{m}. On the other hand, under the Gaussian assumption, the
conditional mean of ym on yn is given by

Ep(ym |yn){ym} = (Σ−1
mmΣ1m)TXP,m,

where

XP,m =

y0
y1
...

ym−1
ym+1

...
yN−1

,

with
yn = [x1(n), x2(n), . . . , xP (n)]. (24.17)

24.2. Gaussian Graphical Model 417

Therefore, to infer Q, given the data observed on a graph, x1,x2,

. . . ,xP , we can regress xm for each vertex, m, on the basis of (24.16)
as follows,

xm = βTmXP,m + εm, (24.18)

where εm is independent Gaussian noise.
Therefore, the problem of learning Q turns into the regression

problem on βm, for each vertex, while non-zero elements in βm also
indicate the corresponding non-zero elements in Q, namely, the edges
in the graph.

The main advantage of regression-style methods is that the re-
gressions for all vertices can be computed in parallel, which provides
significantly relaxed computation when learning large graphs. However,
additional attention should be paid to the symmetry of the learnt re-
gression coefficients when dealing with an undirected graph, for example
as in (19.11), more detail can be found in Meinshausen et al. (2006).
The condition of coefficient sparsity could also be included, which leads
to the LASSO formulation and solution to this problem, as in Section
19.1.

24.2.4 Factor Analysis Model

In Sections 24.1 and 24.2, the Gaussian distribution was assumed and
on the basis of this distribution, most methods have been proposed to
learn the graph edges in a recursive manner, i.e., by learning an edge
per iteration. On the other hand, such methods can be regarded as
a generative process via a basic Gaussian distribution, whereby the
covariance or the precision matrix is nontrivially associated with the
graph edges. It is thus natural to adopt more general and sophisticated
models in graph learning.

One important model in probabilistic generative models is the factor
analysis model, which forms the basis of many important tools, such as
the probabilistic principal component analysis. Therefore, the observed
data on a graph, x, is assumed to be generated via a factor model that
can be represented as

x = Uv + ε, (24.19)

418 Summary of Graph Learning from Data

where U is a unitary matrix of the graph Laplacian eigenvectors, and v
is a vector of latent variables (or factor loadings) which is Gaussian dis-
tributed with zero mean and a diagonal precision matrix corresponding
to the graph Laplacian eigenvalues Λ, that is,

v ∼ N (0,Λ−1),

where Λ−1 is the Moore-Penrose pseudoinverse of Λ, while ε ∼ N (0, α2I)
is also Gaussian distributed but independent of latent variables v.

On the basis of this factor model, it is easy to obtain the distribution
of the observations, x, as

x ∼ N (0,UΛ−1UT + α2I).

The term (UΛ−1UT)−1 = UTΛU uniquely defines the Laplacian ma-
trix, L, of a graph. This allows us to infer the graph structure by learning
L = UTΛU from the factor model via maximizing the posterior distri-
bution of v given x, that is

P (v |x) ∝ P (x |v)P (v) ∝ e−
(x−Uv)T (x−Uv)

α2 e−vTΛv.

The log-likelihood form then follows as Dong et al. (2016)

min
Λ,U,v

‖x−Uv‖2 + ρ · vTΛv, (24.20)

where ρ is a hyperparameter that balances between the influence of
mean square error ‖x−Uv‖2 and the positive definiteness constraint
vTΛv. Expression (24.20) can be further rewritten using the notation
y = Uv, as

min
L,y
‖x− y‖2 + ρ · yTLy. (24.21)

By inspection of (24.21) we see that the term yTLy measures the
smoothness of signal y on the graph; in other words, (24.21) min-
imises the distance between the observed samples and the generated
signals, whilst imposing the smoothness on the generated signals, as
discussed in Section 19.2. Other regularizations can also be imposed
onto this model, such as that trace(L) is equal to the dimension of the
graph, in order to avoid a trivial all zero optimum and non-positive
values in the off-diagonal elements of L, and to learn a feasible graph

24.3. Diffusion Models 419

(Dong et al., 2016). Finally, (24.21) can be optimized in an alternative
manner, as discussed in Section 19.2 and Algorithm 3, namely, by alter-
natively optimizing one of the two parameters (L or y) while fixing the
other one.

Further improvements following the factor model of learning a
smooth graph include the use of a more flexible smoothness prior when
optimizing L in an alternative optimization, as various constrains on the
L can lead to complicated optimization implementations (Kalofolias,
2016). This is achieved by rewriting the smoothness prior, yTLy in (24.21),
as yTLy = 1

2
∑
m,n Amn(y(m) − y(n))2 so that the constrains can be

explicitly imposed on the adjacency matrix A, instead of on the Lapla-
cian L. It is also possible to learn graph by selecting the edges from
atoms in a dictionary (called the incidence matrix) (Chepuri et al.,
2017). Although this strategy can explicitly control the sparsity of the
graph, it cannot optimise the edge weights (Mateos et al., 2019).
Example 100: Figures 8.1 and 8.2 show that different graph connections
can exhibit different smoothness features, given the same observed
samples, x, shown in Figure 8.1(a). As also indicated in Figure 8.2,
the observed sample retains the lowest frequency components for the
graph in Figure 8.1(b) and the highest frequency components for the
graph in Figure 8.1(c). This is reflected in a smaller smoothness value,
xTLx, for the graph in Figure 8.1(b). This exemplifies that, given the
observed graph samples, the smoothness prior is convenient for learning a
graph.

24.3 Diffusion Models

It is important to notice that the smoothness that arises from the factor
model is imposed in a global manner, which is effective in learning the
main structure of a graph. However, promoting the global smoothness
can also yield to the overestimation of the details within a graph. To
resolve this issue, we can further assume that the observed graph signals
are generated via a more complex and powerful model, such as the
diffusion model. As shall be discussed in detail in Section 25.6.2, the
polynomial filter is a typical choice for treating the diffusion from a

420 Summary of Graph Learning from Data

Figure 8.1: Smoothness and graph learning. (a) The observed graph signal x =
[0.7, 0.2, 0.6, 1.1−0.3,−1.1, 1.3,−0.7]T , with (b)–(c) two types of possible path graph
connections resulting in different smoothness values, xTLx.

graph data analytics perspective. The benefits arising from learning a
graph based on the diffusion model are mainly three-fold:

• Analytical and computational ease during learning.

• The (weak) stationarity is ensured in the generation system (Ma-
teos et al., 2019).

• Ability to control the local smoothness in the model.

The diffusion model is given by (19.28)

x =
M∑
m=0

hmSmv + ε, (24.22)

where v is white Gaussian noise v ∼ N (0, I), while similar to the factor
model in (24.19), ε ∼ N (0, α2I). From (24.22), recall that S is the
(symmetric) shift operator which can be chosen as e.g., the adjacency

24.3. Diffusion Models 421

-1 0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

-1 0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Figure 8.2: Graph signal spectrum values which correspond to the two types of
graph connections in Figure 8.1. The top panel corresponds to Figure 8.1(b) and
the bottom panel to Figure 8.1(c). The energy is calculated via xTLx, where small
values indicate a smooth graph.

matrix, or the Laplacian matrix, to name but a few. Here, we continue
to use

S = L
as in Section 19.5. Furthermore, expression (24.22) can be compactly
written in the form of (19.28), as

x =
M∑
m=0

hmLmv, (24.23)

where L0 = I and h0 = α2 retain the same statistics as those in (24.22).
On the basis of (24.23), the covariance of x can be calculated as

Σ = E{xxT } =
(M∑
m=0

hmLm
)

E{vvT }
(M∑
m=0

hmLm
)T

=
M∑
m=0

hmLm
(M∑
m=0

hmLm
)T

= UT
(M∑
m=0

hmΛm
)2

U, (24.24)

422 Summary of Graph Learning from Data

where we have used the eigendecomposition L = UTΛU.

Eigenvector estimation. From (24.24), we can see that the eigen-
vectors of L are the same as those of the covariance matrix of x. This
means, in a straightforward way, that we can infer the eigenvectors of
L from the empirical covariance of the observed data, x1,x2, . . . ,xP .

Eigenvalue estimation. After obtaining the eigenvectors, the remain-
ing task is to estimate the eigenvalues of L. Without any additional
constraints, it is obvious that arbitrary values can be chosen as the
eigenvalues of L, because we can always find a corresponding set of
h0, h1, . . . , hM that satisfies (24.24). Thus, to achieve a unique solution,
we need to employ some prior on the function f(·) (Segarra et al., 2017),
to arrive at

min
L,Λ

f(L), subject to L = UTΛU. (24.25)

For example, when f(L) = ‖L‖0, the objective function minimises the
number of edges, whereas f(L) = ‖L‖2 minimises the energy of graph
edges. The number of edges can also be minimized using convex relation
of f(L) = ‖L‖0 in the form f(L) = ‖L‖1, as explained in Part II of this
monograph and Section 19.5.

Equation (24.23) assumes that the diffusion process starts from the
same initial status, that of white Gaussian noise. An enhanced diffusion
model has been proposed in Thanou et al. (2017) by assuming that the
signals are generated from multiple heat diffusion processes

x =
M∑
m=0

e−hmLvm. (24.26)

Here, vm represents the initial state that can also be optimized, and
hm controls the diffusion time (depth). This means that with a small
hm, the kth column of e−hmL is localized at the kth vertex. This
model can be solved via a dictionary-learning solver by regarding
[e−h0L, e−h1L, . . . , e−hML] as the dictionary D and [v0,v1, . . . ,vM] as
coefficients V. The objective function can now be formulated as

min
L,X,hm

‖X−DV‖2F + reg(V) + reg(L),

subject to {hm}Mm=0 ≤ 0,

24.3. Diffusion Models 423

where reg(·) denotes a certain regularization; for more detail, we refer
to Thanou et al. (2017).

25
Graph Neural Networks

An emerging area which considers graphs in conjunction with neural
networks is that of graph neural networks (GNNs). The underpinning
idea is to combine the universal approximation property of neural net-
works and the ability of graphs to capture higher-order information in a
physically meaningful way, thus equipping GNNs with enhanced expres-
sive and modelling power. Work in this direction has been facilitated by
steadily growing computational power and the ever increasing amount of
available data. The beginning of graph neural networks (GNNs) can be
traced back to basic network structures (Gori et al., 2005; Micheli, 2009;
Scarselli et al., 2008) one decade ago, while recent developments have
been centered around graph convolutional networks (GCNs). The GCNs
benefit from their intrinsic graph structure, which allows to account
for complex implicit coupling among data and information aggregation
when processing (or filtering) data at each vertex. This is particularly de-
sirable in deep neural network (DNN) techniques, where the involvement
of graphs provides a balance between the “black-box” (but powerful)
DNNs and the purely mathematical tools such as manifold optimization
and manifold learning. Benefiting from prior information embedded into
a graph structure, GCNs are capable of not only handling irregular data

425

426 Graph Neural Networks

but also of alleviating the “black-box” nature of DNNs, thus helping
resolve two major open issues with current DNNs.

Recent literature on GCNs (Wu et al., 2019; Zhou et al., 2018)
typically considers the learning aspects, while highlighting two key
properties of CNNs: (i) stationarity (via shift invariance of convolution
operations) and (ii) compositionality (via downsampling or pooling
operations). Taking a sightly different viewpoint, we start from the
graph itself and proceed to illuminate that certain types of graphs
correspond to major trends in GCNs. We also outline the advantages of
treating GCNs in this way, such as the possibility to open avenues for
the design of novel types of GCNs.

We introduce GNNs from the perspective of a diffusion process,
because of the role of diffusion which underpins signal propagation in
graphs. With the ability of graphs to provide intrinsic structures when
aggregating information, this allows us to describe recurrent GNNs as a
kind of diffusion processes of task-oriented models; all in all, an intuitive
way to reveal the underlying mechanisms of GNNs. For example, a
standard GNN “feed-forwards” (aggregates) input information layer-by-
layer towards the output, calculates deviation from the ground-truth,
and then back-propagates to improve the aggregation strategy (weight
update). Such information flow (or message passing) is also found in
the diffusion process, for example, in temperature transfer heat shown
in Example 71. Therefore, the diffusion process can be rephrased as a
“language” of neural nets, even for the basic gradient descent updating
process. A more complex version is addressed in Section 25.3, in the form
of the diffusion process with external sources, which serves to establish
a link with the well-know label propagation method. We show that
label propagation can be basically regarded as a one-layer GNN, which
despite not having weights to be optimized is still powerful enough in
semi-supervised learning. This is shown to naturally extend to multiple
layers of GNNs, whereby the stacked layers perform message passing
(also similar to the diffusion process). We also employ the concept of
system on a graph to explain spectral GCNs, while spatial GCNs are
shown to admit interpretation as a relaxation of spectral GCNs to the
localization in graphs.

25.1. Basic Graph Elements Related to GCNs 427

25.1 Basic Graph Elements Related to GCNs

The following properties of graphs are helpful in understanding the
GCNs (for more detail we refer to Section 2.1 of Part I).

• Property 1: When A is binary, i.e., it represents the connection
of vertices (adjacency matrix), the number of walks of a length k,
between two vertices m and n, is equivalent to the value of the
corresponding element amn of the kth power of A, that is, of Ak.
The number of walks between the vertices m and n, that are of
length not higher than k, is given by the corresponding element
of Bk, where Bk = A + A2 + · · · + Ak. Matrix Bk gives the
k-neighborhood of a vertex, which is a set of vertices that are
reachable from this vertex through walks within k steps.

• Property 2: For any signal on graph, x, the quadratic form of
the Laplacian, xTLx, is of the form

xTLx = 1
2

N−1∑
m=0

N−1∑
n=0

Amn(x(m)− x(n))2. (25.1)

This indicates that: (1) the Laplacian matrix, L = D − A, is
positive semi-definite because Amn(x(m) − x(n))2 ≥ 0; (2) the
smoothness of graph signal, x, can be quantified via xTLx, which
ensures that the quadratic form xTLx is equivalent to the Dirichlet
energy of x, which has been widely used in probabilistic graph
models.

Remark 100: The smoothness of a graph signal, x, implies that
the signal value would not change much from one vertex to another
within the neighborhood of vertex n (assessed by (x(m)−x(n))2). How-
ever, signal values are allowed to change significantly when the two
vertices are not connected (indicated by zero values of Amn). There-
fore, the minimization on xTLx finds the smoothest signal x on the
graph.

Note that the absolute maximum smoothness (minimum of the
smoothness index) is achieved for a signal which is constant over all
vertices; such signal is equal to the eigenvector corresponding to the

428 Graph Neural Networks

smallest eigenvalue, λ0 = 0, of the graph Laplacian, L (owing to the
Rayleigh quotient). More importantly, this yields 1TL1 = 1T (D−A)1 =
0, that is, the smallest eigenvalue is λ0 = 0 with the corresponding
normalized eigenvector x = u0 = 1/

√
N , where 1 denotes an N -

dimensional vector of unities.

Connection to the Laplacian Operator in Function Analysis

One way of understanding the role of the Laplacian matrix in measuring
signal smoothness is via its continuous time counterpart – the Laplacian
operator in functional analysis. The Laplacian operator over a function
f(~r) in the Euclidean space is defined as

div(grad(f(~r))) = ∇(∇f(~r)) = ∆f(~r),

where grad(·) denotes the gradient operator and div(·) is the divergence
operator. For example, in Cartesian coordinates of two dimensions,
~r = (x, y), we have

∆f(x, y) = ∂2f(x, y)
∂x2 + ∂2f(x, y)

∂y2 . (25.2)

Similarly, we can also define the Laplacian operator on the graph,
whereby the different (and difficult) aspect is the differential operator.
Namely, while as in the discrete signal space, the difference operation
is defined as ∇f(x) = f(x+ 1)− f(x), which calculates the difference
between f(x + 1) and f(x), the differential on a graph is defined for
each edge, that is

∇fmn = f(m)− f(n).

This means that, in general, the differential on a graph allows for a
different number of directions at each point (vertex), while for the
path graph, the differential ∇fmn naturally simplifies into the standard
differential in the Euclidean space.
Example 101: To illustrate the role of the graph Laplacian, consider
a graph in Figure 8.1, which is a simplified version of Figure 1(a) of
Part I. Its adjacency matrix and the corresponding graph Laplacian

25.1. Basic Graph Elements Related to GCNs 429

Figure 8.1: A simplified version of the default graph considered throughout this
work, as in Figure 1.1(a) in Part I.

matrix are given by

A =

0 1 1 1 0
1 0 1 0 1
1 1 0 1 1
1 0 1 0 0
0 1 1 0 0

 , L =

3 −1 −1 −1 0
−1 3 −1 0 −1
−1 −1 4 −1 −1
−1 0 −1 2 0

0 −1 −1 0 2

 . (25.3)

To calculate the gradient, grad(f), of a signal, f , on this graph

f =

f(0)
f(1)
f(2)
f(3)
f(4)

 , (25.4)

which represents the differential at each edge, we introduce the so called
incidence matrix, K, given by

K =

e0 e1 e2 e3 e4 e5 e6

0 1 0 1 0 1 0 0
1 −1 1 0 1 0 0 0
2 0 0 −1 −1 0 1 1
3 0 0 0 0 −1 −1 0
4 0 −1 0 0 0 0 −1

. (25.5)

430 Graph Neural Networks

The gradient on the graph now becomes

grad(f) = KT f =

∇f
e0 f(0)− f(1)
e1 f(1)− f(4)
e2 f(0)− f(2)
e3 f(1)− f(2)
e4 f(0)− f(3)
e5 f(2)− f(3)
e6 f(2)− f(4)

. (25.6)

Due to the adjoint property of the divergence operator with regard to
inner products, the graph Laplacian for this graph becomes

∆f = div(grad(f)) = K(KT f) = (KKT)f

=

3 −1 −1 −1 0
−1 3 −1 0 −1
−1 −1 4 −1 −1
−1 0 −1 2 0

0 −1 −1 0 2

f(v0)
f(v1)
f(v2)
f(v3)
f(v4)

 . (25.7)

It is now obvious that KKT is equivalent to the graph Laplacian matrix
L in (25.3).

Remark 101: The analysis in (25.4)–(25.7) exemplifies that a graph
effectively defines local coordinates with a prior or learnt linkage infor-
mation, and thus in some sense it can then be considered as a discrete
approximation to a manifold. This insight is particularly useful in the
design and interpretation of GNNs.

25.2 Gradient Descent as a Diffusion Process

Consider a physical diffusion process, and in particular the Newton’s
law of cooling, which states that the energy (or heat) loss rate is
proportional to the temperature difference between the body (node)
and its surrounding environment. The diffusion process can then be
understood as an iterative process that converges toward the state of
minimum energy, given by xTLx, from any initial condition. Since the

25.3. Label Propagation as a Diffusion Process 431

gradient of energy is

grad(xTLx) = ∂(xTLx)
∂xT = 2Lx,

the iterative discrete-time solution for the diffusion process, at an instant
(t+ 1), is given by

xt+1 − xt = −αLxt, (25.8)
or

xt+1 = xt − αLxt,
where α is a constant. This solution to the diffusion process can also be
formulated as

∇x(n) ≈ −α
∑
m∈Vn

(x(n)− x(m)), (25.9)

where Vn is the set of vertices within the neighborhood-one of the
vertex n, while ∑m∈Vn(x(n)−x(m)) denotes an aggregate temperature
difference between the vertex n and its surrounding vertices.
Remark 102: Equation (25.8) models the change in temperature along
time, starting from an initial state x0. In the following, we will show
that this provides an ideal means for designing recurrent GNNs. For
more detail on Recurrent Neural Networks (RNN), we refer to Mandic
and Chambers (2001) and Mandic and Goh (2009).

The quadratic term, xTLx, is frequently used in data analytics on
graphs, for example for estimating smoothness. The gradient of xTLx
is ∂(xTLx)/∂x = 2Lx, so that the diffusion process in (25.8) will find the
exact minimum of this quadratic form. As mentioned in Section 25.1,
the minimum of xTLx is reached for a constant eigenvector with all
elements equal to 1, which indicates that such a diffusion process, when
left without any external sources, will eventually settle to the same
temperatures for all vertices.

25.3 Label Propagation as a Diffusion Process with
External Sources

The stable state (equilibrium) of a diffusion process without external
sources cannot give us any useful information because in this case the

432 Graph Neural Networks

data at all the vertices have the same value (i.e., the lowest entropy on
the graph). In Physics, we can alter the stable state by adding some
constant external sources, which ensures that the final temperatures
are not all the same but exhibit some fluctuations governed by their
inherent relationships. This is also the basic idea behind many graph
machine learning approaches, especially in semi-supervised learning
tasks, such as the label propagation given in Algorithm 5.

Algorithm 5. Label Propagation
1: procedure Initialization
2: Initialise a graph by treating each data sample separately, as a single vertex;
3: Connect all vertices in the graph, whereby edge weights are defined by some

similarity measure;
4: Assign the labels from the labeled samples to the corresponding vertices;
5: Randomly assign values to the unlabeled vertices.
6: while Not converged: do
7: Propagate from the labeled to the unlabeled vertices: x← Lx.

. Diffusion process
8: Re-assign the original labels to the labeled vertices, xL.

. Keep external resources
9: end while

10: return x
11: end procedure

The final state of this modified diffusion process can be easily shown
to be Zhu (2005),

xU = (I− LUU)−1LULxL, (25.10)

where
L =

[
LLL LLU
LUL LUU

]
, (25.11)

and the subscripts U and L designate respectively the unlabelled and
labelled sets. Note that for a graph shift, instead of L we may also
use A.

The final stable state will now no longer have the same signal values
for all vertices (at least xU 6= xL). This is due to the “external constant”
sources of the labelled samples (Line 8 in Algorithm 5), which ensures
that the diffusion process results in stable states with signals which
are different for each vertex; this also gives the predicted labels for

25.4. GNNs of a Recurrent Style 433

unlabelled signal samples (or vertices) in the inner structures of the
graph.
Example 102: To provide a simple illustration of label propagation in
handwritten digit recognition, we used three sets of handwritten digits,
1, 5 and 9, each with ten images from the MNIST database (LeCun
et al., 1998). We adopted the structural similarity (SSIM) metric (Wang
et al., 2004) to measure the similarity between images and to construct
a graph accordingly, as shown in Figure 8.2(a). In this example, we
chose only two labels for each digit type to act as the external sources
in the diffusion process. It needs to be pointed out that without the
external sources, the final state would settle to a constant vector; this
does not provide any informative predictions.

The total of six given labels are annotated in Figure 8.2(c) and the
predicted labels are shown in Figure 8.2(d). By comparing with the
ground truth shown in Figure 8.2(b), we can see that label propagation
achieved adequate prediction accuracy, given a correctly constructed
graph. The level of certainty in the prediction is designated by the
node color in Figure 8.2(d), with the provided labels (ground truth)
in the red color, and the nodes on the intersections of two types of
digits in green colors, indicating the large uncertainty of predictions
in these vertices. Therefore, when regarding label propagation as a
diffusion process, the temperature can be interpreted as the level of
certainty, whereby the external sources (the six given labels) have
the highest temperature (designated with the red color) and the heat
diffusion performs “certainty propagation”. Vertices surrounding the
external sources, as a consequence, would retain relatively high tem-
peratures (we are much more sure about the predictions on these
nodes).

25.4 GNNs of a Recurrent Style

Now that we have shown that different diffusion models can be utilized
to aggregate information across graph vertices, we may employ diffusion
to design neural networks on graphs, as neural networks also rely upon
information aggregation. One such frequently used recurrent GNN was

434 Graph Neural Networks

)b()a(

)d()c(

Figure 8.2: Principle of label propagation. We used two labelled images out of ten
available images per digit from the MNIST dataset. Three sets of digits (1, 5 and 9)
are chosen and each set contains ten images. (a) The resulting graph constructed
via the SSIM metric, where two images (nodes) are connected when their SSIM is
larger than a threshold (set to 0.35). (b) The ground truth labels for the 30 images
considered. (c) Only two labels are provided for each set of images, as indicated
by the red color. (d) Predicted labels from the given six (i.e., 2 × 3) labels via
label propagation over the graph Laplacian matrix L. The color bar designates the
certainty of predictions, namely, the red color denotes an almost sure prediction with
probability approaching 1 and green color poor prediction.

proposed by Scarselli et al. (2008), which aggregates information as

xt+1(n) =
∑
m∈Vn

f(xt(n), q(n), xt(m), q(m)), (25.12)

o(n) = φ(x(n), q(n)), (25.13)

25.4. GNNs of a Recurrent Style 435

where xt(x) is the signal value at the nth vertex at a time instant t,
Vn denotes the neighborhood-one of the vertex n, q(n) is a pre-defined
feature of x(n), q(m) represents the pre-defined features at the neighbor
vertices, and o(n) is the output at the nth vertex. The operators f(·)
and φ(·) can be chosen to form neural networks so that they can be
learnt via back-propagation; in other words, the diffusion style model
can be learnt from data samples. In a particular case when q(n) and
q(m) are omitted, and

f(x(n), q(n), x(m), q(m)) = (x(n)− x(m)).

Equation (25.12) turns into the original diffusion process in (25.9).
The aggregation function in (25.12) motivates much recent work on

GNNs and spatial GCNs, however, this variant of recurrent GNNs needs
to undergo the diffusion process until convergence, for every iteration
of back-propagation. Moreover, the mapping f(·) in (25.12) needs to be
carefully designed to be a contraction mapping to ensure convergence
(Mandic, 2007). More recent efforts to improve this model include the
gated recurrent GNN (Li et al., 2015) that employs a gated unit as f(·)
to ensure convergence within a fixed number of steps, while stochastic
steady-state recurrent GNNs (Dai et al., 2018) perform update in (25.12)
in a stochastic manner.

