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Abstract—Within the compressive sensing (CS) paradigm,
sparse signals can be reconstructed based on a reduced set of
measurements, whereby reliability of the solution is determined
by its uniqueness. With its mathematically tractable and feasible
calculation, the coherence index is one of very few CS uniqueness
metrics with considerable practical importance. We propose an
improvement of the coherence-based uniqueness relation for the
matching pursuit algorithms. Starting from a simple and intuitive
derivation of the standard uniqueness condition, based on the co-
herence index, we derive a less conservative coherence index-based
lower bound for signal sparsity. The results are generalized to
the uniqueness condition of the l0-norm minimization for a signal
represented in two orthonormal bases.

Index Terms—Compressive sensing, Signal reconstruction, Data
acquisition, OMP.

I. INTRODUCTION AND BASIC CS SETTING

COMPRESSIVE Sensing (CS) is a field that provides a
framework for efficient data acquisition [1]–[5], [11].

Examples include applications that rest upon reliable sensing
from the lowest possible number of measurements, such as the
recovery of sparse signals from vastly reduced sets of mea-
surements and practical solutions in critical cases when some
measurements are physically unavailable or heavily corrupted
by disturbance.

Within the CS theory, several approaches have been estab-
lished to reconstruct a sparse, N -dimensional vector, X, from a
reduced M -dimensional set of measurements, y. The main con-
cern in the reconstruction is to provide the conditions for a unique
solution. Several frameworks for establishing the conditions for
a unique solution have been developed. The most important ones
rely on the restricted isometry property (RIP) and the coherence
index. While the RIP-based approach provides theoretically
well-founded conditions, its computational complexity remains
the main problem [1], [2], [12], [13]. Namely, the RIP constant
calculation is even more computationally demanding than the
direct combinatorial solution of the CS problem itself. On the
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other hand, the coherence index-based condition is simple and
computationally efficient, while its main disadvantage is that
the reconstruction conditions based on this metric are quite
pessimistic [4], [6].

Here, we introduce an approach which alleviates this defi-
ciency of the coherence index; this is achieved through a com-
putationally simple improved bound for the uniqueness relation
based on the coherence index. The approach will be applied to
a signal representation in two bases [14], being used for the
derivation of the general sparsity bounds when the ℓ0 and ℓ1
minimizations are used to solve a CS problem.

A. Definitions and Notation

A sequence {X(k)}, k = 0, 1, . . . , N − 1 is referred to as
a sparse sequence if the number, K, of its nonzero elements,
X(k) ̸= 0, is much smaller than its total length, N , that is,

X(k) ̸= 0 for k ∈ {k1, k2, . . . , kK}, K ≪ N.

A linear combination of elements of X(k), given by

y(m) =
N−1∑

k=0

am(k)X(k), (1)

is called a measurement, with the weights denoted by am(k).
The above set of measurements, y(m),m = 0, 1, . . . ,M − 1,

admits a vector/matrix form, given by

y = AX, (2)

where y = [y(0), y(1), . . . , y(M − 1)]T is an M × 1 column
vector, A is an M ×N measurement matrix which comprises
the weights am(k) as its elements, and X is an N × 1 sparse
column vector with elements X(k).

Without loss of generality, we shall assume that the measure-
ment matrix, A, is normalized so that the energy of its columns
sums up to unity. Consequently, the diagonal elements of its
symmetric Gram form, AHA, are equal to 1, where AH is the
complex conjugate transpose of A.

The compressive sensing theory task is to reconstruct the N -
dimensional K-sparse vector X from a set of M measurements,
y = AX, with K ≪ M < N . There are several approaches to
solve this problem (for reviews of these approaches see [3], [13]).
Here we will consider the orthogonal matching pursuit (OMP)
approach [3], [5], [6], [13].

B. OMP Solution to the CS Paradigm

A matching pursuit reconstruction algorithm is typically
based on a two-step strategy:
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Step 1: Detect the positions of nonzero elements,
Step 2: Recover the signal by exploiting the relations be-

tween the measurement matrix, A, detected posi-
tions, and the vector of measurements, y.

It will be further shown that the physically relevant condi-
tions for the reconstruction are in fact related to the challenges
emerging in the first step of the presented methodology. Oth-
erwise, if arbitrary positions of K nonzero elements of X are
known, meaning that X(k) ̸= 0 for k ∈ {k1, k2, . . . , kK}, then
a reduced set of measurement equations will follow as

y = AMKXK ,

with AMK being an M ×K dimensional sub-matrix of the
matrixA, formed by keeping only the columns corresponding to
the positions {k1, k2, . . . , kK}. Unknown values X(k), located
at k ∈ {k1, k2, . . . , kK}, are here conveniently grouped into a
K × 1 vector XK . This system of M equations and K < M
unknowns has a solution in a Least Square (LS) sense,

XK = (AH
MKAMK)−1AH

MKy = pinv(AMK)y. (3)

A sufficient condition for this reconstruction with known posi-
tions is that the matrix AH

MKAMK is regular.
The reconstruction solution is exact if the positions

{k1, k2, . . . , kK} of nonzero elements in a K-sparse vector X
are exactly determined for any set {k1, k2, . . . , kK} and if there
exist at least K independent measurements [5]–[8].

The more demanding condition is that the positions of the
nonzero elements in the sparse vector are exactly determined.
This means that the detection step of the OMP approach is
crucial for the exact solution. The detection is based on the initial
estimate, defined as a back-projection of the measurements, y,
on the measurement matrix, A, given by

X0 = AHy = (AHA)X. (4)

If AHA ensures that the largest K elements of the initial
estimate, X0, are positioned at exact k ∈ {k1, k2, . . . , kK},
then the detection is performed by taking the positions of the
highest magnitude elements in the initial estimate, followed by
the reconstruction based on (3). The condition that K elements
in the initial estimate, X0, located at the positions of non-zero
elements in the original sparse vector, X are larger than any
other component in the initial estimate can be relaxed through
an iterative procedure. In such a methodology [5], in order to
find the position k1 of the largest non-zero element in X0, it
is required that its value is larger than any value at the original
zero-valued element position. Upon detecting the position, k1,
and estimating the component value based on (3), with AK

being formed based on k1, the contribution of this component
is removed from measurements vector, y. The procedure is
iteratively repeated for the remaining nonzero elements.

II. UNIQUENESS OF THE OMP RECONSTRUCTION

The uniqueness condition based on the coherence index can be
formulated as follows: The reconstruction of a K-sparse signal,
X, is unique if the coherence index,

µ = max
k,l k ̸=l

∣∣∣∣∣

M−1∑

m=0

am(k)a∗m(l)

∣∣∣∣∣ , (5)

of the normalized measurement matrix, A, satisfies [2]

K <
1

2

(
1 +

1

µ

)
. (6)

The coherence index, µ, is equal to the maximum absolute
off-diagonal element of AHA, while its diagonal elements
are equal to 1. The condition in (6) guarantees that the solu-
tions obtained by minimizing the ℓ0-norm and ℓ1-norm pro-
duce the same common unique solution [12]. This condition
guarantees uniqueness of the solution produced by the OMP
algorithm [4]–[10].

The coherence index condition (5) can be obtained through
the analysis of successful determination of the positions of
non-zero values in the original vector X [10]. By definition,
any measurement represents a linear combination of nonzero
elements of the sparse vector X, that is

y(m) =
K∑

i=1

X(ki)am(ki).

Furthermore, without loss of generality, it can be assumed
that the largest element is X(k1) = 1, whereas the remaining
nonzero elements do not take values greater than this value,
|X(ki)| ≤ 1, i = 2, 3, . . . ,K. In that case, the initial estimate

X0(k)=
M−1∑

m=0

[
K∑

i=1

X(ki)am(ki)

]
a∗m(k)=

K∑

i=1

X(ki)µ(ki, k)

can be expressed, for the element at k = k1, as follows

X0(k1) = X(k1) +
K∑

i=2

X(ki)µ(ki, k1), (7)

where µ(ki, k) =
∑M−1

m=0 am(ki)a∗m(k). The maximum possi-
ble absolute value of µ(ki, k) is then equal to the coherence
index, that is, µ = maxki,k |µ(ki, k)|, k ̸= ki.