Another approach which incorporates both spatial convolutions and
temporal diffusions, is the diffusion convolution neural network (DCNN)
(Atwood and Towsley, 2016), which can be formulated as

hl = φ(wl � Llx), (25.14)

where hl is the hidden state of the lth layer, wl are convolution kernels
that are to be learnt, and Ll is the power series up to l of a certain
probability transition matrix (in this case graph Laplacian L) which is
similar to Line 7 in Algorithm 5; recall that � denotes the element-wise
product and φ the activation function. It should be pointed out that
the model in (25.14) implies that hl does not depend on the previous
layer (state) hl−1, and that the dimensions of each layer need to be the
same; this limits the number of degrees of freedom in the design. The
overall output of this GCN is a composition of all layers {hl}Ll=1, so

436 Graph Neural Networks

that (25.14) can be interpreted as a set of diffusion processes of different
depths (by regarding l as time instant t).

Another way of understanding the operation in (25.14) is that each
diffusion step, Llx, aggregates (to a certain degree) the heat (or general
features and labels). This is a kind of message passing and aggregation
that equips the network with the ability to extract statically salient
features, which belong to spatial GCNs, introduced below.
Remark 103: Almost all approaches to recurrent GNNs aim to find
an efficient and stable diffusion strategy to propagate and aggregate
the labels or information at each vertex, so as to facilitate reliable and
robust predictions at the final stable stage of the GNNs.

25.5 Spatial GCNs via Localization of Graphs

It is important to note that while CNNs have been an enabling tech-
nology for modern machine learning applications, they also suffer from
the limitations inherited from the underlying assumption of a regular
time/space grid sampling, such as in images and videos. The effort to
extend CNNs to GCNs that are able to operate on data acquired on
irregular domains therefore needs to accommodate both the convolution
(to learn local stationary features) and the pooling (to compose multi-
scale patterns) operators. Our main focus is on ways to accommodate
the data on irregular domains, while the generalization of pooling is
naturally related to the downsampling on the graph (see Part II and
Bacciu and Di Sotto, 2019; Ioannidis et al., 2019a; Sakiyama et al.,
2019; Tanaka and Eldar, 2019; Zhang et al., 2019a). The key difficulty
in defining the convolution on a graph is the absence of a rigorous
translation (shift) operator. To this end, the basic idea behind spatial
GCNs is the information aggregation principle, which is very similar
(sometimes even intertwined with) to the diffusion GNNs in Section
25.4. Instead of waiting for a stable state (along the time instants) of
recurrent GNNs, spatial GCNs directly aggregate information by the
stacked layers, which is also called message passing. The initial work in
this area was by Micheli (2009), the so called neural network for graphs
(NN4G). A more general model is the message passing neural networks

25.5. Spatial GCNs via Localization of Graphs 437

(MPNNs) (Gilmer et al., 2017), which is given by

xl+1(n) = φ

(
xl(n),

∑
m∈Vn

f(xl(n), xl(m), enm)
)
, (25.15)

where xl(n) represents the data value at the nth vertex of the lth layer,
enm denotes the edge between the nth and the mth vertex, while f(·) is
the message passing function and φ(·) denotes the activation (or vertex
updating) function. The model in (25.15) caters for many GCNs, such
as those in Micheli (2009) and Kipf and Welling (2016a) which all have
different forms of functions f(·) and φ(·). This model also involves the
basic steps for processing graph signals in the spatial domain, i.e., by
aggregating the previous messages and passing to the next layer. Bacciu
et al. further extended this idea to a probabilistic framework Bacciu
et al. (2018), which enables a probabilistic explanation on each state of
each layer.

Furthermore, instead of looking for all neighbors of the central
vertex in (25.14), the GraphSAGE approach proposes to sample several
neighbors around every vertex (Hamilton et al., 2017), as follows

xl+1(n) = φ(Wl · concat{xl(n), f{xl(m),m ∈ Ṽn}}), (25.16)

where concat{·, ·} denotes the concatenation and f{·} the aggregation
function, Wl is the matrix of learnable parameters, and Ṽn denotes a
randomly chosen neighbor of the nth vertex. This strategy allows for
a mini-batch operation on graphs, which is extremely useful for large
graphs.

A further possible improvement is to learn the weights while choos-
ing the neighboring vertices; this includes the graph attention network
(GAT) (Veličković et al., 2017), and the mixture model network (MoNet)
(Monti et al., 2017). Within GATs, an attention weight, αn,m, is added
to the parameters in (25.15), which allows us to assign different im-
portance levels to vertices, even within the same neighborhood. The
attention weight can be further learnt from an additional convolution
sub-network, as proposed in Zhang et al. (2018a). On the other hand,
the MoNet defines the weights of neighboring edges as a consequence of
local coordinates, which has an intrinsic link with the manifolds. More
specifically, it defines the importance of the edge connecting the nth

438 Graph Neural Networks

and mth vertex as a probability, p, over some local coordinates, u(m,n),
which reflects the difference (or distance) between the nth and mth
vertex. Then, the nth vertex can be aggregated via a specially defined
convolution, given by

(x ∗ g)(n) =
J∑
j=1

gj
∑
m∈Vn

p(u(m,n))x(m), (25.17)

where gj is the jth index (element) of the convolution kernel, g. In
Monti et al. (2017), the probability, p(u(m,n)), was chosen as a Gaussian
mixture model, which has J clusters to cater for the size of convolution
kernel. It has also been shown that the framework of (25.17) accounts
for various geometric deep neural networks, through a choice of different
local coordinates and weight functions.

25.6 Spectral GCNs via Graph Fourier Transform

As shown in Section 25.5, message passing via the convolution operation
plays a crucial role in spatial GCNs. Here, we focus on the methods
that operate in a transfer domain and benefit from the mathematically
well-defined convolution in the graph spectral domain to yield a class
of spectral GCNs.

25.6.1 Graph Fourier Transform

Due to the positive semi-definiteness of L, there are N (the num-
ber of vertices) real-valued eigenvalues (λ0 = 0 ≤ λ1 < λ2 < · · · <
λN−1), which correspond to N distinct orthogonal eigenvectors ([u0,u1,

. . . ,uN−1]). As mentioned in Section 25.1, the quadratic form, xTLx,
measures the smoothness of the data, x, on a graph. Further, when x
represents one of the eigenvectors, uj , the term xTLx then measures the
smoothness of the eigenvectors, uTj Luj = λj . The matrix of eigenvectors,
U =[u0,u1, . . . ,uN], represents an orthogonal transform basis, which is
similar to principal component analysis (PCA), while benefiting from a
physically more important and beneficial property in practice because
the graph Laplacian bases indicate the smoothness of eigenvectors.

25.6. Spectral GCNs via Graph Fourier Transform 439

Remark 104: Through multiplication of the data, x, by the eigenmatrix,
Ux, the original data x are decomposed into different constituent
components, which vary from the most smooth to the most non-smooth.
This is exactly the principle of the Fourier transform, which transforms
a signal to different frequency components (bases). In this case, λj has
the physical meaning of (squared) frequency, as shown in Section 3.5.2
of Part II. In particular, when the graph structure is a path graph, the
original Fourier transform is obtained.

Based on the graph Fourier transform, covered in detail in Part II
of this monograph, we can now define the graph convolution operator
which states that the convolution in the spatial (vertex) domain is
equal to the multiplication in the spectral domain. This bypasses the
requirement for translation (or shift operator) to define convolution
in the vertex domain, whilst maintaining the concept of “convolution”
over graph signals. In this way, the graph convolution is given by

UT (x ∗ g) = (UTx)� (UTg), (25.18)

where x and g are two vectors whose elements are the data values at
vertices n ∈ V. Recall that U in (25.18) is the Fourier basis composed
by the eigenvectors of L and � denotes the Hadamard (element-wise)
product. It is worth mentioning that the matrix U is a graph counterpart
of the frequency shift operator in the continuous time Fourier transform.

25.6.2 Graph Spectral Filtering as Multiple Diffusion Processes

Upon inspection of the diffusion process of the cooling law in Section 25.3,
we can see that it actually aggregates the data values at the connected
vertices to process the current vertex. Consider now a polynomial filter
of the diffusion process, given by

x← Bkx = (A + A2 + · · ·+ Ak)x, (25.19)

where k neighboring vertex data values are aggregated to produce the
current vertex data sample, according to the Property 1 of Section 25.1.
It can be proved that the k-neighboring property also holds when Bk

is given by the powers of the Laplacian, Lk (Lemma 5.4, Hammond
et al., 2011b), as we are still using the k-neighbor information when

440 Graph Neural Networks

aggregating, that is

x← (L + L2 + · · ·+ Lk)x. (25.20)

Upon rewriting (25.20) in the graph spectral domain, we have

x← U(Λ + Λ2 + · · ·+ Λk)UTx, (25.21)

or equivalently
X← (Λ + Λ2 + · · ·+ Λk)X, (25.22)

where X is the spectral representation of x, through X = UTx, and Λ
a diagonal matrix of which the elements are the ordered eigenvalues
of L. By combining (25.18) and (25.22), the convolution operation on
the graph can be chosen as

UTg = poly(Λ) = Λ + Λ2 + · · ·+ Λk. (25.23)

We should point out that although there are many choices for the
convolutional filter, g, we typically choose the polynomial kernel as
poly(Λ) = Λ + Λ2 + · · · + Λk, which ensures the localization in the
vertex domain within k-neighbors.

25.6.3 Graph Spectral Filtering via Neural Networks

Given the importance of convolution in the modelling of data propaga-
tion on graphs, and the computational difficulties in its evaluation, it
is natural to employ neural networks to implement the function g in
(25.23), per layer. In this way we also take advantages of the spatial
convolution operations and the universal approximation property of
neural networks. This forms the basis of various spectral GCN methods.

The spectral GCN was proposed by Bruna et al. (2013), and is based
on a simple spectral model given by

xl+1
j = φ

(
U

cl∑
i=1

Θl
i,jUTxli

)
j = 1, 2, . . . , cl+1, (25.24)

where l represents the index of each layer, cl is the number of filters
(channels) of the lth layer, Θl

i,j is a diagonal matrix which contains
the set of learnt parameters of the lth layer, and φ(·) is the activation

25.6. Spectral GCNs via Graph Fourier Transform 441

function of neurons. In (25.24), the summation ensures the aggregation
of features filtered by different convolutional kernels, Θl

i,j , which is
similar to a linear combination across kernels in CNNs. Although it
achieves graph convolution through neural networks, this methodology
has two main limitations: (i) the localization in the vertex domain
cannot be ensured by Θl

i,j , although it is a key to the success of
convolutional neural networks in extracting local stationary features;
(ii) computational burden arising from the O(N2) multiplications of
U and UT , and the eigendecomposition of L to obtain U may be
prohibitive for large graphs.

A possible way of mitigating these issues is to employ a polynomial
form similar to that of (25.22), as mentioned in Section 25.6.2. This both
relieves the first issue of the localization, and helps to control a balance
between the localization in the vertex domain and the localization in
the spectral domain (see Part II of this monograph). More specifically,
to further improve the localization in the spatial domain in order to
extract local patterns, we promote smoothness in the spectral domain
through filtering by poly(Λ), whereby the term poly(Λ) is designed
with a set of learnable parameters Θ = {θi}ki=1, in the form

polyΘ(Λ) = θ1Λ + θ2Λ2 + · · ·+ θkΛk. (25.25)

In this way, the update rule of (25.21) can now be rewritten as

x← polyΘ(L)x = UpolyΘ(Λ)UTx. (25.26)

Notice that in (25.26), the multiplication by U is not necessary at
every layer, but the powers of L are needed and are computational
demanding. On the basis of (25.26), Defferrard et al. (2016) further
proposed the Chebyshev graph neural network, which employs the
Chebyshev polynomial to ease the computation burden of polyΘ(Λ), in
the form

polyΘ(Λ) =
k∑
i=1

θiTi(Λ̃), (25.27)

where Λ̃ = 2Λ/λmax− IN , while Ti(Λ̃) is the Chebyshev polynomial that
has an easy-to-compute recurrent form Ti(Λ̃) = 2Λ̃Ti−1(Λ̃)− Ti−2(Λ̃)
(T0(Λ̃) = I, and T1(Λ̃) = Λ̃). With this Chebyshev polynomial, we are

442 Graph Neural Networks

able to elegantly avoid the computation of the powers of L, through

x← polyΘ(L)x =
k∑
i=1

θiTi(L̃)x, (25.28)

where L̃ = 2L/λmax − IN . This framework significantly reduces the
computational complexity from O(N2) to O(kN), and has been widely
used in various graph learning tasks. Recent work Kipf and Welling
(2016a) further simplifies (25.28) by only employing the first-order
Chebyshev polynomial (k = 1), which achieves superior performances in
semi-supervised learning. The authors claimed that it is unnecessary to
employ a k-order format because the first-order Chebyshev polynomial
is sufficient to mitigate overfitting, while the localization of k-neighbors
can be achieved by stacking layers of neural networks.

Despite mathematical elegance and physical intuition, spectral GCNs
have been mainly limited to fixed network structures during both
training and testing. More specifically, when employing spectral GCNs,
the graph connections should be ascertained in advance because even
a slight change in a graph connection would lead to a totally different
eigenbasis. This, in turn, means that the whole graph needs to be
initialized before training, which implies that spectral GCNs cannot
be trained in a mini-batch manner, as the trained model is domain
dependent.
Example 103: To illustrate an implementation of one typical spectral
GCN (Kipf and Welling, 2016a) in semi-supervised learning, we em-
ployed the Cora dataset (Motl and Schulte, 2015) that contains 2708
machine learning related publications with seven classes (case based, ge-
netic algorithms, neural networks, probabilistic methods, reinforcement
learning, rule learning and theory). Each publication has a feature vector
that indicates whether an article includes any unique selected keywords.
Furthermore, the graph is constructed via its citation relationships.

For the GCN method, we employed a Pytorch implementation of the
work in Kipf and Welling (2016a) which is available at https://github.
com/tkipf/pygcn. The basic structure of the GCN network is illustrated
in Figure 8.3, and its pseudo-code is provided in Algorithm 6. In this
example, the number of hidden units was set to 256. We used different

https://github.com/tkipf/pygcn
https://github.com/tkipf/pygcn

25.6. Spectral GCNs via Graph Fourier Transform 443

Figure 8.3: The structure of the GCN proposed in Kipf and Welling (2016a) for
semi-supervised learning.

Algorithm 6. Training Process of a Typical GCN (Kipf and Welling,
2016a)
1: Input: Node features, X0 ∈ RN×P , adjacency matrix, A ∈ RN×N ;
2: while Not converged: do
3: Layer 1: X1 = GCO1(X0, A)
4: Output: X2 = GCO2(X1, A)
5: Loss calculation on X2 and back-propagation for optimization .

One iteration of GCN training
6: end while
7: Output: The GCN with optimal W for each layer
8: procedure GCOl(X, A) . Graph convolution operation for the
lth layer

9: Renormalization trick: Ã = I + D− 1
2 AD− 1

2 . First-order of
Chebyshev polynomials of (25.28)

10: Graph convolution: Y = Ã ·X ·Wl . Wl are learnable
parameters in the layer

11: Non-linearity: Z = act(Y) . Examples of activation functions
act are sigmoid and ReLU functions

12: Return: Z
13: end procedure

ratios of data for training and plotted the test accuracy in classifying
those publications into the seven classes in Figure 8.4. Observe that

444 Graph Neural Networks

Figure 8.4: Portions of data used for training versus the test accuracy on Cora
dataset (Motl and Schulte, 2015). We considered a simple implementation of one
typical GCN (Kipf and Welling, 2016a) for semi-supervised learning. In this example,
we used one hidden layer with 256 neurons. The dropout rate was set to 0.5 and
learning rate to 0.01.

with only 10% of the available samples, a simple GCN with one hidden
layer can achieve >80% classification accuracy. It is possible to further
improve the test accuracy by extending the number of hidden units or
increasing network depth. This simple example, however, highlights the
powerful learning ability of GCNs on structured data.

25.7 Link Prediction via Graph Neural Nets

Oftentimes, the dynamics of the underpinning problem at hand dictate
that it is necessary to establish additional connections in a graph, in
addition to the already existing edges. This is achieved through so
called link prediction, which can be used in both graph completion
(interpolation) and graph extension (expansion) (Liben-Nowell and
Kleinberg, 2007). A direct way to perform link prediction would be to
apply some heuristic similarity method to the vertices and sub-graphs,
in order to estimate missing links between the vertices, as is the case
with the PageRank method introduced in Section 21.5, SimRank (Jeh
and Widom, 2002) and SEAL (Zhang and Chen, 2018) approaches.
Alternatively, learning strategies may be employed to infer such links
automatically in some “well-behaved” embedded spaces of graphs; this

25.7. Link Prediction via Graph Neural Nets 445

is highly related to the field of graph representation learning, that is,
learning a representative latent space given an existing graph.
Remark 105: The spectrum of a graph, elaborated in detail in Part I
and Part II of this monograph, is a simple yet effective candidate for an
embedding space, since it reflects the smoothness (frequency) of data on
a graph. In this way, spectral clusters can be utilized to train a classifier
to predict links (Tang and Liu, 2011).

More advanced latent space methodologies for link prediction include
Deepwalk (Perozzi et al., 2014), Note2vec (Grover and Leskovec, 2016)
and Line (Tang et al., 2015), all of which learn meaningful and continu-
ous low-dimensional latent spaces by preserving (encoding) neighboring
information at the vertices. For more detail, we refer to the recent
reviews in Wu et al. (2019), Zhang et al. (2018b), and Chami et al.
(2020).

More recently, owing to their ability to represent probabilistic gen-
erative models, GCNs have also been applied to link prediction tasks,
owing to their ability to implicitly process local information in graphs.
Within GCNs, two types of generative models are commonly used,
the graph variational auto-encoder (VAE) and the graph generative
adversarial model (GAN) (Bojchevski et al., 2018; De Cao and Kipf,
2018; Wang et al., 2017). Standard autoregressive models have also
been considered to progressively generate graphs (Li et al., 2018; You
et al., 2018). We here focus on VAE-based methods because they are
designed to straightforwardly learn representations for link prediction,
while GAN related methods are motivated by graph generation. We
should also point out that the VAE- and GAN-based approaches are not
independent, as VAE-based approaches take advantage of additional
adversarial modules to enhance learning capacity (Pan et al., 2018; Yu
et al., 2018).

The graph VAE (Kipf and Welling, 2016b) employs the VAE frame-
work proposed in Kingma and Welling (2013), with the underpinning
idea similar to the probabilistic models covered in Section 24, whereby
a signal, x (or the graph in the case of graph VAEs), is generated by
Gaussian random samples, v. However, different from the linear model
approaches (Section 24), the VAE employs a neural net (decoder) as a

446 Graph Neural Networks

non-linear way of graph generation. To avoid trivial generation from
random noise governed by the distribution p(x |v), we need to find a rea-
sonable set of random samples, v, that is likely to generate meaningful
graph signals, x. This resembles an encoder structure, governed by the
distribution q(v | x), which can be trained by minimizing the distance
between q(v | x) to the true posterior1 p(v | x). We refer to Doersch
(2016) for a detailed tutorial on the VAE. By using the Kullback-Leibler
(KL) divergence as the distance metric in the minimization, the VAE
arrives at the following relationship

log p(x)−KL(q(v |x)‖p(v |x)) = Eq(v |x)[log p(x |v)]
−KL(q(v |x)‖p(v)). (25.29)

Observe that by maximizing the right-hand side of (25.29), we are
effectively maximizing the log-likelihood of p(x), whilst at the same
time minimizing the distance between the true posterior, p(v | x), and
the assumed one, q(v | x).
Remark 106: The right-hand side of (25.29) is called the evidence lower
bound (ELBO) in Bayesian variational inference; more importantly, it is
tractable and yields clear and physically meaningful structures, whereby
q(v | x) is an encoder and p(x | v) the corresponding decoder, with
Eq(v |x)[log p(x | v)] as the reconstruction loss, while KL(q(v | x)‖p(v))
regularises the feasible set of v on some well-behaved manifolds in the
latent space.

A direct extension of the framework in (25.29) to link prediction
would be to estimate the missing graph connections using the VAE.
The initial attempt, called the variational graph auto-encoder (VGAE)
(Kipf and Welling, 2016b), models the connectivity (adjacency matrix)
through the encoder, by q(v | A,x), whilst the decoder remains the
standard neural network used to reconstruct the connectivity. In this
way, the encoder in the VGAE can be implemented as a GCN, while
the decoder may be simplified to only a product operation p(A |

1The reason we do not directly use p(v | x) is due to the fact that the posterior
is intractable when modelling the likelihood p(x |v) through neural nets. Thus, the
variational method employs another distribution, q(v | x), and minimises its distance
to p(v |x) by means of some tractable formats (i.e., the evidence lower bound, or
ELBO for short).

25.7. Link Prediction via Graph Neural Nets 447

Figure 8.5: Principle of the use of VGAE in link prediction. The training process
of the VGAE is based on the provided training edges and node features, whilst the
test edges are not connected. Different from the standard auto-encoder, the encoder
within the VGAE yields the estimated mean and covariance values of Gaussian
distributions (µ1,µ2, . . . ,µ6 and σ1,σ2, . . . ,σ6), while the input to the decoder
is randomly drawn from the corresponding Gaussian distributions. Being a graph
variance of (25.29), the loss consists of two parts: The term KL(q(v | A,x)‖p(v))
of Loss 1 which reflects how well the output Gaussian approaches the standard
Gaussian distribution, p(v) (zero mean and identity covariance), while the term
Eq(v|A,x)[log p(A | v)] of Loss 2 corresponds to the quality of reconstruction of the
adjacency matrix, A.

v) = sigmoid(vvT), where the sigmoid function is used to satisfy the
probability constraint. Figure 8.5 provides a closer insight into the
VGAE, with the corresponding pseudo-code given in Algorithm 7. To
enable the use of a GCN also in the decoder and to comply with graph
theory, work in Grover et al. (2019) proposes to employ an intermediate
and learnable adjacency matrix within the decoder. Other improvements
include regularizing VGAE through semantic validity (Ma et al., 2018),
use of rich models (such as mixture models) as a prior, p(v) (Hasanzadeh
et al., 2019), and an asynchronous message passing scheme for directed
acyclic graphs (Zhang et al., 2019b).
Remark 107: The VGAE differs from the standard graph auto-encoder
(GAE) in the latent space, which arises from the use of variational
inference, in that the representation (embedding) of each graph node is
a Gaussian distribution described by the learnt mean and covariance.

448 Graph Neural Networks

A potential problem with the standard GAE is that its reconstruction
loss enforces the training of the GAE towards recovering an incomplete
training adjacency matrix, whereby the test and validation edges are
masked out. Therefore, if a perfect reconstruction was achieved in
training, in the test stage, the GAE would only recover the training edges,
whilst ignoring the test and validation edges. The way of relieving this
issue by the VGAE rests upon its usage of noise and uncertainty inferred
through the learning process. However, this also adds disturbance and
poses difficulties to the operation of the decoder during reconstruction, as
this increases the reconstruction loss in an implicit adversarial way, but
forces the VGAE to learn robust and meaningful graph representations.

Most recently, a framework named RCF-GAN has been proposed
to seamlessly combine the benefits of the auto-encoder and adversarial
learning; this is achieved via a reciprocal requirement in the latent space,
while to enhance robustness, characteristic functions are employed in
design of the losses (Li et al., 2020).
Remark 108: By virtue of the RCF-GAN, a meaningful representa-
tion can be learnt in the embedded space; this means that the links
can be directly predicted by the embedded features, instead of being
reconstructed by the decoder as with the VGAE.

The application of the RCF-GAN in graph link prediction differs
from the VGAE in two main aspects: (1) the decoder no longer recon-
structs the adjacency matrix but yields the node features, in order to
satisfy the reciprocal requirement of the RCF-GAN; (2) the reconstruc-
tion loss in the RCF-GAN is based on the node features, and operates
directly in the embedded space, as opposed to that based on the adja-
cency matrix in the data domain of the VGAE. The so learnt embedded
features are therefore immediately graph representations and hence
generalise well, thus equipping the link prediction via the RCF-GAN
with the ability to effectively avoid overfitting of the training edges.

The following example demonstrates that although the test connec-
tions were not provided in the training stage, the VGAE and RCF-GAN
were still able to successfully recover the missing links through the inner
product (decoder) of the trained graph representations.

25.7. Link Prediction via Graph Neural Nets 449

Example 104: We employed two well-known datasets, Cora and Cite-
seer (Sen et al., 2008) on a graph link prediction task. For a fair com-
parison, the split of datasets into training, validation and test sets was
exactly the same as that in the VGAE (Kipf and Welling, 2016b), that is,
85% for training, 5% for validation and 10% for testing. For the encoder
of the RCF-GAN, we adopted the same basic GCN as that adopted
in the VGAE. The dimensions of the encoder for both the RCF-GAN
and the VGAE were set to {mnode, mlayer, 128}, where mnode denotes
the dimension of node features and mlayer represents the dimension of
the middle layer. In the experiments, mlayer assumed the values from
{256, 512, 1024, 2048}. The VGAE was also run with different mlayer,
for a fair comparison with the available VGAE implementation (Kipf
and Welling, 2016b). For the generator of the RCF-GAN, we used a
simple 3-layer fully connected neural net with dimensions {128, mlayer,
mnode}. We repeatedly ran the training and testing process 10 times,
with both models trained over 300 epochs. Performance was evaluated
through the mean values of the area under the ROC curve (AUC) and
average precision (AP) metrics, with the results given in Figure 8.6.

Observe from Figure 8.6 that for all mlayer the RCF-GAN in link
prediction consistently outperformed the VGAE and the spectral clus-
tering methods, with a significant margin. More specifically, the VGAE
achieved its best performance at approximately mlayer = 512, with the
obtained AUC (AP) of 0.910 (0.929) for Cora and 0.904 (0.921) for
Citeseer. Further increasing mlayer may lead to overfitting of the VGAE,
thus decreasing its performances in link prediction. However, with the
increase in network sizes, the performances of the RCF-GAN improved
correspondingly, and the AUC (AP) scores reached 0.936 (0.941) for
Cora and 0.944 (0.946) for Citeseer. This may be due to the fact that
the RCF-GAN does not directly perform the reconstruction of the adja-
cency matrix but learns a semantic embedded space for link prediction.
This improvement also validates the effectiveness and efficiency of the
learnt embedded space within the RCF-GAN.

450 Graph Neural Networks

(a) Cora

(b) Citeseer

Figure 8.6: The AUC and AP scores for graph link prediction using the RCF-GAN
and VGAE, with mlayer ranging from 256 to 2048. The solid lines show the AUC
and AP metrics of the RCF-GAN in testing, whereas the dashed lines designate the
results for the standard VGAE. Since spectral clustering based graph link prediction
(Tang and Liu, 2011) is a typical baseline for using GCNs, we also plot the spectral
clustering results from Kipf and Welling (2016b) in dotted lines.

25.7. Link Prediction via Graph Neural Nets 451

Algorithm 7. Training Process of VGAE Kipf and Welling (2016b)
1: Input: Node features, X0 ∈ RN×P , (incomplete) training adjacency

matrix, A ∈ RN×N ;
2: while Not converged: do
3: Forward process of the encoder:
4: Layer 1: X1 = GCO1(X0, A)
5: Layer 2: U = GCO2(X1, A) . Output Gaussian mean vector of

each node
6: Layer 3: C = GCO3(X1, A) . Output Gaussian diagonal

covariance vector of each node
7: Forward process of the decoder:
8: For each node, n, draw one sample, vn, from N (un, cn), where

un and vn are the nth rows of U and C
9: Inner product operation: Â = sigmoid(VVT), where vn is the
nth row of V

10: Loss calculation: 1
N

N∑
n=1

KL(N (un, cn)‖N (0, I)) + BCE(Â,A)

. BCE denotes the binary cross entropy loss
11: Back-propagation for optimization . One iteration of

training the VGAE
12: end while
13: Output: Optimal embedding U of nodes
14: procedure GCOl(X, A) . Graph convolution operation for the

lth layer
15: Renormalization trick: Ã = I + D− 1

2 AD− 1
2 . First-order of

Chebyshev polynomials of (25.28)
16: Graph convolution: Y = Ã ·X ·Wl . Wl is learnable

parameters in the layer
17: Non-linearity: Z = act(Y) . Examples of activation functions

act can be sigmoid and ReLU functions
18: Return: Z
19: end procedure

26
Tensor Representation of
Lattice-Structured Graphs

It is often desirable to generalize graphs in order to account directly for
higher-order and higher-dimensional relationships between data sources
(Cooper and Dutle, 2012; Saito et al., 2018; Zhou et al., 2007). One
such way is via the hypergraph approach, which allows the edges to link
more than two vertices (Berge, 1984). Another possibility is through a
multi-layer network of graphs, whereby graph vertices reside on a high
dimensional regular lattice structure which results from the Cartesian
product of several one-dimensional path graphs (for more detail, see
Part I). We next show that tensors (multidimensional data arrays) are
perfectly suited to model the latter approach. It is further shown that
tensors can be considered as a special class of graph signals, which in
turn allows the associated adjacency matrices to exhibit a physically
meaningful structured form, referred to as Kronecker summable. By
virtue of the underlying multilinear tensor algebra, this effectively
reduces the number of parameters required to model the entire graph
connectivity structure (Bacciu and Mandic, 2020).

453

454 Tensor Representation of Lattice-Structured Graphs

26.1 Tensorization of Graph Signals in High-Dimensional Spaces

A tensor of order M is anM -way data array, denoted by X ∈ RI1×···×IM .
For example, a vector x ∈ RI is an order-1 tensor, a matrix X ∈ RI1×I2
is an order-2 tensor, while a 3-way array X ∈ RI1×I2×I3 is an order-3
tensor. The mth dimension of an order-M tensor, X ∈ RI1×···×IM , is
referred to as the mth mode which is of size Im entries.

To establish a relationship between graph signals and tensors, we
begin by considering an N -vertex graph, denoted by G = {V, E}. With
each vertex on the graph we can associate a variable (signal), denoted
by x(n) ∈ R, which maps a vertex, n ∈ V, to a real, that is, x: V 7→ R.
In other words, each vertex represents a scalar-valued field in a single-
dimensional coordinate system. When considering all N vertices in V,
we can form the vector x ∈ RN which defines the mapping x: V 7→ RN .

On the other hand, if a graph resides in an M -dimensional space,
then each vertex, n ∈ V, has a one-to-one correspondence with a
unique coordinate vector in this space, denoted by (i1, . . . , iM) ∈ NM ,
where im ∈ N is the coordinate associated with the mth axis. In other
words, there exists a unique mapping n 7→ (i1, . . . , iM). In this way,
the graph vertex signal can be viewed as a field in an M -dimensional
coordinate system, that is, each vertex can be defined equivalently as
x(n) ≡ x(i1, . . . , iM) ∈ R, that is, it induces the mapping x: NM 7→ R.

When discrete points in the field, x: NM 7→ R, are sampled using a
regular lattice of dimensions I1 × · · · × IM , thereby sampling a total of

M∏
m=1

Im ≡ N

discrete points, the collection of samples naturally forms the tensor
X ∈ RI1×···×IM , with its (i1, . . . , iM)th entry defined as

[X]i1...iM = x(i1, . . . , iM), im ∈ N, m = 1, 2, . . . ,M. (26.1)

Figure 8.1 illustrates a collection of discrete points from a field in a
3-dimensional coordinate system, which together form an order-3 tensor.
This procedure is referred to as tensorization.

26.2. Tensor Decomposition 455

Figure 8.1: Tensorization of discrete samples from a field x : N3 7→ R.

Remark 109: Real-world examples of a field in M -dimensional coordi-
nates include:

• Netflix ratings in the user × movie space (M = 2);

• Temperature measurements in the longitude × latitude × altitude
space (M = 3);

• Video pixels in the time× column× row× RGB space (M = 4);

• EEG signals in the time × frequency × channel × subject × trial
space (M = 5).

26.2 Tensor Decomposition

If the underlying field, x: NM 7→ R, is defined as a multilinear map of
the form

x: N× · · · × N︸ ︷︷ ︸
M times

7→ R (26.2)

then it is said to be linearly separable, and therefore admits the following
decomposition

x(i1, . . . , iM) =
M∏
m=1

xm(im). (26.3)

In other words, the value of x(i1, . . . , iM) is given by the product
of M independent single-dimensional functions, xm: N 7→ R, each of

456 Tensor Representation of Lattice-Structured Graphs

Figure 8.2: Rank-1 CPD of an order-3 tensor.

which is associated with the mth coordinate axis of the underlying
M -dimensional coordinate system. In this way, a tensor, X ∈ RI1×···×IM ,
which is sampled from a linearly separable field of the kind in (26.3)
admits the following rank-1 canonical polyadic decomposition (CPD)

X = x1 ◦ · · · ◦ xM (26.4)

with the symbol ◦ denoting the outer product operator, and xm ∈ RIm
being a parameter vector associated with the mth coordinate axis.
Remark 110: The property in (26.4) is referred to as the Kronecker sep-
arability condition, which is fundamental to most tensor decompositions
and learning algorithms.

With regard to the linear separability property in (26.3), the ith
entry of xm is given by [xm]i = xm(i). Figure 8.2 shows the rank-1 CPD
of an order-3 tensor.

Kronecker separable tensors admit a vector representation (vec-
torization), denoted by x = vec(X) ∈ RN , which can be expressed
as

x = xM ⊗ · · · ⊗ x1 (26.5)

and is a direct consequence of (26.4), where the symbol ⊗ denotes the
Kronecker product operator (see Part I).
Example 105: Consider the data matrix, X ∈ RI×J , which contains
the Netflix ratings assigned by I users to J movies, whereby the (i, j)th
entry designates the rating assigned by the ith user to the jth movie,
x(i, j) ∈ R. The graph representation of this dataset consists of (IJ)
vertices residing in a two-dimensional space (user × movie). Owing
to the lattice-like structure of the graph, we can employ its inherent

26.3. Connectivity of a Tensor 457

Figure 8.3: Rank-1 CPD of the Netflix rating data matrix.

order-2 tensor representation, whereby the data can be approximated
using the following rank-1 CPD

X ≈ x1 ◦ x2 ≡ x1xT2 (26.6)

with x1 ∈ RI being the factor associated with the user axis, and
x2 ∈ RJ the factor associated with the movie axis. Note that for order-2
tensors, the CPD is equivalent to the singular value decomposition
(SVD). Figure 8.3 illustrates the tensor decomposition of the Netflix
rating data matrix.

The factorization of X assumes that the rating assigned by the ith
user to the jth movie can be approximated as

x(i, j) ≈ x1(i)x2(j) (26.7)

where x1(i) ≡ [x1]i and x2(j) ≡ [x2]j . In other words, the rating, x(i, j),
can be approximated by a rating assigned by the ith user to all movies,
x1(i), multiplied by a rating assigned to the jth movie by all users,
x2(j).

The so achieved parameter reduction becomes evident, since we
have reduced a fully connected (IJ) parameter model to an (I + J)
parameter model. This parameter reduction is most pronounced for
higher-order tensors, e.g., an order-N tensor model with ∏N

n=1 In pa-
rameters (exponential) reduces to a ∑N

n=1 In parameter (linear) model.

26.3 Connectivity of a Tensor

We next show that the tensor structure inherent to X ∈ RI1×···×IM
can be modelled naturally as a graph. This is achieved by exploiting

458 Tensor Representation of Lattice-Structured Graphs

the well-known property of lattice-structured graphs which can be
decomposed into constituent single-dimensional path graphs.

Building upon the Cartesian product of two disjoint path graphs,
as considered in Part I of this monograph, the Cartesian product of
M disjoint Im-vertex path graphs, Gm = (Vm, Em) for m = 1, . . . ,M ,
yields a graph with an M -dimensional regular lattice structure, denoted
by G = GM� · · ·�G1 = (V,B), with the symbol � denoting the graph
Cartesian product. In this way, the resulting vertex set takes the form
V = VM×· · ·×V1, and the resulting graph contains a total of∏M

m=1 Im ≡
N vertices.

If the adjacency matrix of the mth path graph, Gm, is denoted by
Am ∈ RIm×Im , then the adjacency matrix of the resulting
M -dimensional regular lattice graph, G, is given by

A = (AM ⊕ · · · ⊕A1) ∈ RN×N (26.8)

where the symbol ⊕ denotes the Kronecker sum operator (we refer to
Part I). Such an adjacency matrix is said to be Kronecker summable.
Remark 111: The adjacency matrix, A, when interpreted through
the underlying tensor, describes the connectivity between the entries
of vectorization of a tensor, x ∈ RN , while Am ∈ RIm×Im describes the
connectivity between entries along the mth mode. Under this model,
the entries of the tensor are only connected to neighboring entries which
reside in the same fiber.

For illustration purposes, Figure 8.4 shows the Cartesian product
of three disjoint path graphs, which results in a graph with a three-
dimensional lattice structure. This graph would naturally represent
the connectivity between the entries of an order-3 tensor, X ∈ R2×3×2.
Next, consider the order-2 tensor, X ∈ RI1×I2 , with entries sampled
from the field, x: N2 7→ R, using a 2-dimensional regular lattice as
illustrated in Figure 8.5.
Example 106: Consider a field on a two-dimensional coordinate system,
denoted by x: N2 7→ R, and illustrated in Figure 8.6. If the scalar field
is linearly separable, that is, x(t1, t2) = x1(t1)x2(t2), then the sampled
tensor, X, is Kronecker separable, and can therefore be expressed as

X = x1 ◦ x2 ⇐⇒ vec(X) = x2 ⊗ x1 (26.9)

26.3. Connectivity of a Tensor 459

Figure 8.4: Cartesian product of 3 path graphs.

Figure 8.5: Order-2 tensor, X ∈ RI1×I2 , sampled from x: N2 7→ R.

Figure 8.6: An example of a field, x: N2 7→ R.

Figure 8.7: Path graph signal, x1 ∈ RI1 , sampled from x1: N 7→ R.

through x1 ∈ RI1 and x2 ∈ RI2 as data on path graphs sampled
respectively from the single-dimensional fields, x1: N 7→ R and x2: N 7→
R, as illustrated in Figures 8.7–8.8.

460 Tensor Representation of Lattice-Structured Graphs

Figure 8.8: Path graph signal, x2 ∈ RI2 , sampled from x2: N 7→ R.

26.4 DFT of a Tensor

We have shown in expression (26.8) above that tensors can be consid-
ered as a special class of graphs which exhibit a Kronecker summable
adjacency matrix. In that case, the DFT of a tensor can be naturally
obtained from the graph Fourier transform (GFT), which was intro-
duced in Part II of this monograph. In this way, the GFT of a graph
with a lattice structure can be performed by evaluating the eigenvalue
decomposition of the adjacency matrix A, given by

A = UΛU−1 (26.10)

where U ∈ RN×N and Λ ∈ RN×N denote respectively the matrices of
eigenvectors and eigenvalues of A.

Owing to the Kronecker sum structure of A in (26.8), the eigenvector
and eigenvalue matrices of GFT exhibit the following structure

U = (UM ⊗ · · · ⊗U1) (26.11)
Λ = (ΛM ⊕ · · · ⊕Λ1) (26.12)

where Um ∈ RIm×Im and Λ ∈ RIm×Im respectively denote the matrices
of eigenvectors and eigenvalues of the mth path graph adjacency matrix,
Am, obtained through

Am = UmΛmU−1
m . (26.13)

Therefore, the eigenvectors of A are said to be Kronecker separable,
while the eigenvalues are Kronecker summable.

26.5. Unstructured Graphs 461

26.5 Unstructured Graphs

Consider an N -vertex graph, G, with vertex signals sampled from the
field, x: RM 7→ R, using a regular lattice, which together form the
order-M tensor, X ∈ RI1×···×IM , with ∏M

m=1 Im ≡ N .
Similarly, consider a K-vertex graph, G̃, with vertex signals also

sampled from the same field, x: RM 7→ R, but using instead an un-
structured sampling scheme. In this way, the unstructured graph can
be defined as a subset of a lattice-structured graph, i.e., G̃ ⊂ G.

The vertex signals of G̃, denoted by the vector x̃ ∈ RK , can therefore
be defined as

x̃ = Πvec(X) (26.14)

where Π ∈ RK×N is a sampling matrix, with entries defined as

[Π]kn =

1, if x̃(k) ≡ x(n),
0, otherwise

(26.15)

with x̃(k) ∈ R and x(n) ∈ R denoting respectively the kth vertex of G̃
and the nth vertex of G.

Although the lattice-structured graph, G, exhibits a Kronecker sep-
arable signal vector and a Kronecker summable adjacency matrix, the
associated unstructured graph, G̃, does not have such properties because,
in general, Π is not separable. This can be seen from the relationship
between the adjacency matrices of G̃ and G, which is given by

Ã = ΠAΠT = Π(AM ⊕ · · · ⊕A1)ΠT . (26.16)

Notice that the last term above cannot be decomposed further if Π is
not separable. A direct consequence of the result in (26.16) is that the
GFT bases of G̃ (eigenvalue decomposition of Ã) do not exhibit the
Kronecker summability either.
Example 107: Referring back to Example 106, the graph signal result-
ing from an irregular sampling of the field x: R2 7→ R is not Kronecker
separable as it cannot be represented as a Cartesian product of two
path graphs (as in Figures 8.5–8.8), as illustrated in Figure 8.9.

462 Tensor Representation of Lattice-Structured Graphs

Figure 8.9: Unstructured graph, x̃ ∈ RK , sampled from x: N2 7→ R.

26.6 Tensor Representation of Multi-Relational Graphs

The rapidly growing prominence of multi-relational network data in areas
as diverse as social network modeling, the semantic web, bioinformatics
and artificial intelligence, has brought to light the increasing importance
of Data Analytics on domains where the entities are interconnected by
multiple relations. To put this into context of graphs, while traditional
graph models only account for a single relation type, designated by
the adjacency matrix, A ∈ RN×N , a multi-relational N -vertex graph
may exhibit a large number, say M , of distinct relation types between
vertices. In this case, a multi-relational graph would be defined by
M adjacency matrices, Am ∈ RN×N for m = 1, . . . ,M ; one for each
relation type.

While it is possible to model this situation through a short and
wide N ×MN dimensional matrix, this would both involve numerical
difficulties and obscure physical relevance. To this end, to model such
a multi-relational graph in a parsimonious and compact manner, we
may construct a three-way tensor, A ∈ RN×N×M , whereby its mth
frontal slice is given by Am. In this way, the first two modes define the
entity domain, while the third mode represents the relation domain,
as illustrated in Figure 8.10. The tensor entry [A]ijk = 1 therefore
designates the existence of a relation between the ith and jth entities
within the kth relation type; otherwise, for non-existing and unknown
relations, the entry is set to zero.

The work in Lin et al. (2008, 2009), Tang et al. (2009), Nickel et al.
(2011), Papalexakis et al. (2013), Gauvin et al. (2014), Verma and
Bharadwaj (2017a), Verma and Bharadwaj (2017b), and Katsimpras
and Paliouras (2019) employs such tensor model to learn an inherent

26.6. Tensor Representation of Multi-Relational Graphs 463

Figure 8.10: Construction of a multi-relational adjacency tensor, A ∈ RN×N×M ,
where En denotes the nth entity and Rm the mth relation type.

structure from multi-relational data. The following rank-L factorization
was employed, known as the RESCAL decomposition (Nickel et al.,
2011), whereby each frontal slice of A is factorized as

Am = URmUT , m = 1, . . . ,M (26.17)

where U ∈ RN×L is a factor matrix which maps the N -dimensional
entity space to an L-dimensional latent component space, and Rm ∈
RL×L models the interactions of latent components within the mth
relation type. Alternatively, this can be expressed in terms of the
factorization of the tensor A, in the form

A =R×1 U×2 U (26.18)

where the symbol ×n denotes the mode-n product, andR ∈ RL×L×M is
the latent core tensor with Rm being its mth frontal slice, as illustrated
in Figure 8.11. Such a factorization allows for link-based clustering,
whereby the entities E1, . . . , EN are clustered according to the informa-
tion in U only. In doing so, the similarity between entities is computed
based on their similarity across multiple relations.
Example 108: Social networks play an important role in the function-
ality of an organization and it is therefore of considerable interest to
analyze the properties of such networks. The adoption of social network-
ing services within organizations can largely facilitate the interaction

464 Tensor Representation of Lattice-Structured Graphs

Figure 8.11: Factorization of a multi-relational adjacency tensor, A ∈ RN×N×M as
in (26.17).

and collaboration between employees. For example, a social network
could reveal information about the characteristics of an employee which
could then be used to improve efficiency and influence team structuring.

As shown in Figure 8.8 and Example 95, a social network can
be modelled as a graph, whereby each vertex represents an individual
(employee) and each edge designates the existence of a social relationship
between two individuals. While a conventional graph can model social
networks involving one type of relationship, multi-relational graphs
allow for the modelling of multiple (and different) types of relationships.
Figure 8.12 illustrates a multi-relational social network involving three
employees (vertices) who communicate via email (blue edge), LinkedIn
(green edge) and Skype (orange edge). Observe that social relationships
may be directed, e.g., employee A sends emails (blue edge) to employee B
but not vice versa. If the adjacency matrix associated with the mth
relationship type is given by Am ∈ R3×3 for m = 1, 2, 3, 4, then the
adjacency tensor, A ∈ R3×3×4, can be constructed to model the entire
social network. Once the latent components (factor) matrix, U ∈ R3×L,
is inferred from A using the factorization in (26.17), it is possible
to apply feature-based clustering to obtain the inherent community
structure in such multi-relational network. The output of this step would
be a set of K disjoint communities (sub-graphs), {V1, . . . ,VK}.

26.7 Multi-Graph Tensor Networks

After exploring the inherent links between graphs and tensors, in Sec-
tion 26.6, and between graphs and neural networks, in Section 25, it is
natural to further explore the possibilities enabled by a joint considera-
tion of these three domains. One such general approach is referred to

26.7. Multi-Graph Tensor Networks 465

Figure 8.12: Social network modelled as a multi-relational graph. (a) Graph
representation of the social network. (b) Adjacency tensor, A ∈ R3×3×4, associated
with the social network in (a).

as the Multi-Graph Tensor Network (MGTN) model (Xu et al., 2020),
which aims to fully exploit the virtues of both graphs and tensors in a
deep learning setting. For a joint account between tensors and neural
networks, we refer to Calvi et al. (2019) and Bacciu and Mandic (2020).
In this way, the MGTN framework is capable of:

• Handling irregular data that reside on multiple graph domains;

• Leveraging on the compression and structure-preserving properties
of tensor networks, to enhance the expressive power of NNs, at a
reduced parameter complexity.

The MGTN generalises the Recurrent Graph Tensor Network
(RGTN) model, introduced in Xu and Mandic (2020), which enables
deep modelling on irregular domains and was developed with the aim

466 Tensor Representation of Lattice-Structured Graphs

to model time-series problems related to sequential data, and was only
defined for a single graph domain. To make this concept suitable for
applications beyond time-series and in a Big Data setting, the MGTN op-
erates in a multi-modal data setting defined on multiple graph domains
and thus not limited to time-series.

More precisely, the time-based multi-linear graph filter, R, which
underpins the RGTN in Xu and Mandic (2020), employs a time-graph
adjacency matrix that reflects the temporal flow of information. On the
other hand, for a given weighted graph adjacency matrix, A ∈ RI1×I1 ,
the MGTN approach constructs a multi-linear graph filter in the tensor
domain, F ∈ RJ1×I1×J1×I1 , given by

F = ten(I + (A⊗P)) (26.19)

where the propagation matrix, P ∈ RJ1×J1 , models the flow of informa-
tion between neighboring vertices (as opposed to successive time-steps
in the RGTN case) and the operator ten(·) represents a suitable ten-
sorization, as, for example, that in Figure 8.1. This allows us to adapt
the multi-linear graph filter, F , to any given graph domain of any data
modality.

Consider a general multi-graph learning problem where the input
is an order-(M + 1) tensor, X ∈ RJ0×I1×I2×···×IM , with J0 features
indexed along M physical modes {I1, I2, . . . , IM}, such that a graph,
G(m), is associated with each of the Im modes, m = 1, . . . ,M . For this
problem, we can define:

1. A = {A(1),A(2), . . . ,A(M)}, a set of adjacency matrices, A(m) ∈
RIm×Im , constructed from the corresponding graphs G(m).

2. W = {W(1),W(2), . . . ,W(M)}, a set of weight matrices, W(m) ∈
RJm×Jm−1 , used for feature transforms, where Jm, form = 1, . . . ,M ,
controls the number of feature maps at every mode m.

3. P = {P(1),P(2), . . . ,P(M)}, a set of propagation matrices, P(m) ∈
RJm×Jm , modelling the propagation of information over the neigh-
bors of the graph G(m).

26.7. Multi-Graph Tensor Networks 467

The general Multi-Graph Tensor Network (gMGTN) layer is charac-
terized by the forward pass

Y = φ(F (M) ×1,M+1
3,4 W(M) ×1

2 · · · ×1
2 F (2) ×1,3

3,4 W(2)

×1
2 F (1) ×1,2

3,4 W(1) ×1
2 X) (26.20)

where φ(·) is an optional non-linear activation function and F (m) =
ten(I + (A(m) ⊗ P(m))). The so defined forward pass generates a fea-
ture map, Y ∈ RJM×I1×···×IM , from the input tensor, X , through a
series of multi-linear graph filter and weight matrix contractions, which
essentially iterates the graph filtering operation across all M graph
domains.

Since the gMGTN learns a propagation matrix, P(m), and a weight
matrix, W(m), for each of theM graphs, when J1 = J2 = · · · = JM = J ,
this results in a parameter complexity of O(MJ2), which is linear in the
number of graphs, M , but quadratic in the size of feature maps, J , so
that the computation quickly becomes intractable for high dimensional
multi-graph problems.

The computational bottleneck can be resolved by approximating
P(m) ≈ I for m = 1, . . . ,M , and by using a single weight matrix,
W(x) ∈ RJ1×J0 , for all of the graph domains, where J1 controls the
number of hidden units (feature maps).

The resulting fast MGTN (fMGTN) is shown in Figure 8.13, and
exhibits the following reduced forward pass

Y = φ(F(M) ×M+1
2 · · · ×4

2 F(2) ×3
2 F(1) ×2

2 W(1) ×1
2 X) (26.21)

where F(m) = (I+A(m)) is a standard graph shift filter. As the fMGTN
does not have to learn P(m) or W(m), the parameter complexity of the
forward pass is reduced from O(MJ2) to O(J2) but at the cost of lower
expressive power. After extracting the feature map, Y ∈ RJ1×I1×···×IM ,
it is customary to flatten the extracted features into a vector, in order
to pass them through dense neural network layers to generate the
fMGTN output. To further reduce parameter complexity, the weight
matrices of the dense layers can be tensorized and represented in some
compressed tensor format, as discussed in Novikov et al. (2015), Cichocki
et al. (2016, 2017), Calvi et al. (2019). This not only further reduces

468 Tensor Representation of Lattice-Structured Graphs

Figure 8.13: Illustration on the structure of a fast multi-graph tensor network.