In the worst case scenario for the detection of the element at
position k1, the value of this element, |X0(k1)| in (7) is maxi-
mally reduced by the term

∑K
i=2 X(ki)µ(ki, k). The maximally

reduced coefficient |X0(k1)| takes the value

min |X0(k1)| = 1−
K∑

i=2

|X(ki)µ(ki, k)| = 1− (K − 1)µ,

(8)
assuming that all K − 1 remaining elements X(ki) have the
most unfavorable value,X(ki) = 1, whereas |µ(ki, k)| = µ, for
each ki ∈ {k1, k2, . . . , kK}. The maximum value of disturbance
at the positions where the elements were originally zero-valued,
k /∈ {k1, k2, . . . , kK} = K is equal to

max
k,k/∈K

|
K∑

i=1

X(ki)µ(ki, k)| = Kµ. (9)

In the worst case scenario, the exact and unique detection of
the position of the largest element X0(k1) is possible when its
maximally degraded value exceeds the maximal value of the
disturbance

min |X0(k1)| > max
k,k/∈K

|
K∑

i=1

X(ki)µ(ki, k)|,

or equivalently, 1− (K − 1)µ > Kµ, producing (6). Upon suc-
cessfully detecting, reconstructing, and removing the first non-
zero component in a sparse X, the same procedure and relations
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can be iteratively applied to the remaining “deflated” signal,
whose sparsity cannot be greater than K, [7], guaranteeing an
exact and unique solution as shown in [7], [8].

III. IMPROVED BOUND DERIVATION

In the previous derivation of the reconstruction relation (6),
it has been assumed that K maximum absolute values of
µ(ki, k) = µ in (9) add up to form the disturbance. Moreover,
it has been assumed that the component X0(k1), that we aim to
detect at a position k1, is reduced by K − 1 maximal values of
µ(ki, k) = µ. This is, however, an overly pessimistic assump-
tion, since even in the worst case scenario all the largest 2K − 1
values of µ(ki, k), in general, may not be equal to µ.

Actually, when the first maximum is taken |µ(ki, k)| = µ, in
the next sample only the second largest value of |µ(ki, k)| can be
taken. Subsequently, only the third largest value of |µ(ki, k)| can
be taken, and so on. To take this fact into account and derive a
less conservative reconstruction bound, denote the sorted values
of |µ(ki, k)| by

s(p) = sortki,k{|µ(ki, k)|},

ki, k = 0, 1, . . . , N − 1, ki ̸= k, p = 1, 2, . . . , N(N − 1),
(10)

with a nonincreasing order, s(1) ≥ s(2) ≥ · · · ≥ s(N2 −N).
In the worst case scenario, instead of 2K − 1 values of µ, now
we can use the first (2K − 1) (largest) values of s(p) to get

1 >
2K−1∑

p=1

s(p) = (2K − 1)αA(2K − 1),

instead of 1 > (K − 1)µ+Kµ, where αA(2K − 1) is the
mean value of the (2K − 1) largest values of |µ(ki, k)|,

αA(2K − 1) =
1

2K − 1

2K−1∑

p=1

s(p) = mean
1≤p≤2K−1

s(p).

The bound for the reconstruction now becomes

K <
1

2

(
1 +

1

αA(2K − 1)

)
. (11)

This implicit inequality is easily solved by direct check, starting
fromK = 1, followed by increasing the value ofK by one, until
the inequality (11) holds [10].

In the special case of an equiangular tight frame (ETF) mea-
surement matrix, when the factor |µ(ki, k)| = µ is constant, then
αA(2K − 1) = µ and (6) holds. In all cases, for any measure-
ment matrix A, condition αA(2K − 1) ≤ µ holds. This means
that a more optimistic bound for K is obtained by (11) than the
conventional CS bound in (6).