26.7. Multi-Graph Tensor Networks 469

Figure 8.14: Tensor network representation of the fast Multi-Graph Tensor Network
(fMGTN) used in Example 109 and shown in Figure 8.13. The section encircled
in dotted line denotes the multi-graph filtering operation for M = 2 as in (26.21).
The yellow region designates a tensorized dense layer weight matrix, represented
in the Tensor-Train format (TTD). The input data used for the experiment is an
order-3 tensor of FOREX data, with J0 pricing features, I1 past time-steps, and
I2 currencies. Note that as input data modes, this MGTN employs a time-domain
graph filter of dimension I1 and a currency-domain graph filter of dimension I2.

the number of parameters, but also maintains compatibility with the
inherent multi-modal nature of the problem.
Example 109: We considered the task of Foreign Exchange (FOREX)
algorithmic trading in order to illustrate the possibilities enabled by
the MGTN framework. A conceptual application of the combination
of graphs, tensors and neural networks in this scenario is shown in
Figure 8.14.

The MGTN setting is general enough to be applicable in a range
of other domains, including social networks, communication networks,
and cognitive neuroscience.

27
Metro Traffic Modeling Through Graphs

With the rapid development of many economies, an increasing propor-
tion of the world’s population moving to cities, urban traffic congestion
is becoming a serious issue. For example, underground traffic networks
routinely undergo general maintenance, frequently exhibit signal failures
and train derailments, and may even occasionally experience emergency
measures because of various accidents. Such events ultimately require
the closure of at least one station which may severely impact the service
across the entire network. The economic costs of these transport delays
to central London business are estimated to be £1.2 billion per year.
Hence, appropriate and physically meaningful tools to understand, quan-
tify, and plan for the resilience of these traffic networks to disruptions
are much needed.

In this section, we demonstrate how the concept of vertex centrality
of an adjacency matrix (for more detail, see Part I of this monograph)
may be employed to identify those stations in the London underground
network which have the greatest influence on the functionality of the
traffic, and proceed, in an innovative way, to assess the impact of
a station closure on service levels across the city. Such underground
network vulnerability analysis offers the opportunity to analyze, optimize

471

472 Metro Traffic Modeling Through Graphs

and enhance the connectivity of the London underground network in a
mathematically tractable and physically meaningful manner.

27.1 Traffic Centrality as a Graph-Theoretic Measure

The underground network can be modelled as an undirected N -vertex
graph, denoted by G = {V, E}, with V as the set of N vertices (stations)
and E the set of edges (underground lines) connecting the vertices (sta-
tions) (Dees et al., 2019). The connectivity of the network is encoded
within the (undirected) adjacency matrix, A ∈ RN×N . Figure 8.1 illus-
trates the proposed graph model of the London underground network,
with each vertex representing a station, and each edge designating the
underground line connecting two adjacent stations. Notice that stan-
dard data analytics domains are ill-equipped to deal with this class of
problems.

Figure 8.1: Graph model of the London underground network in Zones 1–3.

27.1. Traffic Centrality as a Graph-Theoretic Measure 473

Figure 8.2: Betweenness centrality, designated by magenta-colored bars, of the
London underground network in Zones 1–3. The largest betweenness centrality is
observed for the following stations: Green Park, Earl’s Court, Baker Street, Waterloo
and Westminster.

We employ the following metrics to characterize the topology of the
network and model its vulnerability.

• Betweenness centrality, which reflects the extent to which a given
vertex lies in between pairs or groups of other vertices of the
graph, and is given by

Bn =
∑

k,m∈V

σ(k,m | n)
σ(k,m) (27.1)

where σ(k,m) denotes the number of shortest paths between
vertices k and m, and σ(k,m | n) the number of those paths
passing through vertex n (Freeman, 1977). In terms of the actual
metro traffic, this can also be interpreted as the extent to which a
vertex is an intermediate in the communication over the network.
Figure 8.2 shows that, as expected, the stations at the center
of the city exhibit the largest betweenness centrality, and their
disconnection would therefore severely impact the communication
over the underground network.

474 Metro Traffic Modeling Through Graphs

Figure 8.3: Closeness vitality, designated in magenta bars, of the London under-
ground network in Zones 1–3.

• Closeness vitality, which represents the change in the sum of
distances between all vertex pairs after excluding the nth vertex
(Brandes, 2005). Figure 8.3 shows that the stations located in
the more remote areas of Zones 2–3 exhibit the largest closeness
vitality measure. This is because their removal from the network
would disconnect the stations located at the boundaries from the
rest of the network.

27.2 Modeling Commuter Population from Net Passenger Flow

In this section, we employ graph theory to analyze the net passenger
flow at all stations of the London underground network. In particular,
we demonstrate that it is possible to infer the resident population
surrounding each station based on the net passenger flow during the
morning rush hour alone (Dees et al., 2019).

To derive the corresponding graph model, we employed the Fick
law of diffusion (closely related to Newton’s law of cooling discussed in
Section 25.2 and Laplacian diffusion maps described in Part I) which

27.2. Modeling Commuter Population from Net Passenger Flow 475

relates the diffusive flux to the concentration of a given vector field,
under a steady state assumption. This model asserts that the flux
flows from regions of high concentration (population) to regions of low
concentration (population), with a magnitude that is proportional to
the concentration gradient. Mathematically, the Fick law is given by

q = −k∇φ (27.2)

where

• q is the flux which measures the amount of substance per unit
area per unit time (mol m−2 s−1);

• k is the coefficient of diffusivity, with its value equal to area per
unit time (m2 s−1);

• φ represents the concentration (mol m−3).

In this way, we can model the passenger flows in the London underground
network as a diffusion process, whereby during the morning rush hour
the population mainly flows from concentrated residential areas to
sparsely populated business districts. Therefore, the variables in our
model are:

• q ∈ RN , the net passenger flow vector, where the ith entry
represents the net passenger flow at the ith station during the
morning rush hour, that is

q(i) = (passengers exiting station i)
− (passengers entering station i) (27.3)

with its value equal to “passengers per station per unit time”;

• k = 1, the coefficient of diffusivity, with its dimension equal to
“stations per unit time”;

• φ ∈ RN , the resident population in the area surrounding the
station.

476 Metro Traffic Modeling Through Graphs

This model therefore suggests that, in the morning, the net passenger
flow at the ith station, q(i), is proportional to the population difference
between the areas surrounding a station i and the adjacent stations j,
that is

q(i) = −k
∑
j

Aij(φ(i)− φ(j))

= −k
(
φ(i)

∑
j

Aij −
∑
j

Aijφ(j)
)

= −k
(
φ(i)Dii −

∑
j

Aijφ(j)
)

= −k
∑
j

(δijDii −Aij)φ(j) = −k
∑
j

Lijφ(j). (27.4)

When considering N stations together, the above model assumes the
matrix form

q = −kLφ (27.5)

where L = (D − A) ∈ RN×N is the Laplacian matrix of the graph
model (see Part I of this monograph). For clarity, Figure 8.4 illustrates
a signal within this diffusion model on a 2-vertex path graph obeying
the Fick law.

The data for the average daily net flow of passengers during the
morning rush hour at each station in 2016 was obtained from Transport

Figure 8.4: Towards a graph representation of the London underground network.
A simplified path graph with two stations surrounded by the respective populations,
φ(1) and φ(2), exhibits the corresponding net fluxes, q(1) and q(2). Intuitively, stations
surrounded by large populations experience net in-flows of passengers, whereas
stations surrounded by low populations experience net out-flows of passengers.

27.2. Modeling Commuter Population from Net Passenger Flow 477

Table 27.1: Daily average passenger flows during the morning rush hour per
transportation Zone in London

Zone Entries Exits Net Outflow

1 455,704 844,123 388,419
2 343,145 264,732 −78,413
3 275,965 104,414 −171,551
4–10 206,408 72,152 −134,256
Total 1,281,222 1,285,421 4,199

for London (TFL) (Transport for London n.d.), and is plotted as a
signal on the graph model of the London underground in Figure 8.5.
For illustration purposes, Table 27.1 shows the daily average net flow
of passengers per transportation zone. As expected, Zone 1 is the only
zone to exhibit a net outflow of passengers, while Zones 2–10 show a net
inflow of passengers. In particular, Zone 3 exhibits the largest inflow. In
an ideal scenario, the total net outflow across Zones 1–10 should sum
up to 0, however, the residual net outflow is attributed to passengers
entering the underground network through other transport services not
considered in our model, for example, rail services.

Moreover, Table 27.2 shows the average net flow of passengers for the
top 5 stations with the greater net inflow and outflow. The stations with
the greatest net outflow of passengers are located within the financial
(Bank, Canary Wharf, Green Park) and commercial (Oxford Circus,
Holborn) districts. In contrast, the greatest net inflow of passengers
is attributed to the contribution from the railway stations located in
residential areas.

To obtain an estimate of the resident population surrounding each
station, we can simply rearrange the passenger flow in (27.5) to obtain

φ̂ = −1
k

L+q (27.6)

where the symbol (·)+ denotes the matrix pseudo-inverse operator. How-
ever, notice that the population vector can only be estimated up to a
constant, hence the vector φ̂ actually quantifies the relative population

478 Metro Traffic Modeling Through Graphs

Table 27.2: Stations in the London underground system with greatest net passenger
outflow and inflow during the morning rush hour

Zone Entries Exits Net Outflow

Bank 17,577 69,972 52,395
Canary Wharf 8,850 56,256 47,406
Oxford Circus 3,005 44,891 41,886
Green Park 2,370 30,620 28,250
Holborn 1,599 25,294 23,695
Finsbury Park 20,773 8,070 −12,703
Canada Water 31,815 14,862 −16,953
Brixton 24,750 4,369 −20,381
Stratford 43,473 22,360 −21,113
Waterloo 61,129 22,861 −38,268

Figure 8.5: Net passenger outflow during the morning rush hour within Zones 1–3
of the London underground network. The magenta bars designate a net outflow of
passengers while the cyan bars designate a net inflow of passengers. Stations located
within business districts exhibit the greatest net outflow of passengers, while stations
located in residential areas, toward the boundaries of Zones 2–3, exhibit the largest
net inflow of passengers.

27.2. Modeling Commuter Population from Net Passenger Flow 479

Figure 8.6: Population distribution implied by our graph model in (27.6), calculated
from the net passenger outflow during the morning rush hour within Zones 1–3
of London underground system. As expected, business districts exhibit the lowest
population density, while residential areas (Zones 2–3) exhibit the highest commuter
population density.

between stations, whereby the station with the lowest estimated sur-
rounding population takes the value of 0. The so estimated resident
population surrounding each station, based on the morning net pas-
senger flow, is displayed in Figure 8.6 as a signal on a graph. Observe
that these estimates are reasonable and physically meaningful since
most of the resident population in London is concentrated toward the
more remote areas of Zones 2–3, while business districts at the center
of Zone 1 are sparsely populated in the evening.

28
Portfolio Cuts

Investment returns naturally reside on irregular domains, however, stan-
dard multivariate portfolio optimization methods are agnostic to data
structure. To this end, we investigate ways for the domain knowledge
to be meaningfully incorporated into the analysis, by means of portfolio
cuts. Such a graph-theoretic portfolio partitioning technique would allow
the investor to devise robust and tractable asset allocation schemes,
by virtue of a rigorous graph framework for considering smaller, com-
putationally feasible, and economically meaningful clusters of assets,
based on graph cuts. In turn, this makes it possible to fully utilize the
covariance matrix of asset returns for constructing the portfolio, even
without the requirement for its inversion.

Modern portfolio theory suggests an optimal strategy for minimizing
the investment risk, which is based on the second-order moments of
asset returns (Markowitz, 1952). The solution to this optimization task
is referred to as the minimum-variance (MV) portfolio. Consider the
vector, r(t) ∈ RN , which contains the returns of N assets at a time t,
the ith entry of which is given by

rt(i) = pt(i)− pt−1(i)
pt−1(i) (28.1)

481

482 Portfolio Cuts

where pt(i) denotes the value of the ith asset at a time t. The MV
portfolio asserts that the optimal vector of asset holdings, w ∈ RN , is
obtained through the following optimization problem

min
w

wTΣw, subject to wT1 = 1 (28.2)

where Σ = cov{r} ∈ RN×N is the covariance matrix of returns, 1 =
[1, . . . , 1]T , and the constraint, wT1 = 1, enforces full investment of the
capital. The optimal portfolio holdings (using the method of Lagrange
multipliers) then become

w = Σ−11
1TΣ−11 . (28.3)

It is important to highlight that the matrix inversion of Σ required in
(28.3) may lead to significant errors for ill-conditioned matrices. These
instability concerns have received substantial attention in recent years
(Kolm et al., 2014), and alternative procedures have been proposed to
promote robustness by either incorporating additional portfolio con-
straints (Clarke et al., 2002), introducing Bayesian priors (Black and
Litterman, 1992) or improving the numerical stability of covariance
matrix inversion (Ledoit and Wolf, 2003). A more recent approach has
been to model assets using market graphs (Boginski et al., 2003), that
is, based on graph-theoretic techniques. Intuitively, a universe of assets
can be naturally modelled as a network of vertices on a graph, whereby
an edge between two vertices (assets) designates both the existence of
a link and the degree of similarity between assets (Simon, 1962).
Remark 112: A graph-theoretic perspective offers an interpretable ex-
planation for the underperformance of minimum-variance optimization
(MVO) techniques in practice. Namely, since the covariance matrix Σ
is dense, standard multivariate models implicitly assume full connec-
tivity of the graph, and are therefore not adequate to account for the
structure inherent to real-world markets (Calkin and Lopez de Prado,
2014a,b, 2016). Moreover, it can be shown that the optimal holdings
under the MVO framework are inversely proportional to the vertex cen-
trality, thereby suggesting over-investing in assets with low centrality
(Li et al., 2019b; Peralta and Zareei, 2016).

28.1. Structure of Market Graph 483

Intuitively, it would be highly desirable to remove unnecessary graph
edges in order to more appropriately model the underlying structure
between assets (graph vertices); this can be achieved through vertex
clustering of the market graph (Boginski et al., 2003). Various portfolio
diversification frameworks employ this technique to allocate capital
within and across clusters of assets at multiple hierarchical levels. For
instance, the hierarchical risk parity scheme (Calkin and Lopez de
Prado, 2016) employs an inverse-variance weighting allocation which is
based on the number of assets within each asset cluster. Similarly, the
hierarchical clustering based asset allocation in Raffinot (2017) finds a
diversified weighting by distributing capital equally among each of the
cluster hierarchies.

Despite mathematical elegance and physical intuition, direct vertex
clustering is an NP hard problem. Consequently, existing graph-theoretic
portfolio constructions employ combinatorial optimization formulations
(Boginski et al., 2003, 2005, 2006, 2014; Gunawardena et al., 2012,
Kalyagin et al., 2014), which become computationally intractable for
large graph systems. To alleviate this issue, we employ the minimum cut
vertex clustering method to the graph of portfolio assets, to introduce
the concept of portfolio cut (Scalzo et al., 2020). In this way, smaller
graph partitions (cuts) can be evaluated quasi-optimally, using algebraic
methods, and in an efficient and rigorous manner.

28.1 Structure of Market Graph

A universe of N assets can be represented as a set of vertices on a market
graph (Boginski et al., 2003), whereby the edge weight, Wmn, between
vertices m and n is defined as the absolute correlation coefficient, |ρmn|,
of their respective returns of assets m and n, that is

Wmn = |σmn|√
σmmσnn

= |ρmn| (28.4)

where σmn = cov{rt(m), rt(n)} is the covariance of returns between the
assets m and n. In this way, we have Wmn = 0 if the assets m and n
are statistically independent (not connected), and Wmn > 0 if they are
statistically dependent (connected on a graph). Note that the resulting
weight matrix is symmetric, WT = W.

484 Portfolio Cuts

28.2 Minimum Cut Based Vertex Clustering

Vertex clustering aims to group together vertices from the asset universe,
V, into multiple disjoint clusters, Vi. For a market graph, assets which
are grouped into a cluster, Vi, are expected to exhibit a larger degree
of mutual within-cluster statistical dependency than with the assets
in other clusters, Vj , j 6= i. The most popular classical graph cut
methods are based on finding the minimum set of edges whose removal
would disconnect a graph in some “optimal” sense; this is referred
to as minimum cut based clustering (Schaeffer, 2007a) (see Part I of
this monograph for a comprehensive review of the minimum graph cut
problem and other graph spectral clustering methods).

Consider an N -vertex market graph, G = {V, E}, which is grouped
into K = 2 disjoint subsets of vertices, V1 ⊂ V and V2 ⊂ V, with
V1 ∪V2 = V and V1 ∩V2 = ∅. A cut of this graph, for the given clusters,
V1 and V2, is equal to a sum of all weights that correspond to the edges
which connect the vertices between the subsets, V1 and V2, that is

Cut(V1,V2) =
∑
m∈V1

∑
n∈V2

Wmn. (28.5)

A cut which exhibits the minimum value of the sum of weights between
the disjoint subsets, V1 and V2, considering all possible divisions of the
set of vertices, V, is referred to as the minimum cut.

Finding the minimum cut in (28.5) is a relatively easy problem and
can be solved efficiently (Stoer and Wagner, 1997). However, in practice,
this minimum cut formation in (28.5) often leads to unsatisfactory
performance (Von Luxburg, 2007). For example, assume that all the
weights are positive and that we allow an empty set as a cluster; upon
taking one cluster as an empty set and another cluster as a whole
graph, that would yield the minimum cut, which is 0. This result is
not a reasonable partition we desire. To overcome this problem, we
may “balance” the sizes of cluster and cut, i.e., each cluster should
be reasonably large, while at the same time the cut itself should be
minimized. Instead of using (28.5), two balanced cuts are often used,
Ratio Cut (Hagen and Kahng, 1992a) and Normalized Cut (Shi and
Malik, 2000), where a balancing term is incorporated into the cut
in (28.5).

28.2. Minimum Cut Based Vertex Clustering 485

Within graph cuts, a number of optimization approaches may be
employed to enforce some desired properties on graph clusters:

(i) Ratio cut. The value of Cut(V1,V2) is normalized by an additional
term to enforce the subsets, V1 and V2, to be simultaneously as
large as possible. The ratio cut formulation is given by Hagen and
Kahng (1992a)

CutR(V1,V2) =
(1
N1

+ 1
N2

) ∑
m∈V1

∑
n∈V2

Wmn (28.6)

where N1 and N2 are the respective numbers of vertices in the
sets V1 and V2. Since N1 +N2 = N , the term 1

N1
+ 1

N2
reaches its

minimum for N1 = N2 = N
2 .

(ii) Volume normalized cut. Since the vertex weights are involved
when designing the size of subsets V1 and V2, then by defining the
volumes of these sets as V1 = ∑

n∈V1 Dnn and V2 = ∑
n∈V2 Dnn,

we arrive at the volume normalized cut (Shi and Malik, 2000) (see
also Part I)

CutN(V1,V2) =
(1
V1

+ 1
V2

) ∑
m∈V1

∑
n∈V2

Wmn. (28.7)

Since V1 + V2 = V , the term 1
V1

+ 1
V2

reaches its minimum for
V1 = V2 = V

2 . Notice that vertices with a higher degree, Dnn,
are considered as structurally more important than those with
lower degrees. In turn, for market graphs, assets with a higher
average statistical dependence to other assets are considered as
more central.

Remark 113: It is important to note that clustering results based
on the two above graph cut forms are different. While the ratio cut
in (i) favors the clustering into subsets with (almost) equal number of
vertices, the volume normalized cut in (ii) favors subsets with (almost)
equal volumes, that is, subgraphs with vertices exhibiting (almost) equal
average statistical dependence to the other vertices.
Remark 114: Although the optimization algorithm for the cut in (28.5)
is simple, by introducing the balancing terms into this cut, the task

486 Portfolio Cuts

of finding the minimum of the objective functions in (28.6) and (28.7)
becomes NP hard (Von Luxburg, 2007; Wagner and Wagner, 1993).
However, if we relax the problem from a discrete valued to a real valued
one, then this boils down to the eigenproblem of graph Laplacian, which
is considered next.

28.3 Spectral Bisection Based Minimum Cut

To overcome the computational burden of finding the ratio cut, we may
opt for an approximative spectral solution which clusters vertices using
the eigenvectors of the graph Laplacian, L. The algorithm employs the
second (Fiedler, 1973a) eigenvector of the graph Laplacian, u2 ∈ RN , to
yield quasi-optimal vertex clustering on a graph. Despite its simplicity,
the algorithm is typically accurate and gives a good approximation to
the minimum cut (Ng et al., 2002; Spielman and Teng, 2007a).

To relate the problem of the minimum cut in (28.6) and (28.7) to
that of eigenanalysis of graph Laplacian, we employ an indicator vector,
denoted by x ∈ RN (Stanković et al., 2019a), for which the elements
take sub-graph-wise constant values within each disjoint subset (cluster)
of vertices, with these constants taking different values for different
clusters of vertices. In other words, the elements of x uniquely reflect
the assumed cut of the graph into disjoint subsets V1,V2 ⊂ V.

For a general graph, we consider two possible solutions for the
indicator vector, x, that satisfy the subset-wise constant form:

(i) Ratio cut. It can be shown that if the indicator vector is defined
as (see Part I of this monograph)

x(n) =

1
N1

, for n ∈ V1,

− 1
N2

, for n ∈ V2,
(28.8)

then the ratio cut, CutR(V1,V2) in (28.6), is equal to the Rayleigh
quotient of L and x, that is

CutR(V1,V2) = xTLx
xTx . (28.9)

28.3. Spectral Bisection Based Minimum Cut 487

Therefore, the indicator vector, x, which minimizes the ratio cut
also minimizes (28.9). From the indicator vector, we see∑
n∈V

x(n) =
∑
n∈V1

x(n) +
∑
n∈V 2

x(n) = N1 ×
1
N1
−N2 ×

1
N2

= 0.

(28.10)

In other words, we can say that the vector x is orthogonal to 1.
Moreover, we can see that the objective function in (28.9) is
invariant of the scale of x. From this discussion, we can relax the
problem of the objective function in (28.6) through the constraints,
as

min
x

xTLx, subject to xTx = 1, and xT1 = 0. (28.11)

Given that the considered graph is undirected and therefore L is
symmetric, the first eigenvector of the graph Laplacian is constant
(proportional to vector 1, u0 = 1/

√
N) and the associated first

eigenvalue is λ0 = 0. Therefore, by the Rayleigh–Ritz theorem,
the solution to the objective function in (28.11) is given by the
second eigenvector of the graph Laplacian, L, obtained as

Lx = λ1x, (28.12)

with the second eigenvalue, λk = λ1.

(ii) Volume normalized cut. Similarly, by defining x as

x(n) =

1
V1
, for n ∈ V1,

− 1
V2
, for n ∈ V2,

(28.13)

the volume normalized cut, CutN(V1,V2) in (28.7), takes the form
of a generalized Rayleigh quotient of L, given by (see again Part I)

CutN(V1,V2) = xTLx
xTDx . (28.14)

488 Portfolio Cuts

Similarly to the ratio cut, we see from the indicator vector that∑
n∈V

d(n)x(n) =
∑
n∈V1

d(n)x(n) +
∑
n∈V 2

d(n)x(n)

=
∑
n∈V1

d(n)× 1
V1
−
∑
n∈V2

d(n)× 1
V2

= V1 ×
1
V1
− V2 ×

1
V2

= 0, (28.15)

which yields (Dx)T1 = 0. Also, the objective function is invariant
to the scale of x. Therefore, we can formulate the optimization
problem from the objective function (28.14) as

min
x

xTLx, subject to xTDx = 1, and (Dx)T1 = 0.
(28.16)

The solution is given by the second generalized eigenvector of the
generalized eigenproblem of the graph Laplacian as

Lx = λ1Dx, (28.17)

since D−1/21 is the first generalized eigenvector of graph
Laplacian.

For the spectral solutions above, the membership of a vertex, n,
to either the subset V1 or V2 is uniquely defined by the sign of the
indicator vector, x = u1, that is

sign(x(n)) =

1, for n ∈ V1,

−1, for n ∈ V2.
(28.18)

Notice that a scaling of x by any constant would not influence the
solution for clustering into the subsets V1 or V2.

28.4 Repeated Portfolio Cuts

Although the above analysis has focused on the case with K = 2 disjoint
sub-graphs, it can be straightforwardly generalized to K ≥ 2 disjoint
sub-graphs through the method of repeated bisection.

28.4. Repeated Portfolio Cuts 489

Figure 8.1: Graph cut based asset allocation strategies. (a) Hierarchical graph
structure resulting from K = 4 portfolio cuts. (b) A graph tree based on the 1

2Ki

scheme. (c) A graph tree based on the 1
K+1 scheme.

A single application of the portfolio cut on the market graph, G, pro-
duces two disjoint sub-graphs, G1 and G2, as illustrated in Figure 8.1(a).
Notice that in this way we construct a hierarchical binary tree structure,
whereby the union of the leaves of the network is equal to the original
market graph, G. We can then perform a subsequent portfolio cut oper-
ation on one or both of the leaves based on some suitable criterion (e.g.,
the leaf with the greatest number of vertices or volume). Therefore,
(K + 1) disjoint sub-graphs (leaves) can be obtained by performing the
portfolio cut procedure K times (Scalzo et al., 2020).
Example 110: Figure 8.1(a) illustrates the hierarchical structure re-
sulting from K = 4 portfolio cuts of a market graph, G. The leaves

490 Portfolio Cuts

of the resulting binary tree are denoted by {G3,G4,G5,G7,G8} (in red),
whereby the number of disjoint sub-graphs is equal to (K + 1) = 5.
Notice that the union of the leaves amounts to the original graph, i.e.,
G3 ∪ G4 ∪ G5 ∪ G7 ∪ G8 = G.

28.5 Graph Asset Allocation Schemes

We next elaborate upon some intuitive asset allocation strategies, in-
spired by the work in Calkin and Lopez de Prado (2016) and Raffinot
(2017), which naturally builds upon the portfolio cut. The aim is to
determine a diversified weighting scheme by distributing capital among
the disjoint clusters (leaves) so that highly correlated assets within a
given cluster receive the same total allocation, thereby being treated as
a single investment entity.

Upon denoting the portion of the total capital allocated to a cluster
Gi by wi, we consider two simple asset allocation schemes:

(AS1) wi = 1
2Ki , where Ki is the number of portfolio cuts required to

obtain a sub-graph Gi;

(AS2) wi = 1
K+1 , where (K + 1) is the number of disjoint sub-graphs.

Remark 115: An equally-weighted asset allocation strategy may now
be employed within each cluster, i.e., every asset within the ith cluster,
Gi, will receive a weighting equal to wi

Ni
.

Remark 116: The weighting scheme in AS1 above is closely related
to the strategy proposed in Raffinot (2017), while the scheme in AS2
is inspired by the generic equal-weighted (EW) allocation scheme (De
Miguel and R. Uppal, 2009). These schemes are convenient in that
they require no assumptions regarding the across-cluster statistical
dependence. In addition, unlike the EW scheme, they implicitly consider
the inherent market risks (asset correlation) by virtue of the portfolio
cut formulation, which is based on the eigenanalysis of the market graph
Laplacian, L.
Example 111: Figures 8.1(b) and (c) illustrate respectively the asset
allocation schemes in AS1 and AS2 for K = 4 portfolio cuts, based on

28.6. Numerical Example 491

the market graph partitioning in Figure 8.1(a). Notice that the weights
associated to the disjoint sub-graphs (leaves in red) sum up to unity.

28.6 Numerical Example

The performance of the portfolio cuts and the associated graph-theoretic
asset allocation schemes was investigated using historical price data
comprising of the 100 most liquid stocks in the S&P 500 index, based
on the average trading volume, in the period 2014-01-01 to 2018-01-01.
The data was split into: (i) the in-sample dataset (2014-01-01 to 2015-
12-31) which was used to estimate the asset correlation matrix and to
compute the portfolio cuts; and (ii) the out-sample dataset (2016-01-01
to 2018-01-01), used to objectively quantify the profitability of the asset
allocation strategies (Scalzo et al., 2020).

Figure 8.2 displays the Kth iterations, for K = 1, 2, 10, of the
normalized portfolio cut in (28.9), applied to the original 100-vertex

Figure 8.2: Visualization of the 100-vertex market graph connectivity for the 100
most liquid stocks in S&P 500 index, and its partitions into disjoint sub-graphs
(separated by dashed grey lines). The edges (blue lines) were calculated based
on the correlation between assets. (a) Fully connected market graph with 5050
edges. (b) Partitioned graph after K = 1 portfolio cuts (CutN), with 2746 edges. (c)
Partitioned graph after K = 2 portfolio cuts (CutN), with 1731 edges. (d) Partitioned
graph after K = 10 portfolio cuts (CutN), with 575 edges. Notice that the number
of edges required to model the market graph is significantly reduced with each
subsequent portfolio cut, since

∑K+1
i=1

1
2 (N2

i +Ni) < 1
2 (N2 +N), ∀K > 0.

492 Portfolio Cuts

.

Figure 8.3: Out-sample performance of the graph cut based asset allocation
strategies. Notice that the Sharpe ratio typically improves with each subsequent
portfolio cut. The traditional portfolio strategies, EW and MV, attained the respective
Sharpe ratios of SREW = 1.85 and SRMV = 1.6.

market graph obtained from the in-sample data set. Next, for the out-
sample dataset, graph representations of the portfolio, for the number
of cuts K varying in the range [1, 10], were employed to assess the
performance of the asset allocation schemes described in Section 28.5.
The standard equally-weighted (EW) and minimum-variance (MV)
portfolios were also simulated for comparison purposes, with the results
displayed in Figure 8.3.

Conforming with the findings in Calkin and Lopez de Prado (2016)
and Raffinot (2017), the proposed graph asset allocation schemes con-
sistently delivered lower out-sample variance than the standard EW
and MV portfolios, thereby attaining a higher Sharpe ratio, i.e., the
ratio of the mean to the standard deviation of portfolio returns. This
verifies that the removal of possibly spurious statistical dependencies in
the “raw” format, through portfolio cuts, allows for robust and flexible
portfolio constructions.

28.6. Numerical Example 493

Such an approach enables the creation of graph-theoretic capital
allocation schemes, based on measures of connectivity which are inherent
to the portfolio cut formulation. In addition, the proposed portfolio
construction employs full information contained in the asset covariance
matrix, and without requiring its inversion, even in the critical cases of
limited data length or singular covariance matrices.

29
Conclusion

In many modern applications, graph topology is not known a priori and
hence its determination becomes part of the problem definition, rather
than serving as prior knowledge to aid solution. To perform simulta-
neous estimation of both data on a graph and the underlying graph
topology, without loss of generality we assume that the vertices (their
number, location, etc.) are given, while the edges and their associated
weights form part of the solution to the problem under consideration.
Three possible scenarios for the estimation of graph edges from the
data observed on a graph have been considered. Namely, in various
sensor network sensing setups (temperature, pressure, transportation)
the locations of the sensor positions (vertices) may be known while the
vertex distances convey physical meaning about data and inter-sensor
dependence and thus may be employed for weight determination. An-
other possibility is to employ the covariance and precision matrices,
which are commonly used as data similarity metrics and are thus a
natural choice of a metric for learning graph topology from data. The
third scenario are graphs for which the relations among the sensing
positions are physically well defined, such as in electric circuits, power

495

496 Conclusion

networks, linear heat transfer, social and computer networks, and spring-
mass systems. Next, the problem of simulation of graph signals has
been addressed and a detailed derivation and elaboration of sparsity
structure promoting optimization approaches, such as the LASSO and
graph-based version of LASSO (GLASSO), has been given. The inherent
connection between graphs and deep neural networks (DNNs) has been
further addressed, and the concepts of graph neural networks (GNN)
and graph convolutional neural networks (GCN) have been introduced.
It has been shown that the diffusion process on graphs underpins the
operation of GNNs. The enormous potential of the combination of the
universal function approximation property of neural networks with the
elegance and generality of graph models has been demonstrated through
the concepts of recurrent GNNs, spatial GNNs, spectral GNNs, together
with the interpretation of graph signal filtering as a diffusion process in
a “neural network” language. The advantages of these concepts have
been illustrated over the paradigms of semi-supervised learning and
label propagation, while the use of GNNs in graph link prediction has
been addressed based on an innovative but natural combination of
characteristic functions and generative adversarial nets, referred to as
reciprocal adversarial learning via characteristic functions (RCF-GAN).
Furthermore, the application of graphs in Big Data scenarios has been
demonstrated through their link with tensors, and tensor factorizations.
This is particularly significant, as multidimensional graphs are common
in practice, but are inadequately modelled through their imbalanced
and “flat view” adjacency matrices. To this end, we show that multi-
linear algebra, whereby multidimensional graphs are modelled via the
corresponding adjacency tensor, is a natural choice to discover intrinsic
relations in such multidimensional data. This has led to the concept of
multi-graph tensor network (MGNT), which serves as a general frame-
work for neural network learning in big data settings and on multiple
irregular domains. Finally, innovative and comprehensively elaborated
case studies have been given in support of the concepts, ranging from
portfolio cuts in finance to the modelling of vulnerability of stations in
underground metro traffic.

Appendices

A
Power Method for Eigenanalysis

Computational complexity of the eigenvalue and eigenvector calculation
for a symmetric matrix is of the order of O(N3), which is computation-
ally prohibitive for very large graphs, especially when only a few the
smoothest eigenvectors are needed, like in spectral graph clustering. To
mitigate this computational bottleneck, an efficient iterative approach,
called the Power Method, may be employed.

Consider the normalized weight matrix,

WN = D−1/2WD−1/2,

and assume that the eigenvalues of WN are |λ0| > |λ1| > · · · > |λM−1|,
with the corresponding eigenvectors, u1,u2, . . . ,uM−1. Consider also
an arbitrary linear combination of the eigenvectors, un, through the
coefficients αn,

x = α1u1 + α2u2 + · · ·+ αM−1uM−1.

A further multiplication of the vector x by the normalized weight
matrix, WN , results in

WNx = α1WNu1 + α2WNu2 + · · ·+ αM−1WNuM−1

= α1λ1u1 + α2λ2u2 + · · ·+ αM−1λM−1uM−1.

499

500 Power Method for Eigenanalysis

A repetition of this multiplication k times yields

Wk
Nx = α1λ

k
1u1 + α2λ

k
2u2 + · · ·+ αM−1λ

k
M−1uM−1

= α1λ
k
1

(
u1 + α2

λk2
λk1

u2 + · · ·+ αM−1
λkM−1
λk1

uM−1

)
u α1λ

k
1u1.

In other words, we have just calculated the first eigenvector of WN ,
given by

u1 = Wk
Nx/‖Wk

Nx‖2
which are achieved through only matrix products of WN and x (Tammen
et al., 2018; Trevisan, 2013). The convergence of this procedure depends
on the eigenvalue ratio λ2/λ1, and requires that α1 is not close to 0.
Note that WN is a highly sparse matrix, which significantly reduces
the calculation complexity.

After the eigenvector u1 is obtained, the corresponding eigenvalue
can be calculated as its smoothing index, λ1 = uT1 WNu1.

After calculating u1 and λ1, we can remove their contribution from
the normalized weight matrix, WN , through deflation, as WN ←
WN−λ1u1uT1 , and then continue to calculate the next largest eigenvalue
and its eigenvector, λ2 and u2. This procedure can be repeated iteratively
until the desired number of eigenvectors is found.

The relation of the normalized weight matrix, WN , with the nor-
malized graph Laplacian, LN , is given by

LN = I−WN ,

while the relation between the eigenvalues and eigenvectors of L and
WN follows from WN = UTΛU, to yield

LN = I−UTΛU = UT (I−Λ)U.

The eigenvalues of LN and WN are therefore related as λ(L)
n = 1− λn,

and share the same corresponding eigenvectors, un, of the normalized
graph Laplacian and the normalized weight matrix. This means that
λ1 = 1 corresponds to λ(L)

0 = 0 and that the second largest eigenvalue
of WN produces the Fiedler vector of the normalized Laplacian.

501

Note that the second largest eigenvalue of WN is not necessarily λ2
since the eigenvalues of WN can be negative.
Example 112: The weight matrix W from (2.4) is normalized by the
degree matrix from (2.6) to arrive at WN = D−1/2WD−1/2. The power
algorithm is then used to calculate the four largest eigenvalues and
the corresponding eigenvectors of WN in 200 iterations, to give λn ∈
{1.0000,−0.7241,−0.6795, 0.6679}. These are very close to the four ex-
act largest eigenvalues of WN , λn ∈ {1.0000,−0.7241,−0.6796, 0.6677}.
Note that the Fiedler vector of the normalized graph Laplacian is
associated with λ4 = 0.6679 as it corresponds to the second largest
eigenvalue of WN , when the eigenvalue signs are accounted for. Even
when calculated using the approximative power method, the Fiedler
vector is close to its exact value, as shown in Figure 4.8(d), with the
maximum relative error of its elements being 0.016.

Notice that it is possible to calculate the Fiedler vector of a graph
Laplacian even without using the weight matrix. Consider a graph
whose eigenvalues of the Laplacian are λ0 = 0 > λ1 > λ2 > · · · >
λN−1, where λ1 corresponds to the largest value of the sequence λ0 =
0, 1/λ1, 1/λ2, . . . , 1/λN−1. These are also the eigenvalues of the pseudo-
inverse of the graph Laplacian, L+ = pinv(L). Now, since the pseudo-
inverse of the graph Laplacian, L+, and the graph Laplacian, L, have
the same eigenvectors, we may apply the power method to the pseudo-
inverse of the graph Laplacian, L+, and the eigenvector corresponding
to the largest eigenvalue is the Fiedler vector.

502 Power Method for Eigenanalysis

Algorithm 8. Power Method for eigenanalysis.
Input:

• Normalized weight matrix WN

• Number of iterations, It
• Number of the desired largest eigenvectors, M

1: for m = 1 to M do
2: um ∈ {−1, 1}M , drawn randomly (uniformly)
3: for i = 1 to It do
4: um ←WNum/||WNum||2
5: λm ← uHmWNum
6: end do
7: WN ←WN − λmumuHm
8: end do
Output:

• Largest M eigenvalues |λ0| > |λ1| > · · · > |λM−1| and the
corresponding eigenvectors u1, . . . ,uM−1

• Fiedler vector of the normalized graph Laplacian is the eigen-
vector un1 of the second largest eigenvalue, λn1 , λ0 = 1 >

λn1 > · · · > λnM−1 .

B
Algorithm for Graph Laplacian Eigenmaps

The algorithm for the Laplacian eigenmap and spectral clustering based
on the eigenvectors of the graph Laplacian, the generalized eigenvectors
of the graph Laplacian, and the eigenvectors of the normalized Laplacian,
is given in the pseudo-code form in Algorithm 9.

Comments on the Algorithm: For the normalized Laplacian,
Line 2 should be replaced by L ← I −D−1/2WD−1/2, while for the
generalized eigenvectors Line 3 should be replaced by [U,Λ]← eig(L,D),
see also Table 4.1. The indicator values of vertex positions in the
output graph are: P = 0, for the original vertex space, and P = 1,
for the spectral vertex space. The indicator of mapping is: Map = 1,
for the commute time mapping (matrix Λ̄ is obtained from Λ, by
omitting the trivial element λ0 = 0), and Map = 2, for the diffusion
mapping (in this case the generalized eigenvectors must be used in
Line 3, [U,Λ]← eig(L,D) and the diffusion step t should be given as
an additional input parameter), otherwiseMap = 0. The indicator of the
eigenvectors normalization is: S = 0, for the case without normalization,
S = 1, for two-norm normalization, S = 2, for the case of binary
normalization, S = 3, for binary normalization with the mean as a
reference, and S = 4, for marginal normalization. The indicator of

503

504 Algorithm for Graph Laplacian Eigenmaps

Algorithm 9. Graph Laplacian Based Eigenmaps.
Input:

• Vertex V = {0, 1, . . . , N − 1} positions, rows of X
• Weight matrix W, with elements Wmn

• Laplacian eigenmap dimensionality, M
• Position, mapping, normalization, and coloring indicators
P,Map, S, C

1: D← diag(Dnn =
∑N−1

m=0 Wmn, n = 0, 1, . . . , N − 1)
2: L← D−W
3: [U,Λ]← eig(L)
4: uk(n)← U(n, k), for k = 1, . . . ,M , n = 0, 1, . . . , N−1.
5: M← maxn(U(n, 1:L)), m← minn(U(n, 1:L))
6: qn ← [u1(n), u2(n), . . . , uL(n)], for all n
7: If Map=1, qn ← qnΛ̄−1/2, end
8: If Map=2, qn ← qn(I− Λ̄)t, end

9: yn ←

qn, for S = 0,
qn/‖qn‖2, for S = 1,
sign(qn), for S = 2,
sign(qn − (M + m)/2), for S = 3,
(qn −m)./(M−m), for S = 4

10: Y← yn, as the rows of Y

11: Z←
{

X, for P = 0,
Y, for P = 1

12: ColorMap←
{

Constant, for C = 0,
(Y + 1)/2, for C = 1

13: GraphPlot(W,Z,ColorMap)
14: Cluster the vertices according to Y and refine using the k-means

algorithm (Remark 30) or the ratio cut recalculation algorithm
(Remark 33).

Output:
• New graph
• Subsets of vertex clusters

vertex coloring is: C = 0, for the same color for all vertices is used, and
C = 1, when the spectral vector defines the vertex colors.

C
Other Graph Laplacian Forms

We here review some other forms of the graph Laplacian, including
the Laplacian for directed graphs, graph Laplacian for the graphs with
negative weights, and graph p-Laplacian.

C.1 Graph Laplacian for Directed Graphs

Directed graphs are typically analyzed based on the adjacency matrix
and its spectrum. It is important to notice that the difference between
a constant vector x and a vector Ax does not result in a zero-valued
vector; this is because, in general, the solution to the eigenvalue relation,
Au = λu, is not a vector with constant elements. The value Ax and the
difference x−Ax/λmax will be used in Part II to define the shift on a
graph. In order to introduce an operator on a directed graph which will
restore the property of zero-valued total-variation for constant vectors,
the Laplacian for directed graphs was introduced in Singh et al. (2016)
and further analyzed in Sardellitti et al. (2017).

Since each edge in a directed graph connects one outgoing and one
incoming vertex, in order to avoid ambiguity, the edges will be assigned

505

506 Other Graph Laplacian Forms

to the incoming vertex. The in-degree is then calculated as

Din(m,m) =
N−1∑
n=0

Wmn,

with the Laplacian of a directed graph defined by
L = Din −W.

In this way, the sum of each row in the Laplacian of a directed graph is
zero-valued, meaning that any constant vector is also an eigenvector,
with the corresponding λ = 0. Spectral analysis is then performed using
the eigendecomposition of L, and since in this case L is not symmetric,
the eigenvalues may be complex-valued.

The total variation of a vector, x, for a shift operator, S, is defined by
‖x− Sx‖1,

using the L1 norm or
‖x− Sx‖2,

using the L2 norm. If the operator S is defined as S = I−L, where I is
the identity matrix, then

‖x− Sx‖22 = ‖Lx‖22 = (Lx)TLx = xTLTLx.
If the vector x is an eigenvector, x = uk, then

‖uk − Suk‖22 = uTkLTLuk = |λk|2,
which indicates that the smoothness of an eigenvector is proportional
to |λk|2. Therefore, in analogy to frequency in classical signal analysis
it can be used as an indicator of the variation of an eigenvector.
Example 113: For the directed graph from Figure 2.1, the adjacency
matrix is given by (2.2) and the in-degree matrix by

Din =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2

, (C.1)

C.2. Signed Graphs and Signed Graph Laplacian 507

with the corresponding graph Laplacian

L =

1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
−1 0 4 −1 −1 0 0 −1
−1 0 0 1 0 0 0 0

0 −1 −1 0 3 −1 0 0
0 0 0 0 0 1 0 −1
0 0 0 −1 0 0 2 −1
0 0 −1 0 0 0 −1 2

. (C.2)

Remark 117: Graph Laplacian of an undirected graph is a special case
of the graph Laplacian of a directed graph, with each undirected edge
being a combination of an incoming and an outgoing edge of the same
weight.

C.2 Signed Graphs and Signed Graph Laplacian

Graphs for which edge weights may assume both positive and negative
values are called signed graphs, and were introduced in Harary et al.
(1953), where the authors motivated graphs with weights {1, 0,−1}
through the modeling of social relations such as like, indifference, and
dislike.

The vertex degree in a signed graph is defined as a sum of the
absolute values of its weights (Hou, 2005), that is

Da(m,m) =
N−1∑
n=0
|Wmn| =

N−1∑
n=0

Wmnsign(Wmn).

The corresponding signed graph Laplacian then becomes

La = Da −W,

with the quadratic form of the Laplacian of a signed graph given by

xTLax = 1
2

N−1∑
m=0

N−1∑
m=0
|Wmn|(x(m)− sign(Wmn)x(n)).

Notice that the signed graph Laplacian is positive-semidefinite.

508 Other Graph Laplacian Forms

Cut of a signed graph. The cut of a signed graph represents a
sum of all absolute weights that correspond to the edges which connect
the vertices between the subsets, E and H, that is

Cut(E ,H) =
∑
m∈E
n∈H

|Wmn|.

All tools for the analysis of standard graphs can also be applied to
signed graphs.

Notice that since the signed graph Laplacian may be positive definite,
it then follows that a constant vector (with a zero eigenvalue) may
not represent an eigenvector of the signed Laplacian. The concept of
balanced graphs is introduced to deal with this issue, whereby a graph
is said to be balanced if there exists a partition of its vertices into two
disjoint subsets, E and H, such that all positive edges reside within
either E or H, while all negative edges connect the vertices between E
or H. Then, the signed Laplacian, La, of a connected signed graph is
positive definite iff the graph is not balanced (Harary et al., 1953).

C.3 Graph p-Laplacian

A generalization of the graph Laplacian, called the p-Laplacian, and
denoted by Lp, is obtained from the generalization of the quadratic
Laplacian form as (Bühler and Hein, 2009)

xTLpx = 1
2

N−1∑
m=0

N−1∑
n=0

Wmn|x(n)− x(m)|p. (C.3)

Obviously, for p = 2, the quadratic form of standard graph Laplacian,
L, is obtained. The elements of Lpx, denoted by Lpx(n), that satisfy
(C.3) are defined as

Lpx(n) =
N−1∑
m=0

Wmn|x(n)− x(m)|p−1sign(x(n)− x(m))

and it can be straightforwardly verified that the inner product of x(n)
and Lpx(n) produces (C.3).

C.3. Graph p-Laplacian 509

According to (28.9), the ratio graph cut, CutN(E ,H), can be ob-
tained by solving the minimization problem

CutN(E ,H) = min
E⊂V

{
xTLx
xTx

}
(C.4)

with x = u1. Therefore, the eigenvector u1 can be considered as a
(non-constant) solution to the minimization problem in (C.4).

Similarly, the minimization problem for the p-Laplacian becomes

min
E⊂V

{
xTLpx

minc ‖x− c‖pp

}
. (C.5)

with the solution in the form of the first eigenvector, u(p)
1 , comprising

the elements, v(p)
1 (n), of the p-Laplacian (Bühler and Hein, 2009)

Lp
v

(p)
1

(n) = λ
(p)
1 |v

(p)
1 (n)|p−1sign(v(p)

1 (n)).

Notice that for x = v(p)
1 the minimum value of (C.5) is equal to the

eigenvalue, λ(p)
1 .

The Cheeger ratio cut, φ(V), with the p-Laplacian exhibits the
following general bounds(2

maxi di

)p−1(φ(V)
p

)p
≤ λ(p)

1 ≤ 2p−1φ(V) (C.6)

φ(V)
maxi di

≤ φ∗(V)
maxi di

≤ p
(

φ(V)
maxi di

)1/p
, (C.7)

where di is the degree of vertex i and φ∗(V) is the minimum Cheeger’s
ratio cut obtained by an optimal thresholding of the eigenvector u1
with a threshold t, that is, a vertex n belongs to the subset of vertices
E if u1(n) > t.

The above inequality implies that the bounds are tight for p→ 1,
which indicates that the 1-Laplacian based cut is equivalent to the
Cheeger ratio cut; this may be used to improve the cut performance
in practical applications. Still, the main problem remains in the com-
putational issues related to calculation of the p-Laplacian eigenvectors,
especially for p→ 1 (Bühler and Hein, 2009; Chang, 2016; Chang et al.,
2016).

Acknowledgments

We wish to express our sincere gratitude to Yao Lei Xu, Kriton Kon-
stantinidis, Ghena Hammour, Shota Saito, and Giacomo Kahn whose
thorough proofreading and deep insight have been of great help at
various stages of manuscript preparation.

511

References

Afrati, F. and A. G. Constantinides. (1978). “The use of graph theory in
binary block code construction”. In: Proceedings of the International
Conference on Digital Signal Processing. 228–233.

Agaskar, A. and Y. M. Lu. (2013). “A spectral graph uncertainty
principle”. IEEE Transactions on Information Theory. 59(7): 4338–
4356.

Anis, A., A. Gadde, and A. Ortega. (2016). “Efficient sampling set
selection for bandlimited graph signals using graph spectral proxies”.
IEEE Transactions on Signal Processing. 64(14): 3775–3789.

Ann B. Lee, B. N. and L. Wasserman. (2008). “Treelets: An adaptive
multiscale basis for sparse unordered data”. The Annals of Applied
Statistics. 2(2): 435–471.

Atwood, J. and D. Towsley. (2016). “Diffusion-convolutional neural
networks”. In: Advances in Neural Information Processing Systems.
1993–2001.

Baba, K., R. Shibata, and M. Sibuya. (2004). “Partial correlation and
conditional correlation as measures of conditional independence”.
Australian & New Zealand Journal of Statistics. 46(4): 657–664.

Bacciu, D. and L. Di Sotto. (2019). “A non-negative factorization ap-
proach to node pooling in graph convolutional neural networks”. In:
Proceedings of the International Conference of the Italian Association
for Artificial Intelligence. Springer. 294–306.

513

514 References

Bacciu, D., F. Errica, and A. Micheli. (2018). “Contextual graph Markov
model: A deep and generative approach to graph processing”. arXiv
preprint arXiv:1805.10636.

Bacciu, D. and D. P. Mandic. (2020). “Tensor decompositions in deep
learning”. In: Proc. of the European Symposium on Artificial Neu-
ral Networks, Computational Intelligence and Machine Learning
(ESANN’20). 441–450.

Baingana, B. and G. B. Giannakis. (2016). “Tracking switched dynamic
network topologies from information cascades”. IEEE Transactions
on Signal Processing. 65(4): 985–997.

Banerjee, O., L. E. Ghaoui, and A. d’Aspremont. (2008). “Model selec-
tion through sparse maximum likelihood estimation for multivariate
Gaussian or binary data”. Journal of Machine Learning Research.
9(Mar): 485–516.

Bapat, R. (1996). “The Laplacian matrix of a graph”. Mathematics
Student-India. 65(1): 214–223.

Barik, S., R. B. Bapat, and S. Pati. (2015). “On the Laplacian spectra
of product graphs”. Applicable Analysis and Discrete Mathematics:
39–58.

Behjat, H., N. Leonardi, L. Sörnmo, and D. Van De Ville. (2015).
“Anatomically-adapted graph wavelets for improved group-level
fMRI activation mapping”. NeuroImage. 123: 185–199.

Behjat, H., U. Richter, D. Van De Ville, and L. Sörnmo. (2016). “Signal-
adapted tight frames on graphs”. IEEE Transactions on Signal
Processing. 64(22): 6017–6029.

Behjat, H. and D. Van De Ville. (2019). “Spectral design of signal-
adapted tight frames on graphs”. In: Vertex-Frequency Analysis of
Graph Signals. Springer. 177–206.

Belkin, M. and P. Niyogi. (2003). “Laplacian eigenmaps for dimensional-
ity reduction and data representation”. Neural Computation. 15(6):
1373–1396.

Belkin, M. and P. Niyogi. (2008). “Towards a theoretical foundation
for Laplacian-based manifold methods”. Journal of Computer and
System Sciences. 74(8): 1289–1308.

Berge, C. (1984). Hypergraphs: Combinatorics of Finite Sets. Vol. 45.
Elsevier.

References 515

Black, F. and R. Litterman. (1992). “Global Portfolio Optimization”.
Financial Analysts Journal. 48(5): 280–291.

Boashash, B. (2015). Time-frequency signal analysis and processing: A
comprehensive reference. Academic Press.

Boginski, V., S. Butenko, S. O., S. Trunkhanov, and J. Gil Lafuente.
(2014). “A Network-Based Data Mining Approach to Portfolio Se-
lection via Weighted Clique Relaxations”. Annals of Operations
Research. 216: 23–34.

Boginski, V., S. Butenko, and P. M. Pardalos. (2003). “On Structural
Properties of the Market Graph”. In: Innovations in Financial and
Economic Networks. Ed. by A. Nagurney. Edward Elgar Publishers.
29–45.

Boginski, V., S. Butenko, and P. M. Pardalos. (2005). “Statistical
Analysis of Financial Networks”. Computational Statistics & Data
Analysis. 48(2): 431–443.

Boginski, V., S. Butenko, and P. M. Pardalos. (2006). “Mining Market
Data: A Network Approach”. Computers & Operations Research.
33(11): 3171–3184.

Bohannon, A. W., B. M. Sadler, and R. V. Balan. (2019). “A filtering
framework for time-varying graph signals”. In: Vertex-Frequency
Analysis of Graph Signals. Springer. 341–376.

Bojchevski, A., O. Shchur, D. Zügner, and S. Günnemann. (2018).
“NetGAN: Generating graphs via random walks”. arXiv preprint
arXiv:1803.00816.

Brandes, U. (2005). Network Analysis: Methodological Foundations.
Springer.

Brouwer, A. E. and W. H. Haemers. (2012). Spectra of Graphs. New
York: Springer-Verlag.

Bruna, J., W. Zaremba, A. Szlam, and Y. LeCun. (2013). “Spectral
networks and locally connected networks on graphs”. arXiv preprint
arXiv:1312.6203.

Bühler, T. and M. Hein. (2009). “Spectral clustering based on the graph
p-Laplacian”. In: Proceedings of the 26th ACM Annual International
Conference on Machine Learning. 81–88.

516 References

Bunse-Gerstner, A. and W. B. Gragg. (1988). “Singular value decompo-
sitions of complex symmetric matrices”. Journal of Computational
and Applied Mathematics. 21(1): 41–54.

Caetano, T. S., J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola.
(2009). “Learning graph matching”. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 31(6): 1048–1058.

Calkin, N. J. and M. Lopez de Prado. (2014a). “Stochastic Flow Dia-
grams”. Algorithmic Finance. 3(1–2): 21–42.

Calkin, N. J. and M. Lopez de Prado. (2014b). “The Topology of Macro
Financial Flows: An Application of Stochastic Flow Diagrams”.
Algorithmic Finance. 3(1): 43–85.

Calkin, N. J. and M. Lopez de Prado. (2016). “Building Diversified
Portfolios that Outperform Out of Sample”. The Journal of Portfolio
Management. 42(4): 59–69.

Calvi, G. G., A. Moniri, M. Mahfouz, Q. Zhao, and D. P. Mandic.
(2019). “Compression and interpretability of deep neural networks
via Tucker tensor layer: From first principles to tensor valued back-
propagation”. arXiv preprint arXiv:1903.06133.

Camponogara, E. and L. F. Nazari. (2015). “Models and algorithms
for optimal piecewise-linear function approximation”. Mathematical
Problems in Engineering. 2015.

Candes, E. J. (2008). “The restricted isometry property and its impli-
cations for compressed sensing”. Comptes Rendus Mathematique.
346(9-10): 589–592.

Candès, E. J., J. Romberg, and T. Tao. (2006). “Robust uncertainty
principles: Exact signal reconstruction from highly incomplete fre-
quency information”. IEEE Transactions on Information Theory.
52(2): 489–509.

Chami, I., S. Abu-El-Haija, B. Perozzi, C. Re, and K. Murphy. (2020).
“Machine learning on graphs: A model and comprehensive taxon-
omy”. arXiv preprint arXiv:2005.03675.

Chandra, A. K., P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari.
(1996). “The electrical resistance of a graph captures its commute
and cover times”. Computational Complexity. 6(4): 312–340.

Chang, K., S. Shao, and D. Zhang. (2016). “The 1-Laplacian Cheeger
cut: Theory and algorithms”. arXiv preprint arXiv:1603.01687.

References 517

Chang, K. C. (2016). “Spectrum of the 1-Laplacian and Cheeger’s
constant on graphs”. J. Graph Theory. 81(2): 167–207.

Chen, G., D. R. Glen, Z. S. Saad, J. P. Hamilton, M. E. Thomason,
I. H. Gotlib, and R. W. Cox. (2011). “Vector autoregression, struc-
tural equation modeling, and their synthesis in neuroimaging data
analysis”. Computers in Biology and Medicine. 41(12): 1142–1155.

Chen, S., A. Sandryhaila, and J. Kovačević. (2015a). “Sampling theory
for graph signals”. In: Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 3392–3396.

Chen, S., A. Sandryhaila, J. M. Moura, and J. Kovačević. (2014). “Signal
denoising on graphs via graph filtering”. In: Proc. 2014 IEEE Global
Conference on Signal and Information Processing (GlobalSIP). 872–
876.

Chen, S., A. Sandryhaila, J. M. Moura, and J. Kovačević. (2015b). “Sig-
nal recovery on graphs: Variation minimization”. IEEE Transactions
on Signal Processing. 63(17): 4609–4624.

Chen, S., R. Varma, A. Sandryhaila, and J. Kovačević. (2015c). “Discrete
signal processing on graphs: Sampling theory”. IEEE Transactions
on Signal Processing. 63(24): 6510–6523.

Chen, S., R. Varma, A. Singh, and J. Kovačević. (2016). “Signal recov-
ery on graphs: Fundamental limits of sampling strategies”. IEEE
Transactions on Signal and Information Processing over Networks.
2(4): 539–554.

Chepuri, S. P. and G. Leus. (2016). “Subsampling for graph power spec-
trum estimation”. In: Proc. IEEE Sensor Array and Multichannel
Signal Processing Workshop (SAM). 1–5.

Chepuri, S. P., S. Liu, G. Leus, and A. O. Hero. (2017). “Learning
sparse graphs under smoothness prior”. In: Proceedings of the 2017
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE. 6508–6512.

Christofides, N. (1975). Graph Theory: An Algorithmic Approach. Aca-
demic Press.

Chung, F. (1997). Spectral Graph Theory. Providence, RI: AMS.
Chung, F. (2005). “Laplacians and the Cheeger inequality for directed

graphs”. Annals of Combinatorics. 9(1): 1–19.

518 References

Chung, F. R. and R. P. Langlands. (1996). “A combinatorial Laplacian
with vertex weights”. Journal of Combinatorial Theory, Series A.
75(2): 316–327.

Cichocki, A., N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P.
Mandic. (2016). “Tensor networks for dimensionality reduction and
large-scale optimization. Part 1: Low-rank tensor decompositions”.
Foundations and Trends® in Machine Learning. 9(4–5): 249–429.

Cichocki, A., A.-H. Phan, Q. Zhao, N. Lee, I. V. Oseledets, M. Sugiyama,
and D. Mandic. (2017). “Tensor networks for dimensionality reduc-
tion and large-scale optimization. Part 2: Applications and future
perspectives”. Foundations and Trends® in Machine Learning. 9(6):
431–673.

Cioacă, T., B. Dumitrescu, and M.-S. Stupariu. (2019). “Graph-based
wavelet multiresolution modeling of multivariate terrain data”. In:
Vertex-Frequency Analysis of Graph Signals. Springer. 479–507.

Clarke, R., H. De Silva, and S. Thorley. (2002). “Portfolio Constraints
and the Fundamental Law of Active Management”. Financial Ana-
lysts Journal. 58: 48–66.

Cohen, L. (1995). Time-frequency Analysis. Electrical Engineering Signal
Processing. Prentice Hall PTR. isbn: 9780135945322.

Coifman, R. R. and S. Lafon. (2006). “Diffusion maps”. Applied and
Computational Harmonic Analysis. 21(1): 5–30.

Cooper, J. and A. Dutle. (2012). “Spectra of uniform hypergraphs”.
Linear Algebra and Its Applications. 436(9): 3268–3292.

Cvetković, D. M. and M. Doob. (1985). “Developments in the theory of
graph spectra”. Linear and Multilinear Algebra. 18(2): 153–181.

Cvetković, D. M., M. Doob, and H. Sachs. (1980). Spectra of Graphs:
Theory and Application. Vol. 87. Academic Press.

Cvetković, D. M. and I. Gutman. (2011). Selected Topics on Applications
of Graph Spectra. Matematički Institut SANU (Serbian Academy of
Scences and Arts).

Dai, H., Z. Kozareva, B. Dai, A. Smola, and L. Song. (2018). “Learning
steady-states of iterative algorithms over graphs”. In: Proceedings
of the International Conference on Machine Learning. 1114–1122.

Daković, M., L. Stanković, and E. Sejdić. (2019). “Local smoothness of
graph signals”. Mathematical Problems in Engineering. 2019.

References 519

Dal Col, A., P. Valdivia, F. Petronetto, F. Dias, C. T. Silva, and
L. G. Nonato. (2019). “Wavelet-based visual data exploration”. In:
Vertex-Frequency Analysis of Graph Signals. Springer. 459–478.

Das, A., A. L. Sampson, C. Lainscsek, L. Muller, W. Lin, J. C. Doyle,
S. S. Cash, E. Halgren, and T. J. Sejnowski. (2017). “Interpretation
of the precision matrix and its application in estimating sparse brain
connectivity during sleep spindles from human electrocorticography
recordings”. Neural Computation. 29(3): 603–642.

De Cao, N. and T. Kipf. (2018). “MolGAN: An implicit generative model
for small molecular graphs”. arXiv preprint arXiv:1805.11973.

De Miguel V., L. G. and R. R. Uppal. (2009). “Optimal Versus Naive Di-
versification: How Inefficient is the 1/N Portfolio Strategy?” Review
of Financial Studies. 22: 1915–1953.

Dees, B. S., A. G. Constantinides, and D. P. Mandic. (2019). “Graph the-
ory and metro traffic modelling”. arXiv preprint arXiv:1912.05964.

Defferrard, M., X. Bresson, and P. Vandergheynst. (2016). “Convolu-
tional neural networks on graphs with fast localized spectral fil-
tering”. In: Advances in Neural Information Processing Systems.
3844–3852.

Dempster, A. P. (1972). “Covariance selection”. Biometrics: 157–175.
Dhillon, I. S., Y. Guan, and B. Kulis. (2004). “Kernel k-means: Spectral

clustering and normalized cuts”. In: Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining. 551–556.

Doersch, C. (2016). “Tutorial on variational autoencoders”. arXiv
preprint arXiv:1606.05908.

Dong, X., D. Thanou, P. Frossard, and P. Vandergheynst. “Learning
Graphs from Signal Observations under Smoothness Prior”.

Dong, X., P. Frossard, P. Vandergheynst, and N. Nefedov. (2012).
“Clustering with multi-layer graphs: A spectral perspective”. IEEE
Transactions on Signal Processing. 60(11): 5820–5831.

Dong, X., D. Thanou, P. Frossard, and P. Vandergheynst. (2016). “Learn-
ing Laplacian matrix in smooth graph signal representations”. IEEE
Transactions on Signal Processing. 64(23): 6160–6173.

520 References

Dong, X., D. Thanou, M. Rabbat, and P. Frossard. (2019). “Learning
graphs from data: A signal representation perspective”. IEEE Signal
Processing Magazine. 36(3): 44–63.

Dorfler, F. and F. Bullo. (2012). “Kron reduction of graphs with appli-
cations to electrical networks”. IEEE Transactions on Circuits and
Systems I: Regular Papers. 60(1): 150–163.

Duncan, A. (2004). “Powers of the adjacency matrix and the walk
matrix”. The Collection: 1–11.

Ekambaram, V. N. (2014). Graph-Structured Data Viewed Through a
Fourier Lens. Berkeley: University of California.

Elad, M. and A. M. Bruckstein. (2002). “Generalized uncertainty princi-
ple and sparse representation in pairs of bases”. IEEE Transactions
on Information Theory. 48(9): 2558–2567.

Epskamp, S. and E. I. Fried. (2018). “A tutorial on regularized partial
correlation networks.” Psychological Methods.

Erb, W. (2019). “Shapes of uncertainty in spectral graph theory”. arXiv
preprint arXiv:1909.10865.

Fiedler, M. (1973a). “Algebraic Connectivity of Graphs”. Czechoslovak
Mathematical Journal. 23(2): 298–305.

Fiedler, M. (1973b). “Algebraic connectivity of graphs”. Czechoslovak
Mathematical Journal. 23(2): 298–305.

Freeman, L. C. (1977). “A Set of Measures of centrality based on
Betweenness”. Sociometry. 40: 35–41.

Friedman, J., T. Hastie, and R. Tibshirani. (2008). “Sparse inverse
covariance estimation with the graphical LASSO”. Biostatistics.
9(3): 432–441.

Fujiwara, K. (1995). “Eigenvalues of Laplacians on a closed Riemannian
manifold and its nets”. Proceedings of the American Mathematical
Society. 123(8): 2585–2594.

Gama, F., E. Isufi, A. Ribeiro, and G. Leus. (2019). “Controllability
of bandlimited graph processes over random time varying graphs”.
IEEE Transactions on Signal Processing. 67(24): 6440–6454.

Gauvin, L., A. Panisson, and C. Cattuto. (2014). “Detecting the com-
munity structure and activity patterns of temporal networks: a non-
negative tensor factorization approach”. PLOS ONE. 9(1): e86028.

References 521

Gavili, A. and X.-P. Zhang. (2017). “On the shift operator, graph
frequency, and optimal filtering in graph signal processing”. IEEE
Transactions on Signal Processing. 65(23): 6303–6318.

Giannakis, G. B., Y. Shen, and G. V. Karanikolas. (2018). “Topology
identification and learning over graphs: Accounting for nonlinearities
and dynamics”. Proceedings of the IEEE. 106(5): 787–807.

Gilmer, J., S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl.
(2017). “Neural message passing for quantum chemistry”. In: Pro-
ceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org. 1263–1272.

Girault, B. (2015). “Stationary graph signals using an isometric graph
translation”. In: Proc. 23rd European Signal Processing Conference
(EUSIPCO). 1516–1520.

Girault, B., P. Gonçalves, and É. Fleury. (2015). “Translation on graphs:
An isometric shift operator”. IEEE Signal Processing Letters. 22(12):
2416–2420.

Gori, M., G. Monfardini, and F. Scarselli. (2005). “A new model for
learning in graph domains”. In: Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks, 2005. Vol. 2. IEEE.
729–734.

Grady, L. J. and J. R. Polimeni. (2010). Discrete Calculus: Applied
Analysis on Graphs for Computational Science. Springer Science &
Business Media.

Grassi, F., A. Loukas, N. Perraudin, and B. Ricaud. (2017). “A time-
vertex signal processing framework: Scalable processing and mean-
ingful representations for time-series on graphs”. IEEE Transactions
on Signal Processing. 66(3): 817–829.

Grebenkov, D. S. and B.-T. Nguyen. (2013). “Geometrical structure of
Laplacian eigenfunctions”. SIAM Review. 55(4): 601–667.

Grotas, S., Y. Yakoby, I. Gera, and T. Routtenberg. (2019). “Power
Systems Topology and State Estimation by Graph Blind Source
Separation”. IEEE Transactions on Signal Processing. 67(8): 2036–
2051.

522 References

Grover, A. and J. Leskovec. (2016). “Node2Vec: Scalable feature learning
for networks”. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 855–
864.

Grover, A., A. Zweig, and S. Ermon. (2019). “Graphite: Iterative gen-
erative modeling of graphs”. In: Proc. International Conference on
Machine Learning. 2434–2444.

Gu, Y. and X. Wang. (2019). “Local-Set-Based Graph Signal Sampling
and Reconstruction”. In: Vertex-Frequency Analysis of Graph Signals.
Springer. 255–292.

Gunawardena, A. A., R. R. Meyer, and W. L. Dougan. (2012). “Optimal
Selection of an Independent Set of Cliques in a Market Graph”. In
Proceedings of the International Conference on Economics, Business
and Marketing Management: 281–285.

Hagen, L. and A. B. Kahng. (1992a). “New Spectral Methods for Ratio
Cut Partitioning and Clustering”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. 11(9): 1074–1085.

Hagen, L. and A. B. Kahng. (1992b). “New spectral methods for ratio cut
partitioning and clustering”. IEEE Trans. Computer-Aided Design
of Int. Circuits and Systems. 11(9): 1074–1085.

Hamilton, W., Z. Ying, and J. Leskovec. (2017). “Inductive representa-
tion learning on large graphs”. In: Advances in Neural Information
Processing Systems. 1024–1034.

Hammond, D., P. Vandergheynst, and R. Gribonval. (2011a). “Wavelets
on graphs via spectral graph theory”. Appl. Comput. Harmon. Anal.
30(2): 129–150.

Hammond, D. K., P. Vandergheynst, and R. Gribonval. (2011b). “Wavelets
on graphs via spectral graph theory”. Applied and Computational
Harmonic Analysis. 30(2): 129–150.

Hammond, D. K., P. Vandergheynst, and R. Gribonval. (2019). “The
spectral graph wavelet transform: Fundamental theory and fast com-
putation”. In: Vertex-Frequency Analysis of Graph Signals. Springer.
141–175.

References 523

Hamon, R., P. Borgnat, P. Flandrin, and C. Robardet. (2016a). “Rela-
belling vertices according to the network structure by minimizing
the cyclic bandwidth sum”. Journal of Complex Networks. 4(4):
534–560.

Hamon, R., P. Borgnat, P. Flandrin, and C. Robardet. (2019). “Trans-
formation from Graphs to Signals and Back”. In: Vertex-Frequency
Analysis of Graph Signals. Springer. 111–139.

Hamon, R., P. Borgnat, P. Flandrin, and C. Robardet. (2016b). “Extrac-
tion of temporal network structures from graph-based signals”. IEEE
Transactions on Signal and Information Processing Over Networks.
2(2): 215–226.

Harary, F. et al. (1953). “On the notion of balance of a signed graph.”
The Michigan Mathematical Journal. 2(2): 143–146.

Hasanzadeh, A., E. Hajiramezanali, K. Narayanan, N. Duffield, M.
Zhou, and X. Qian. (2019). “Semi-implicit graph variational auto-
encoders”. In: Advances in Neural Information Processing Systems.
10712–10723.

Heimowitz, A. and Y. C. Eldar. (2017). “A unified view of diffusion maps
and signal processing on graphs”. In Proceedings of the International
Conference on Sampling Theory and Applications (SampTA): 308–
312.

Horaud, R. (2009). “A short tutorial on graph Laplacians, Laplacian
embedding, and spectral clustering”.

Hou, Y. P. (2005). “Bounds for the least Laplacian eigenvalue of a
signed graph”. Acta Mathematica Sinica. 21(4): 955–960.

Imre, M., J. Tao, Y. Wang, Z. Zhao, Z. Feng, and C. Wang. (2020).
“Spectrum-preserving sparsification for visualization of big graphs”.
Computers & Graphics. 87: 89–102.

Ioannidis, V. N., D. Berberidis, and G. B. Giannakis. (2019a). “Graph-
SAC: Detecting anomalies in large-scale graphs”. arXiv preprint
arXiv:1910.09589.

Ioannidis, V. N., Y. Shen, and G. B. Giannakis. (2019b). “Semi-Blind
Inference of Topologies and Dynamical Processes Over Dynamic
Graphs”. IEEE Transactions on Signal Processing. 67(9): 2263–2274.

524 References

Isufi, E., A. Loukas, A. Simonetto, and G. Leus. (2017). “Filtering
random graph processes over random time-varying graphs”. IEEE
Transactions on Signal Processing. 65(16): 4406–4421.

Jain, A. K. (2010). “Data clustering: 50 years beyond K-means”. Pattern
Recognition Letters. 31(8): 651–666.

Jansen, M., G. P. Nason, and B. W. Silverman. (2009). “Multiscale
methods for data on graphs and irregular multidimensional situa-
tions”. Journal of the Royal Statistical Society: Series B (Statistical
Methodology). 71(1): 97–125.

Jeh, G. and J. Widom. (2002). “SIMRANK: A measure of structural-
context similarity”. In: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
538–543.

Jestrović, I., J. L. Coyle, and E. Sejdić. (2017). “A fast algorithm
for vertex-frequency representations of signals on graphs”. Signal
processing. 131: 483–491.

Jin, Y., A. Loukas, and J. JaJa. (2020). “Graph coarsening with pre-
served spectral properties”. In: Proc. International Conference on
Artificial Intelligence and Statistics. 4452–4462.

Jones, O. (2013). Spectra of Simple Graphs.
Jordan, M. I. et al. (2004). “Graphical models”. Statistical Science.

19(1): 140–155.
Jordan, M. I. (1998). Learning in Graphical Models. Vol. 89. Springer

Science & Business Media.
Jovanović, I. and Z. Stanić. (2012). “Spectral distances of graphs”.

Linear Algebra and Its Applications. 436(5): 1425–1435.
Kalofolias, V. (2016). “How to learn a graph from smooth signals”. In:

Proceedings of the Artificial Intelligence and Statistics. 920–929.
Kalyagin, V., A. Koldanov, P. Koldanov, and V. Zamaraev. (2014).

“Market graph and Markowitz model”. In: Optimization in Science
and Engineering. Ed. by T. M. Rassias, C. A. Floudas, and S.
Butenko. Springer. 293–306.

Kaplan, D. (2008). Structural equation modeling: Foundations and
extensions. Vol. 10. Sage Publications.

References 525

Katsimpras, G. and G. Paliouras. (2019). “Class-aware tensor factoriza-
tion for multi-relational classification”. Information Processing &
Management. In Press.

Khuller, S. (1998). “Approximation algorithms for finding highly con-
nected subgraphs”. Tech. rep.

Kim, S.-J., K. Koh, S. Boyd, and D. Gorinevsky. (2009). “L1 trend
filtering”. SIAM review. 51(2): 339–360.

Kingma, D. P. and M. Welling. (2013). “Auto-encoding variational
bayes”. arXiv preprint arXiv:1312.6114.

Kipf, T. N. and M. Welling. (2016a). “Semi-supervised classification with
graph convolutional networks”. arXiv preprint arXiv:1609.02907.

Kipf, T. N. and M. Welling. (2016b). “Variational graph auto-encoders”.
arXiv preprint arXiv:1611.07308.

Kleinberg, J. and E. Tardos. (2006). Algorithm Design. Pearson Educa-
tion India.

Kolaczyk, E. D. (2009). Statistical Analysis of Network Data – Methods
and Models. Springer-Verlag New York.

Kolm, P. N., R. Tutuncu, and F. J. Fabozzi. (2014). “60 Years of
Portfolio Optimization: Practical Challenges and Current Trends”.
European Journal of Operational Research. 234(2): 356–371.

Krim, H. and A. B. Hamza. (2015). Geometric Methods in Signal and
Image Analysis. Cambridge University Press.

Kron, G. (1963). Diakoptics: The Piecewise Solution of Large-Scale
Systems. Vol. 2. MacDonald.

LeCun, Y., L. Bottou, Y. Bengio, P. Haffner, et al. (1998). “Gradient-
based learning applied to document recognition”. Proceedings of the
IEEE. 86(11): 2278–2324.

Ledoit, O. and M. Wolf. (2003). “Improved Estimation of the Covariance
Matrix of Stock Returns With an Application to Portfolio Selection”.
Journal of Empirical Finance. 10(5): 603–621.

Leonardi, N. and D. Van De Ville. (2013). “Tight wavelet frames on
multislice graphs”. IEEE Transactions on Signal Processing. 61(13):
3357–3367.

Leskovec, J. and C. Faloutsos. (2006). “Sampling from large graphs”.
In: Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 631–636.

526 References

Li, S., Z. Yu, M. Xiang, and D. Mandic. (2020). “Reciprocal adversarial
learning via characteristic functions”. arXiv preprint arXiv:2006.
08413.

Li, S., Y. Jin, and D. I. Shuman. (2019a). “ScalableM -channel critically
sampled filter banks for graph signals”. IEEE Transactions on Signal
Processing. 67(15): 3954–3969.

Li, Y., X. F. Jiang, Y. Tian, S. P. Li, and B. Zheng. (2019b). “Portfolio
Optimization Based on Network Topology”. Physica A. 515: 671–
681.

Li, Y., D. Tarlow, M. Brockschmidt, and R. Zemel. (2015). “Gated
graph sequence neural networks”. arXiv preprint arXiv:1511.05493.

Li, Y., O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia. (2018). “Learn-
ing deep generative models of graphs”. arXiv preprint arXiv:1803.
03324.

Liben-Nowell, D. and J. Kleinberg. (2007). “The link-prediction problem
for social networks”. Journal of the American Society for Information
Science and Technology. 58(7): 1019–1031.

Lin, Y., J. Sun, P. Castro, R. Konuru, H. Sundaram, and A. Kelliher.
(2009). “MetaFac: community discovery via relational hypergraph
factorization”. In Proceedings of the ACM KDD International Con-
ference on Knowledge Discovery and Data Mining: 527–536.

Lin, Y. R., Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. (2008).
“Facetnet: a framework for analyzing communities and their evo-
lutions in dynamic networks”. In Proceedings of the International
Conference on World Wide Web (WWW): 685–694.

Lorenzo, P., S. Barbarossa, and P. Banelli. (2018). “Sampling and recov-
ery of graph signals”. In: Cooperative and Graph Signal Processing.
Elsevier. 261–282.

Loukas, A. and N. Perraudin. (2016). “Stationary time-vertex signal
processing”. arXiv preprint arXiv:1611.00255.

Loukas, A. and P. Vandergheynst. (2018). “Spectrally approximating
large graphs with smaller graphs”. arXiv preprint arXiv:1802.07510.

Lu, H., Z. Fu, and X. Shu. (2014). “Non-negative and sparse spectral
clustering”. Pattern Recognition. 47(1): 418–426.

References 527

Ma, T., J. Chen, and C. Xiao. (2018). “Constrained generation of
semantically valid graphs via regularizing variational autoencoders”.
In: Advances in Neural Information Processing Systems. 7113–7124.

Maggioni, M. and H. Mhaskar. (2008). “Diffusion polynomial frames
on metric measure spaces”. Applied and Computational Harmonic
Analysis. 24(3): 329–353.

Maheswari, S. U. and B. Maheswari. (2016). “Some properties of Carte-
sian product graphs of Cayley graphs with arithmetic graphs”.
International Journal of Computer Applications. 138(3): 26–29.

Malik, J., S. Belongie, T. Leung, and J. Shi. (2001). “Contour and
texture analysis for image segmentation”. International Journal of
Computer Vision. 43(1): 7–27.

Mandic, D. and J. Chambers. (2001). Recurrent Neural Networks for
Prediction: Learning Algorithms, Architectures and Stability. Wiley.

Mandic, D. P. and V. S. L. Goh. (2009). Complex valued nonlinear
adaptive filters: noncircularity, widely linear and neural models.
Vol. 59. John Wiley & Sons.

Mandic, D. (2007). “Machine learning and signal processing applications
of fixed point theory”. Tutorial in IEEE ICASSP, 2007.

Mao, X. and Y. Gu. (2019). “Time-Varying Graph Signals Reconstruc-
tion”. In: Vertex-Frequency Analysis of Graph Signals. Springer.
293–316.

Markowitz, H. (1952). “Portfolio Selection”. Journal of Finance. 7(1):
77–91.

Marques, A., A. Ribeiro, and S. Segarra. (2017). “Graph signal process-
ing: Fundamentals and applications to diffusion processes”. In: IEEE
Proc. Int. Conf. Accoustic, Speech and Signal Processing (ICASSP),
Tutorial.

Marques, A. G., S. Segarra, G. Leus, and A. Ribeiro. (2016). “Sam-
pling of graph signals with successive local aggregations.” IEEE
Transactions Signal Processing. 64(7): 1832–1843.

Marques, A. G., S. Segarra, G. Leus, and A. Ribeiro. (2017). “Stationary
graph processes and spectral estimation”. IEEE Transactions on
Signal Processing. 65(22): 5911–5926.

528 References

Masoumi, M. and A. B. Hamza. (2017). “Spectral shape classification:
A deep learning approach”. Journal of Visual Communication and
Image Representation. 43: 198–211.

Masoumi, M., C. Li, and A. B. Hamza. (2016). “A spectral graph wavelet
approach for nonrigid 3D shape retrieval”. Pattern Recognition
Letters. 83: 339–348.

Masoumi, M., M. Rezaei, and A. B. Hamza. (2019). “Shape analysis of
carpal bones using spectral graph wavelets”. In: Vertex-Frequency
Analysis of Graph Signals. Springer. 419–436.

Masuda, N., M. A. Porter, and R. Lambiotte. (2017). “Random walks
and diffusion on networks”. Physics reports. 716: 1–58.

Mateos, G., S. Segarra, A. G. Marques, and A. Ribeiro. (2019). “Con-
necting the dots: Identifying network structure via graph signal
processing”. IEEE Signal Processing Magazine. 36(3): 16–43.

McInnes, L., J. Healy, N. Saul, and L. Großberger. (2018). “UMAP:
Uniform manifold approximation and projection”. Journal of Open
Source Software. 3(29): 861. doi: 10.21105/joss.00861.

Mei, J. and J. M. Moura. (2016). “Signal processing on graphs: Causal
modeling of unstructured data”. IEEE Transactions on Signal Pro-
cessing. 65(8): 2077–2092.

Meinshausen, N., P. Bühlmann, et al. (2006). “High-dimensional graphs
and variable selection with the LASSO”. The Annals of Statistics.
34(3): 1436–1462.

Mejia, D., O. Ruiz-Salguero, and C. A. Cadavid. (2017). “Spectral-based
mesh segmentation”. International Journal on Interactive Design
and Manufacturing (IJIDeM). 11(3): 503–514.

Meyer, Y. (1992). Wavelets and Operators. Cambridge University Press.
Micheli, A. (2009). “Neural network for graphs: A contextual construc-

tive approach”. IEEE Transactions on Neural Networks. 20(3): 498–
511.

Mijalkov, M., E. Kakaei, J. B. Pereira, E. Westman, and G. Volpe.
(2017). “BRAPH: A graph theory software for the analysis of brain
connectivity”. PLOS ONE. 12(8): e0178798.

https://doi.org/10.21105/joss.00861

References 529

Misiakos, P., C. Wendler, and M. Püschel. (2020). “Diagonalizable shift
and filters for directed graphs based on the Jordan-Chevalley decom-
position”. In: Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 5635–5639.

Mohar, B. (1989). “Isoperimetric numbers of graphs”. Journal of Com-
binatorial Theory, Series B. 47(3): 274–291.

Monti, F., D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein. (2017). “Geometric deep learning on graphs and manifolds
using mixture model CNNs”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 5115–5124.

Mordeson, J. N. and P. S. Nair. (2012). Fuzzy Graphs and Fuzzy Hyper-
graphs. Vol. 46. Physica.

Morris, O., M. J. de Lee, and A. Constantinides. (1986). “Graph theory
for image analysis: An approach based on the shortest spanning tree”.
IEE Proceedings F (Communications, Radar and Signal Processing).
133(2): 146–152.

Motl, J. and O. Schulte. (2015). “The CTU prague relational learning
repository”. arXiv preprint arXiv:1511.03086.

Moura, J. M. (2018). “Graph signal processing”. In: Cooperative and
Graph Signal Processing. Ed. by P. Djuric and C. Richard. Elsevier.
239–259.

Murtagh, F. (2007). “The Haar wavelet transform of a dendrogram”.
Journal of Classification. 24(1): 3–32.

Narang, S. K. and A. Ortega. (2009). “Lifting based wavelet transforms
on graphs”. In: Proc. Asia-Pacific Signal and Information Processing
Association, 2009 Annual Summit and Conference. 441–444.

Narang, S. K. and A. Ortega. (2011). “Downsampling graphs using spec-
tral theory”. In: Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 4208–4211.

Narang, S. K. and A. Ortega. (2012). “Perfect reconstruction two-
channel wavelet filter banks for graph structured data”. IEEE Trans-
actions on Signal Processing. 60(6): 2786–2799.

Ng, A. Y., M. I. Jordan, and Y. Weiss. (2002). “On spectral clus-
tering: Analysis and an algorithm”. In: Proc. Advances in Neural
Information Processing Systems. 849–856.

530 References

Nguyen, H. Q. and M. N. Do. (2015). “Downsampling of signals on
graphs via maximum spanning trees.” IEEE Transactions on Signal
Processing. 63(1): 182–191.

Nickel, M., V. Tresp, and H.-P. Kriegel. (2011). “A Three-Way Model
for Collective Learning on Multi-Relational Data”. In Proceedings
of the 28th International Conference on Machine Learning: 809–816.

Novikov, A., D. Podoprikhin, A. Osokin, and D. P. Vetrov. (2015).
“Tensorizing neural networks”. In: Advances in Neural Information
Processing Systems (NIPS). 442–450.

O’Rourke, S., V. Vu, and K. Wang. (2016). “Eigenvectors of random
matrices: A survey”. Journal of Combinatorial Theory, Series A.
144: 361–442.

Pan, S., R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang. (2018).
“Adversarially regularized graph autoencoder for graph embedding”.
arXiv preprint arXiv:1802.04407.

Papalexakis, E. E., L. Akoglu, and D. Lence. (2013). “Do more views of
a graph help? Community detection and clustering in multi-graphs”.
In Proceedings of the 16th International Conference on Information
Fusion: 899–905.

Pasdeloup, B., V. Gripon, R. Alami, and M. G. Rabbat. (2019). “Un-
certainty Principle on Graphs”. In: Vertex-Frequency Analysis of
Graph Signals. Springer. 317–340.

Pavez, E. and A. Ortega. (2016). “Generalized Laplacian precision
matrix estimation for graph signal processing”. In: Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016. IEEE. 6350–6354.

Peralta, G. and A. Zareei. (2016). “A Network Approach to Portfolio
Selection”. Journal of Empirical Finance. 38(A): 157–180.

Perona, P. and W. Freeman. (1998). “A factorization approach to
grouping”. In: Prof. European Conference on Computer Vision.
Springer. 655–670.

Perozzi, B., R. Al-Rfou, and S. Skiena. (2014). “Deepwalk: Online
learning of social representations”. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining. 701–710.

References 531

Perraudin, N., B. Ricaud, D. I. Shuman, and P. Vandergheynst. (2018).
“Global and local uncertainty principles for signals on graphs”.
APSIPA Transactions on Signal and Information Processing. 7(e3):
1–26.

Perraudin, N. and P. Vandergheynst. (2017). “Stationary signal process-
ing on graphs”. IEEE Transactions on Signal Processing. 65(13):
3462–3477.

Pourahmadi, M. (2011). “Covariance estimation: The GLM and regu-
larization perspectives”. Statistical Science: 369–387.

Puy, G., N. Tremblay, R. Gribonval, and P. Vandergheynst. (2018).
“Random sampling of bandlimited signals on graphs”. Applied and
Computational Harmonic Analysis. 44(2): 446–475.

Qiu, H. and E. R. Hancock. (2007). “Clustering and embedding us-
ing commute times”. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 29(11): 1873–1890.

Rabiei, H., F. Richard, O. Coulon, and J. Lefèvre. (2019). “Estimating
the Complexity of the Cerebral Cortex Folding with a Local Shape
Spectral Analysis”. In: Vertex-Frequency Analysis of Graph Signals.
Springer. 437–458.

Raffinot, T. (2017). “Hierarchical Clustering-Based Asset Allocation”.
The Journal of Portfolio Management. 44(2): 89–99.

Ray, S. S. (2012). Graph Theory with Algorithms and Its Applications:
In Applied Science and Technology. Springer Science & Business
Media.

Ricaud, B. and B. Torrésani. (2014). “A survey of uncertainty principles
and some signal processing applications”. Advances in Computa-
tional Mathematics. 40(3): 629–650.

Rubinov, M. and O. Sporns. (2010). “Complex network measures of
brain connectivity: Uses and interpretations”. NeuroImage. 52(3):
1059–1069.

Rustamov, R. and L. J. Guibas. (2013). “Wavelets on graphs via deep
learning”. In: Advances in Neural Information Processing systems.
998–1006.

Sadhanala, V., Y.-X. Wang, and R. Tibshirani. (2016). “Graph sparsifica-
tion approaches for Laplacian smoothing”. In: Artificial Intelligence
and Statistics. 1250–1259.

532 References

Saito, S., D. P. Mandic, and H. Suzuki. (2018). “Hypergraph p-Laplacian:
A differential geometry view”. In: Proc. of the Thirty-Second AAAI
Conference on Artificial Intelligence. 3984–3991.

Sakiyama, A. and Y. Tanaka. (2014). “Oversampled graph Laplacian ma-
trix for graph filter banks”. IEEE Transactions on Signal Processing.
62(24): 6425–6437.

Sakiyama, A., Y. Tanaka, T. Tanaka, and A. Ortega. (2019). “Eigendecomposition-
free sampling set selection for graph signals”. IEEE Transactions
on Signal Processing. 67(10): 2679–2692.

Sandryhaila, A. and J. M. Moura. (2013). “Discrete signal processing on
graphs”. IEEE Transactions on Signal Processing. 61(7): 1644–1656.

Sandryhaila, A. and J. M. Moura. (2014a). “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure”. IEEE Signal Processing Magazine.
31(5): 80–90.

Sandryhaila, A. and J. M. Moura. (2014b). “Discrete signal process-
ing on graphs: Frequency analysis”. IEEE Transactions on Signal
Processing. 62(12): 3042–3054.

Sardellitti, S., S. Barbarossa, and P. Di Lorenzo. (2017). “On the graph
Fourier transform for directed graphs”. IEEE Journal of Selected
Topics in Signal Processing. 11(6): 796–811.

Scalzo, B., L. Stanković, A. G. Constantinides, and D. P. Mandic. (2020).
“Portfolio cuts: A graph-theoretic framework to diversification”. In:
Proc. of the 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 8454–8458.

Scarselli, F., M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
(2008). “The graph neural network model”. IEEE Transactions on
Neural Networks. 20(1): 61–80.

Schaeffer, S. E. (2007a). “Graph Clustering”. Computer Science Review.
1(1): 27–64.

Schaeffer, S. E. (2007b). “Graph clustering”. Computer Science Review.
1(1): 27–64.

Scott, G. L. and H. C. Longuet-Higgins. (1990). “Feature grouping by
relocalisation of eigenvectors of the proximity matrix.” In: Proc. of
the British Machine Vision Conference (BMVC). 1–6.

References 533

Segarra, S., A. G. Marques, G. Leus, and A. Ribeiro. (2015). “Interpo-
lation of graph signals using shift-invariant graph filters”. In: Proc.
23rd European Signal Processing Conference (EUSIPCO). 210–214.

Segarra, S., A. G. Marques, G. Mateos, and A. Ribeiro. (2016). “Blind
identification of graph filters with multiple sparse inputs.” In: Proc.
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 4099–4103.

Segarra, S., A. G. Marques, G. Mateos, and A. Ribeiro. (2017). “Network
topology inference from spectral templates”. IEEE Transactions on
Signal and Information Processing over Networks. 3(3): 467–483.

Segarra, S. and A. Ribeiro. (2016). “Stability and continuity of cen-
trality measures in weighted graphs”. IEEE Transactions on Signal
Processing. 64(3): 543–555.

Sen, P., G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad. (2008). “Collective classification in network data”. AI Magazine.
29(3): 93–93.

Shi, J. and J. Malik. (2000). “Normalized cuts and image segmentation”.
Departmental Papers (CIS): 107.

Shuman, D. I., S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst. (2013). “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks and
other irregular domains”. IEEE Signal Processing Magazine. 30(3):
83–98.

Shuman, D. I., B. Ricaud, and P. Vandergheynst. (2012). “A windowed
graph Fourier transform”. In: Proc. IEEE Statistical Signal Process-
ing Workshop (SSP). 133–136.

Shuman, D. I., B. Ricaud, and P. Vandergheynst. (2016). “Vertex-
frequency analysis on graphs”. Applied and Computational Harmonic
Analysis. 40(2): 260–291.

Simon, H. A. (1962). “The Architecture of Complexity”. In Proceedings
of the American Philosophical Society.

Singh, R., A. Chakraborty, and B. Manoj. (2016). “Graph Fourier
transform based on directed Laplacian”. In: Proc. of the IEEE 2016
International Conference on Signal Processing and Communications
(SPCOM). 1–5.

534 References

Slawski, M. and M. Hein. (2015). “Estimation of positive definite M-
matrices and structure learning for attractive Gaussian Markov
random fields”. Linear Algebra and Its Applications. 473: 145–179.

Spielman, D. A. and S. H. Teng. (2007a). “Spectral Partitioning Works:
Planar Graphs and Finite Element Meshes”. Linear Algebra and Its
Applications. 421(2-3): 284–305.

Spielman, D. A. and N. Srivastava. (2011). “Graph sparsification by
effective resistances”. SIAM Journal on Computing. 40(6): 1913–
1926.

Spielman, D. A. and S.-H. Teng. (2007b). “Spectral partitioning works:
Planar graphs and finite element meshes”. Linear Algebra and Its
Applications. 421(2–3): 284–305.

Stankovic, L., D. Mandic, M. Dakovic, I. Kisil, E. Sejdic, and A. G.
Constantinides. (2019a). “Understanding the basis of graph signal
processing via an intuitive example-driven approach”. IEEE Signal
Processing Magazine, arXiv preprint arXiv:1903.11179, November.

Stankovic, L. (1997). “Highly concentrated time-frequency distribu-
tions: Pseudo quantum signal representation”. IEEE Transactions
on Signal Processing. 45(3): 543–551.

Stankovic, L., D. P. Mandic, M. Dakovic, I. Kisil, E. Sejdic, and A. G.
Constantinides. (2019b). “Understanding the Basis of Graph Sig-
nal Processing via an Intuitive Example-Driven Approach [Lecture
Notes]”. IEEE Signal Processing Magazine. 36(6): 133–145.

Stankovic, L., D. P. Mandic, M. Dakovic, and I. Kisil. (2020). “Demys-
tifying the coherence index in compressive sensing [Lecture Notes]”.
IEEE Signal Processing Magazine. 37(1): 152–162.

Stanković, L., M. Daković, D. Mandic, M. Brajović, B. Scalzo, and A.
Constantinides. (2020a). “A low-dimensionality method for data-driven
graph learning”. In: Proc. of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 5340–5344.

Stanković, L. (2020). “The support uncertainty principle and the graph
Rihaczek distribution: Revisited and improved”. IEEE Signal Pro-
cessing Letters. 27: 1030–1034.

Stanković, L., D. P. Mandic, M. Daković, M. Brajović, B. Scalzo Dees,
and T. Constantinides. (2019a). “Graph Signal Processing – Part I:
Graphs, Graph Spectra, and Spectral Clustering”. arXiv:1907.03467.

References 535

Stanković, L. (2001). “A measure of some time–frequency distributions
concentration”. Signal Processing. 81(3): 621–631.

Stanković, L. (2015). Digital Signal Processing with Selected Topics.
CreateSpace Independent Publishing Platform, An Amazon.com
Company.

Stanković, L., M. Daković, and E. Sejdić. (2017a). “Vertex-frequency
analysis: A way to localize graph spectral components [Lecture
Notes]”. IEEE Signal Processing Magazine. 34(4): 176–182.

Stanković, L., M. Daković, and T. Thayaparan. (2014). Time-Frequency
Signal Analysis with Applications. Artech House.

Stanković, L., M. Daković, and E. Sejdić. (2019b). “Introduction to
graph signal processing”. In: Vertex-Frequency Analysis of Graph
Signals. Springer. 3–108.

Stanković, L., M. Daković, and E. Sejdić. (2019c). “Vertex-frequency en-
ergy distributions”. In: Vertex-Frequency Analysis of Graph Signals.
Ed. by L. Stanković and E. Sejdić. Springer. 377–415.

Stanković, L., D. Mandic, M. Daković, B. Scalzo, M. Brajović, E. Sejdić,
and A. G. Constantinides. (2020b). “Vertex-frequency graph signal
processing: A comprehensive review”. Digital Signal Processing:
102802.

Stanković, L. and E. Sejdić. (2019). Vertex-Frequency Analysis of Graph
Signals. Springer.

Stanković, L., E. Sejdić, and M. Daković. (2017b). “Vertex-frequency
energy distributions”. IEEE Signal Processing Letters. 25(3): 358–
362.

Stanković, L., E. Sejdić, and M. Daković. (2018a). “Reduced interference
vertex-frequency distributions”. IEEE Signal Processing Letters.
25(9): 1393–1397.

Stanković, L., E. Sejdić, S. Stanković, M. Daković, and I. Orović. (2018b).
“A tutorial on sparse signal reconstruction and its applications in
signal processing”. Circuits, Systems, and Signal Processing: 1–58.

Stoer, M. and F. Wagner. (1997). “A simple min-cut algorithm”. Journal
of the ACM (JACM). 44(4): 585–591.

536 References

Tammen, M., I. Kodrasi, and S. Doclo. (2018). “Complexity reduction
of eigenvalue decomposition-based diffuse power spectral density
estimators using the power method”. In: Proc. of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). 451–455.

Tanaka, Y. and A. Sakiyama. (2014). “M-channel oversampled graph
filter banks”. IEEE Transactions Signal Processessing. 62(14): 3578–
3590.

Tanaka, Y. and Y. C. Eldar. (2019). “Generalized sampling on graphs
with subspace and smoothness priors”. arXiv preprint arXiv:1905.04441.

Tanaka, Y. and Y. C. Eldar. (2020). “Generalized sampling on graphs
with subspace and smoothness priors”. IEEE Transactions on Signal
Processing. 68: 2272–2286.

Tanaka, Y. and A. Sakiyama. (2019). “Oversampled transforms for graph
signals”. In: Vertex-Frequency Analysis of Graph Signals. Springer.
223–254.

Tang, J., M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. (2015). “Line:
Large-scale information network embedding”. In: Proceedings of the
24th International Conference on World Wide Web. 1067–1077.

Tang, L. and H. Liu. (2011). “Leveraging social media networks for
classification”. Data Mining and Knowledge Discovery. 23(3): 447–
478.

Tang, W., Z. Lu, and I. S. Dhillon. (2009). “Clustering with multiple
graphs”. In Proceedings of Ninth IEEE International Conference on
Data Mining: 1016–1021.

Tepper, M. and G. Sapiro. (2016). “A short-graph Fourier transform
via personalized pagerank vectors”. In: Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
4806–4810.

Thanou, D., D. I. Shuman, and P. Frossard. (2014). “Learning Paramet-
ric Dictionaries for Signals on Graphs”. IEEE Transactions Signal
Processessing. 62(15): 3849–3862.

Thanou, D., X. Dong, D. Kressner, and P. Frossard. (2017). “Learning
heat diffusion graphs”. IEEE Transactions on Signal and Informa-
tion Processing over Networks. 3(3): 484–499.

Transport for London. url: https://tfl.gov.uk/.

https://tfl.gov.uk/

References 537

Tremblay, N. and P. Borgnat. (2016). “Subgraph-based filterbanks for
graph signals”. IEEE Transactions Signal Processing. 64(15): 3827–
3840.

Tremblay, N. and A. Loukas. (2020). “Approximating spectral clustering
via sampling: A review”. In: Sampling Techniques for Supervised or
Unsupervised Tasks. Springer. 129–183.

Trevisan, L. (2013). “Lecture notes on expansion, sparsest cut, and
spectral graph theory”.

Tsitsvero, M., S. Barbarossa, and P. Di Lorenzo. (2016). “Signals on
graphs: Uncertainty principle and sampling”. IEEE Transactions
Signal Processing. 64(18): 539–554.

Ubaru, S., J. Chen, and Y. Saad. (2017). “Fast Estimation of tr(f(A)) via
Stochastic Lanczos Quadrature”. SIAM Journal on Matrix Analysis
and Applications. 38(4): 1075–1099.

Van Dam, E. R. and W. H. Haemers. (2003). “Which graphs are de-
termined by their spectrum?” Linear Algebra and Its Applications.
373: 241–272.

van der Maaten, L. and G. Hinton. (2008). “Visualizing data using
t-SNE”. Journal of Machine Learning Research. 9(Nov): 2579–2605.

Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio. (2017). “Graph attention networks”. arXiv preprint
arXiv:1710.10903.

Venkitaraman, A., S. Chatterjee, and P. Händel. (2016). “Hilbert trans-
form, analytic signal, and modulation analysis for graph signal
processing”. arXiv preprint arXiv:1611.05269.

Verma, A. and K. K. Bharadwaj. (2017a). “A comparative study based
on tensor factorization and clustering techniques for community
mining in heterogeneous social network”. In Proceedings of the Inter-
national Conference on Computing, Communication and Networking
Technologies (ICCCNT). In Press: 1–6.

Verma, A. and K. K. Bharadwaj. (2017b). “Identifying community struc-
ture in a multi-relational network employing non-negative tensor
factorization and GA k-means clustering”. Wires: Data Mining and
Knowledge Discovery. 7(1): 1–32.

Vetterli, M., J. Kovačević, and V. Goyal. (2014). Foundations of Signal
Processing. Cambridge University Press.

538 References

Von Luxburg, U. (2007). “A tutorial on spectral clustering”. Statistics
and Computing. 17(4): 395–416.

Wagner, D. and F. Wagner. (1993). “Between min cut and graph bisec-
tion”. In: Proc. of the International Symposium on Mathematical
Foundations of Computer Science. Springer. 744–750.

Wai, H.-T., Y. C. Eldar, A. E. Ozdaglar, and A. Scaglione. (2019).
“Community Inference from Graph Signals with Hidden Nodes”. In:
ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 4948–4952.

Wainwright, M. J., M. I. Jordan, et al. (2008). “Graphical models,
exponential families, and variational inference”. Foundations and
Trends® in Machine Learning. 1(1–2): 1–305.

Wang, H., J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo. (2017). “GraphGAN: Graph representation learning
with generative adversarial nets”. arXiv preprint arXiv:1711.08267.

Wang, X., J. Chen, and Y. Gu. (2016). “Local measurement and recon-
struction for noisy bandlimited graph signals”. Signal Processing.
129: 119–129.

Wang, X., P. Liu, and Y. Gu. (2015). “Local-set-based graph signal
reconstruction”. IEEE Transactions on Signal Processing. 63(9):
2432–2444.

Wang, Z., A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, et al. (2004). “Im-
age quality assessment: from error visibility to structural similarity”.
IEEE Transactions on Image Processing. 13(4): 600–612.

Wang, Z., E. P. Simoncelli, and A. C. Bovik. (2003). “Multiscale struc-
tural similarity for image quality assessment”. In: Proc. of the Thrity-
Seventh Asilomar Conference on Signals, Systems & Computers.
Vol. 2. 1398–1402.

Weiss, Y. (1999). “Segmentation using eigenvectors: A unifying view”.
In: Proceedings of the Seventh IEEE International Conference on
Computer Vision. Vol. 2. IEEE. 975–982.

Wu, Z., S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. (2019). “A
comprehensive survey on graph neural networks”. arXiv preprint
arXiv:1901.00596.

Xu, Y. L. and D. P. Mandic. (2020). “Recurrent graph tensor networks”.
arXiv preprint arXiv:2009.08727. Sept. arXiv: 2009.08727 [cs.LG].

https://arxiv.org/abs/2009.08727

References 539

Xu, Y. L., K. Konstantinidis, and D. P. Mandic. (2020). “Multi-graph
tensor networks”. In: Advances in Neural Information Processing
Systems.

Yan, X., B. M. Sadler, R. J. Drost, P. L. Yu, and K. Lerman. (2017).
“Graph filters and the z-Laplacian”. IEEE Journal of Selected Topics
in Signal Processing. 11(6): 774–784.

Yankelevsky, Y. and M. Elad. (2016). “Dual graph regularized dictionary
learning”. IEEE Transactions on Signal and Information Processing
over Networks. 2(4): 611–624.

You, J., R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec. (2018).
“GraphRNN: Generating realistic graphs with deep auto-regressive
models”. arXiv preprint arXiv:1802.08773.

Yu, W., C. Zheng, W. Cheng, C. C. Aggarwal, D. Song, B. Zong, H. Chen,
and W. Wang. (2018). “Learning deep network representations with
adversarially regularized autoencoders”. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. 2663–2671.

Yuan, M. and Y. Lin. (2006). “Model selection and estimation in re-
gression with grouped variables”. Journal of the Royal Statistical
Society: Series B (Statistical Methodology). 68(1): 49–67.

Yuan, M. and Y. Lin. (2007). “Model selection and estimation in the
Gaussian graphical model”. Biometrika. 94(1): 19–35.

Zhang, C., D. Florêncio, and P. A. Chou. (2015). “Graph signal pro-
cessing - A probabilistic framework”. Microsoft Research, Redmond,
WA, USA, Tech. Rep. MSR-TR-2015-31.

Zhang, J., X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung. (2018a).
“Gaan: Gated attention networks for learning on large and spa-
tiotemporal graphs”. arXiv preprint arXiv:1803.07294.

Zhang, J., X. Shi, S. Zhao, and I. King. (2019a). “STAR-GCN: Stacked
and Reconstructed Graph Convolutional Networks for Recommender
Systems”. arXiv preprint arXiv:1905.13129.

Zhang, M. and Y. Chen. (2018). “Link prediction based on graph neural
networks”. In: Advances in Neural Information Processing Systems.
5165–5175.

540 References

Zhang, M., S. Jiang, Z. Cui, R. Garnett, and Y. Chen. (2019b). “D-VAE:
A variational autoencoder for directed acyclic graphs”. In: Advances
in Neural Information Processing Systems. 1588–1600.

Zhang, Z., P. Cui, and W. Zhu. (2018b). “Deep learning on graphs:
A survey”. arXiv preprint arXiv:1812.04202.

Zhao, T., H. Liu, K. Roeder, J. Lafferty, and L. Wasserman. (2012).
“The huge package for high-dimensional undirected graph estimation
in R”. Journal of Machine Learning Research. 13(Apr): 1059–1062.

Zheng, M., J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai.
(2011). “Graph regularized sparse coding for image representation”.
IEEE Transactions on Image Processing. 20(5): 1327–1336.

Zheng, X.-W., Y. Y. Tang, J.-T. Zhou, H.-L. Yuan, Y.-L. Wang, L.-N.
Yang, and J.-J. Pan. (2016). “Multi-windowed graph Fourier frames”.
In: Proc. IEEE International Conference on Machine Learning and
Cybernetics (ICMLC). Vol. 2. 1042–1048.

Zhou, D., J. Huang, and B. Schölkopf. (2007). “Learning with hyper-
graphs: Clustering, classification, and embedding”. In: Advances in
Neural Information Processing Systems. 1601–1608.

Zhou, J., G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun. (2018).
“Graph neural networks: A review of methods and applications”.
arXiv preprint arXiv:1812.08434.

Zhu, X. J. (2005). “Semi-supervised learning literature survey”. Tech.
rep. University of Wisconsin-Madison Department of Computer
Sciences.

Index

active vertices, 399
adjacency matrix, 9

characteristic polynomial, 30
eigendecomposition, 32
properties, 19
spectrum, 33

aggregate sampling, 212
analytic signal on a graph, 191

balanced graph, 508
Bayesian variational inference, 446
betweeness vertex/edge, 23
bipartite graph, 14
block collaborative processing, 325
block matching (BM3D) algorithm,

328
brain connectivity graph, 89

canonical polyadic decomposition
(CPD), 456

Cartesian product, 26
characteristic polynomial, 30

properties, 31

Chebyshev polynomial, 173
Chebyshev series, 176
Cheeger ratio cut, 58
circular (ring) graph, 17
closeness vitality, 474
clossenes of graphs, 79
clustering

link-based, 463
minimum cut, 484
normalized cut, 485
ratio cut, 485
spectral minimum cut, 486

coactivation matrix, 89
commute time, 109, 393
complete graph, 14
compressed sensing on graphs, 199,

205
connected graph, 23
convolution (generalized), 185, 186
correlation matrix, 332
cost of spanning tree, 23
covariance matrix, 332

541

542 Index

curvature, 295
cut of a signed graph, 508

degree matrix, 12
diffusion (random walk)

shift operator, 152
diffusion (random walk) mapping,

111
diffusion clouds, 113
diffusion distance, 111
diffusion model, 433
dimensionality reduction, 65, 91

compressive sensing, 205
graph coarsening, 127
graph down-scaling, 119
graph sparsification, 121
Laplacian eigenmaps, 114

directed circular graph, 17
directed graph, 9
directed path graph, 17

edge expansion, 58
edges, 7
effective resitance, 124, 397
eigendecomposition, 36

algebraic multiplicity, 30
generalized eigenvectors, 73, 75
geometric multiplicity, 30
matrix powers, 39
of adjacency matrix, 29, 36
of graph Laplacian, 39
of graph products, 37
smoothness of eigenvectors, 59

eigenmaps, 91, 92
commute time, 73, 111
diffusion (random walk), 73,

111

generalized Laplacian eigenvec-
tors, 73

graph Laplacian, 73
normalized Laplacian, 73
Swiss roll graph, 104

equivalent filters, 172
unique, 172

Erdös-Renyi graph, 18
Euler path, 21
external sources, 379, 399

factor analysis model, 417
fast multi-graph tensor network (fMGTN),

467
Fiedler vector, 61, 76
filter bank on a graph, 221
filter design, 170
foreign exchange (FOREX) model,

469
Fourier analysis, 36, 47

Gaussian filter, 318
Gaussian graphical model, 416
Gaussian Markov random field, 410
Gaussian random signal, 346, 397

relation with electric circuits,
397

general multi-graph tensor network
(gMGTN), 467

generalized eigenvectors, 75
GLASSO, see graphical LASSO
gradient descent as a diffusion pro-

cess, 426
graph

weighted, 11
balanced, 508

Index 543

bipartite, 14
circular (ring), 17
complete, 14
components, 23
connected, 23
directed, 9
directed circular, 17
directed path, 17
Erdös-Renyi , 18
Kuratowski, 16
lattice-structured, 453
multipartite, 16
path, 17
planar, 16
preferential attachment model,

18
regular, 16
signed, 507
sparsification, 121
star, 16
stochastic block, 18
transformations, 378
undirected, 9
unstructured, 461
unweighted, 11

graph p-Laplacian, 508
graph adjacency spectrum, 33
graph auto-encoder, 447
graph coarsening, 127
graph convolutional networks (GCN),

427
graph cut

Cheeger ratio, 58
minimum, 51
minimum flow, 52
normalized, 57

portfolio, 481
ratio, 56
sparisty, 58

graph diameter, 22
graph down-sampling, 119
graph financial asset allocation, 490
graph Fourier transform

adjacency matrix, 164
graph Laplacian, 178

graph Laplacian, 12
p-Laplacian, 508
directed graphs, 505
generalized, 343
normalized, 13
properties, 19
random-walk, 13
signed graph, 507
spectrum, 40
vertex-weighted, 14

graph lifting, 129
graph neural networks (GNN), 425

Bayesian variational inference,
446

diffusion process, 439
generative adversarial model

(GAN), 445
gradient descent, 430
graph convolutional networks,

425
graph Fourier transform, 438
label propagation, 431
link prediction, 444
localization of graphs, 436
multi-graph tensor networks (MGTN),

464
recurrent style, 433

544 Index

signal smoothness and Lapla-
cian operator, 428

spatial, 436
spectral, 438
spectral filtering, 440
standard graph auto-encoder,

447
variational graph auto-encoder,

446
graph sampling

aggregate sampling, 212
bandlimited graph signals, 199
filter bank, 221
sparse signals, 203, 204, 215

graph separability, 56
graph signal, 150

analytic signal on a graph, 191
denoising, 194
nonstationary signals, 270
optimal denoising, 193
random signals, 237
sparsity driven denoising, 270
wide-sense stationary, 237

graph signal filtering, 166
block collaborative processing,

325
convolution, 187, 188, 246
diffusion, 233
graph wide-sense stationarity

(GWSS), 239
low-pass, 232
low-pass filtering, 168
spectral domain, 227
Taubin’s algorithm, 233
vertex domain, 241
vertex-varying, 286

Wiener filter, 240
graph signal frames, 290
graph signal shift, 158, 197
graph signals

tensorization, 454
graph sparsification, 121

cut-preserving, 121
of the connectivity matrix, 122
spectral, 123
uniform, 127

graph spectrogram, 290, 302
graph spectrum, 33, 40, 80, 123
graph topology, 7
graph topology learning

based on eigenvectors, 352
based on signal similarity, 323
difussion models, 419
external sources, 399
factor analysis, 417
Gaussian Markov random field,

413
Gaussian models, 410
generalized distance, 325
generalized Laplacian, 343
geometric distance, 314
GLASSO, 343, 350, 415
Laplacian energy condition, 342
LASSO, 335
link prediction, 496
maximum likelihood interpre-

tation, 346
partial correlation model, 412
polynomial fitting, 355
precision matrix, 344, 346
probabilistic generative mod-

els, 409

Index 545

reduced dimensionality, 355
regression models, 415
similarity measure, 324
smoothess contraint, 339
sparsity, 354
structural similarity index, 329

graph wide-sense stationarity (GWSS),
239

graphical LASSO (GLASSO), 343,
350, 368

maximum likelihood interpre-
tation, 346

Newton method, 363

Haar wavelet, 229
Hamiltonian path, 21
heat kernel parameter, 314
heat transfer, 383
hitting time, 393
hyper-linked pages, 385
hypergraph approach, 453

image clustering, 85
in-degree matrix, 506
incidence matrix, 429
indicator vector, 67, 486

normalized Laplacian, 72
inner vertices, 399
inverse system, 178

k-means algorithm, 84
Kron reduction, 134
Kronecker (tensor) product, 26
Kronecker separability condition,

456
Kuratowski graph, 16

Lagrange multipliers, 70
Laplace–Beltrami operator, 314
Laplacian, see graph Laplacian
Laplacian eigenmaps, 91
least absolute shrinkage and selec-

tion operator (LASSO), 335,
365

least absolute shrinkage and selec-
tion operator (LASSO)

graphical LASSO, 343
length of walk, 19
linked-pages, 385
local graph Fourier transform, 245

band-pass functions, 255
binomial, 258
frame, 291
Hann spectral window, 261
inversion, 283
kernel-based inversion, 284
Meyer wavelet, 264
Parseval’s tight frame, 291
polynomial approximation, 264
raised cosine transfer function,

261
reconstruction condition, 261,

263
signal adaptive, 263
spectral, 254

low-pass filtering, 168, 181
diffusion, 232

marginal property
frequency, 301
vertex, 301

market graph, 483
matching, 131

546 Index

edge weighted, 133
heavy edge, 132
maximal, 131
maximum, 132
random, 132
sorted heavy edge, 133

maximum-flow minimum-cut, 52
measurement matrix, 200
measurement vector, 200
metro traffic modelling, 471
minimal polynomial, 30
minimum graph cut, 51, 484

bounds, 71
minimum spanning tree, 23
Minnesota roadmap graph, 319
multi-graph tensor networks (MGTN),

464
multi-relational graphs

tensor representation, 462
multipartite graph, 16
multirelational graphs, 454
multivariate data, 324, 331

neighborhood, 20
Netflix recommender system, 455
Newton method, 363
normalized cut, 57, 485
normalized Laplacian, 13
number of walks, 20

optimal denoising, 193
out-degree matrix, 506

pageRank, 120, 386
Parseval’s theorem, 193
path, 21
path graph, 17

perfect reconstruction condition, 224
periodogram of a graph signal, 239
permutation matrix, 10
Perona–Freeman algorithm, 81
planar graph, 16
polynomail approximation

Chebyshev, 173
portfolio optimization

cut, 481
graph cut, 481
graph financial asset allocation,

490
hierarchical clustering based as-

set allocation, 483
hierarchical risk parity scheme,

483
market graph, 484
minimum cut, 484
minimum variance, 481
probabilistic generative mod-

els, 310
repeated cut, 488

power method, 499
power spectral density, 238
precision matrix, 333

maximum likelihood, 346
preferential attachment model graph,

18
principal component analysis (PCA),

104
Pytorch implementation, 442

quadratic mirror filter, 226

random degree vertex selection, 120
random edge selection, 120

Index 547

random graph signals, 237
random vertex selection, 119
random walk, 389

edge-centric, 390
vertex-centric, 389

random-walk analysis, 120
random-walk Laplacian, 13
ratio cut, 56, 485
Rayleigh quotient, 69
reconstruction conditions, 208

coherence index, 210
restricted isometry property, 209

recovery condition, 201
recurrent graph tensor network, 465
regression analysis, 335
regular graph, 16
relative eigenvalue gap, 80
RESCAL decomposition, 463
resitive electrical circuit, 375

segmentation, 50
Shi–Malik algorithm, 80
shift operator

isometric, 242
on a graph, 187
spectral domain, 192

signal similarity, 323
signal simulation, 405
signed graph, 507
similarity measure, 324
simulation of graph signals

diffusion, 407
external sources, 405
graph shifts, 407
using eigenvectors, 407

singular value decomposition (SVD),
457

smoothness, 295
condition, 339
index, 59, 295
local, 295
of eigenvectors, 59
Rayleigh quotient, 69

social networks, 385, 464
spanning tree, 23

cost, 23
minimum, 23

sparsification, see graph sparsifica-
tion

random degree vertex selection,
120

sparsity promotion, 196
spectral decomposition, 32

DFT, 36
matrix polynomials, 39
adjacency matrix, 32
bisection based minimum cut,

488
commute time, 111
diffusion, 111
Fourier analysis, 48
generalized Laplacian eigenvec-

tors, 73
graph Laplacian, 39
graph products, 37
normalized Laplacian, 73

spectral distance, 126
spectral domain based shift, 241
spectral embedding, 65
spectral graph theory, 29

548 Index

spectral graph wavelet transform,
268

inversion, 293
polynomial approximation, 273
reconstruction condition, 274

spectral manifold, 64
spectral ordering

adjacency matrix, 167
graph Laplacian, 180

spectral similarity, 62
spectral space, 62
spectral vector, 63
spectrogram on a graph, 302
spectrum, 33, 40
spectrum folding, 46
spring-mass system, 383
star graph, 16
steepest descent method, 364
stochastic block graph, 18
subgraph, 24
subsampling

bandlimited graph signals, 199
filter bank, 221
optimal sampling strategy, 215
sparse signals, 203
support matrix, 204

super-vertex, 131
Swiss roll graph, 104, 314
system on a graph, 150, 160

convolution, 185–187
equivalent systems, 161
graph Fourier transform, 164
graph Laplacian, 184
impulse response, 161
properties, 161
system coefficients, 160

Taubin’s algorithm, 233
tensor decomposition, 455
tensor network

fast multi-graph, 467
general multi-graph, 467
multi-graph, 464
recurrent graph, 465

tensor representation of multirela-
tional graphs, 453

tensorization of graph signals
tensor representation of mul-

tirelational graphs, 454
tensors and graphs

canonical polyadic decomposi-
tion (CPD), 456

connectivity, 457
DFT, 460
fiber, 458
multi-graph tensor network (MGNT),

496
time-varying signals, 231
traffic networks

betweeness centrality, 473
centrality, 472
closeness vitality, 474
coefficient of diffusivity, 475
flux, 475
metro network, 471
net passenger flow, 474
passenger flow, 475

transfer function
polynomial approximation, 173
system on a graph, 165

transport for London, 477

uncertainty principle, 288

Index 549

support, 294, 299
undirected graph, 9
unweighted graph, 11

variational graph auto-encoder (VGAE),
446

vertex, 7
vertex closeness centrality, 22
vertex clustering, 49

k-means algorithm, 84
based on graph topology, 50
based on more than one eigen-

vector, 81
brain connecticity graph, 89
closeness of segmented graphs,

79
collaborative data processing,

85
Fiedler vector, 76
generalized eigenvectors, 79
image clustering, 85
indicator vector, 67
minimum cut, 76
minimum-flow, 52
Minnesota roadmap graph, 88
normalized Laplacian, 79
quasi-optimal, 59
segmentation, 79
spectral, 76, 92
spectral methods, 58

vertex dimensionality, 64
reduction, 92
spectral embedding, 65
spectral manifold, 64
spectral space, 62

vertex distance, 21

Euclidean, 313
generalized measure, 325

vertex ordering, 61
vertex-frequency analysis, 243
vertex-frequency distributions

energy, 294
kernel, 248, 301
local graph Fourier transform,

245
local smoothness, 245
marginal properties, 295
reduced interference (RID), 300
spectrogram, 290

vertex-varying filtering, 286
vertex-weighted Laplacian, 14
volume normalized cut, see normal-

ized cut

walk on a graph, 19
length of, 19
number of, 20

weight matrix, 11
sparsity condition, 334

weighted graph, 11
wide-sense stationarity (WSS), 238
Wiener filter on a graph, 240, 328,

see graph signal filetring
windows

graph signal analysis, 246
parameter optimization, 281
vertex domain, 274

z-transform, 165, 188

	I Graphs and Spectra on Graphs
	Introduction
	Graph Definitions and Properties
	Basic Definitions
	Some Frequently Used Graph Topologies
	Properties of Graphs and Associated Matrices

	Spectral Decomposition of Graph Matrices
	Eigenvalue Decomposition of the Adjacency Matrix
	Spectral Graph Theory
	Eigenvalue Decomposition of the Graph Laplacian

	Vertex Clustering and Mapping
	Clustering Based on Graph Topology
	Spectral Methods for Graph Clustering
	Spectral Clustering Implementation
	Vertex Dimensionality Reduction Using the Laplacian Eigenmaps
	Pseudo-Inverse of Graph Laplacian-Based Mappings
	Summary of Embedding Mappings

	Graph Sampling Strategies
	Graph Down-Sampling Strategies
	Graph Sparsification
	Graph Coarsening
	Kron Reduction of Graphs

	Conclusion

	II Signals on Graphs
	Introduction
	Problem Statement: An Illustrative Example
	Signals and Systems on Graphs
	Adjacency Matrix and Graph Signal Shift
	Systems Based on Graph Shifted Signals
	Graph Fourier Transform (GFT), Adjacency Matrix Based Definition
	System on a Graph in the GFT Domain
	Graph Signal Filtering in the Spectral Domain of the Adjacency Matrix
	Graph Fourier Transform Based on the Laplacian
	Ordering and Filtering in the Laplacian Spectral Domain
	Systems on a Graph Defined Using the Graph Laplacian
	Convolution of Signals on a Graph
	The z-Transform of a Signal on a Graph
	Shift Operator in the Spectral Domain
	Parseval's Theorem on a Graph
	Optimal Denoising
	Summary of Shift Operators for Systems on a Graph

	Subsampling, Compressed Sensing, and Reconstruction
	Subsampling of Bandlimited Graph Signals
	Subsampling of Sparse Graph Signals
	Measurements as Linear Combinations of Samples
	Aggregate Sampling
	Random Sampling with Optimal Strategy

	Filter Bank on a Graph
	Time-Varying Signals on Graphs
	Diffusion on Graph and Low Pass Filtering
	Taubin's - Algorithm

	Random Graph Signal Processing
	Review of WSS and Related Properties for Random Signals in Standard Time Domain
	Adjacency Matrix Based Definition of GWSS
	Wiener Filter on a Graph
	Spectral Domain Shift Based Definition of GWSS
	Isometric Shift Operator

	Vertex-Frequency Representations
	Localized Graph Fourier Transform (LGFT)
	Inversion of the LGFT
	Uncertainty Principle for Graph Signals
	Graph Spectrogram and Frames
	Vertex-Frequency Energy Distributions

	Conclusion

	III Machine Learning on Graphs, from Graph Topology to Applications
	Introduction
	Geometrically Defined Graph Topologies
	Graph Topology Based on Signal Similarity
	Learning of Graph Laplacian from Data
	Imposing Sparsity on the Connectivity Matrix
	Smoothness Constrained Learning of Graph Laplacian
	Graph Topology Estimation with the Graph Laplacian Energy Condition
	Learning of Generalized Laplacian-Graphical LASSO
	Graph Topology Learning Based on the Eigenvectors

	From Newton Minimization to Graphical LASSO, via LASSO
	Newton Method
	Standard LASSO
	Graphical LASSO

	Physically Well Defined Graphs
	Resistive Electrical Circuits
	Heat Transfer
	Spring-Mass Systems
	Social Networks and Linked Pages
	PageRank
	Random Walk
	Hitting and Commute Time
	Relating Gaussian Random Signal to Electric Circuits

	Graph Learning from Data and External Sources
	Random Signal Simulation on Graphs
	Summary of Graph Learning from Data Using Probabilistic Generative Models
	Basic Gaussian Models
	Gaussian Graphical Model
	Diffusion Models

	Graph Neural Networks
	Basic Graph Elements Related to GCNs
	Gradient Descent as a Diffusion Process
	Label Propagation as a Diffusion Process with External Sources
	GNNs of a Recurrent Style
	Spatial GCNs via Localization of Graphs
	Spectral GCNs via Graph Fourier Transform
	Link Prediction via Graph Neural Nets

	Tensor Representation of Lattice-Structured Graphs
	Tensorization of Graph Signals in High-Dimensional Spaces
	Tensor Decomposition
	Connectivity of a Tensor
	DFT of a Tensor
	Unstructured Graphs
	Tensor Representation of Multi-Relational Graphs
	Multi-Graph Tensor Networks

	Metro Traffic Modeling Through Graphs
	Traffic Centrality as a Graph-Theoretic Measure
	Modeling Commuter Population from Net Passenger Flow

	Portfolio Cuts
	Structure of Market Graph
	Minimum Cut Based Vertex Clustering
	Spectral Bisection Based Minimum Cut
	Repeated Portfolio Cuts
	Graph Asset Allocation Schemes
	Numerical Example

	Conclusion
	Appendices
	Power Method for Eigenanalysis
	Algorithm for Graph Laplacian Eigenmaps
	Other Graph Laplacian Forms
	Graph Laplacian for Directed Graphs
	Signed Graphs and Signed Graph Laplacian
	Graph p-Laplacian

	Acknowledgments
	References
	Index