Furthermore, it will be shown that a less conservative bound
than in (11) can be derived following some simple observations
of the initial estimate calculation based on the Gram matrix
AHA. Recall that the value of the initial estimate, X0(k), at a
non-zero position k1 can be calculated using (7). In the described
worst case scenario, the observed “largest” term X(k1) = 1 is
maximally reduced. This happens when |µ(k1, ki)| takes the
largest possible values only within a row with index k1 of matrix
AHA. If we sort the values of elements within each row in a
nonincreasing order (for all indices k1 = k, since k1 can assume

any index value) and form
s1(k, p) = sort|µ(k, l)| (12)

l = 0, 1, . . . , N − 1, l ̸= k, p = 1, 2, . . . , N − 1, such that
s1(k, 1) ≥ s1(k, 2) ≥ · · · ≥ s1(k,N − 1), then in the worst
case scenario, when X(k) = 1 for all k ∈ {k1, k2, . . . , kK},
X(k1) in (7) will be reduced for

(K − 1)max
k1

{
1

K−1

K−1∑

p=1

s1(k1, p)

}
= (K − 1)βA(K−1).

That is, X(k1) is reduced by the sum of the first (K − 1) terms
of s1(k1, p), being in fact the largest possible (K − 1) values
of any row in |µ(k1, l)|, k1 = 0, 1, . . . , N − 1, excluding the
element l = k1, where

βA(K − 1) = max
k1

{ mean
1≤p≤K−1

s1(k1, p)}. (13)

The largest possible disturbance value is obtained when ab-
solute values of the elements |µ(ki, k)| of matrix AHA take
the largest values in the given row at the disturbance position
k /∈ {k1, k2, . . . , kK} and are summed in phase. If we take
into account the notation for sorted values in (12), then this
accumulated disturbance value becomes KγA(K), where

γA(K) = max
k ̸=k1

{mean
1≤p≤K

s1(k, p)} (14)

having in mind that |µ(ki, k)| can take K largest values from
one row (excluding the values in the row k1 taken in (13)).

The successful detection of the component X(k1) will not be
compromised if this component, assuming its smallest possible
value, is still larger than the largest value of the disturbance at
k /∈ {k1, k2, . . . , kK}, that is

1−
K∑

i=2

|X(ki)µ(ki, k)| >
K∑

i=1

|X(ki)µ(ki, k)|

or, having in mind (13) and (14)
1 > (K − 1)βA(K − 1) +KγA(K).

The reconstruction of a K-sparse signal, X, is exact and
unique if the measurement matrix, A, guarantees that the fol-
lowing condition is satisfied

K <
1 + βA(K − 1)

βA(K − 1) + γA(K)
. (15)

The three discussed sparsity bounds are related as
1 + βA(K − 1)

βA(K − 1) + γA(K)
≥ 1

2

(
1+

1

αA(2K−1)

)
≥ 1

2

(
1+

1

µ

)
.

The equality holds for the ETF measurement matrices when
βA(K − 1) = γA(K) = αA(2K − 1) = µ.

IV. NUMERICAL EXAMPLES

The presented relations are tested on several numerical exam-
ples: a graph matrix, a measurement matrix of a Gaussian form,
partial DFT and DCT matrices, and an ETF form.

An unweighted and undirected graph with N = 64 vertices
is given in Fig. 1(left). The graph Fourier transform (GFT)
matrix is defined by the eigenvectors of the graph Laplacian,
as its columns [16]. It has been assumed that the graph signal is
K-sparse in the GFT domain and that the samples at vertices
n = 21 and n = 38 are missing. The off-diagonal absolute
values of AHA, with A corresponding to M = 62 available
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Fig. 1. An undirected and unweighted graph (left) and the absolute values
of matrix AHA− I (right), where A is obtained from the graph eigenvector
matrix, excluding rows 21 and 38. The elements of matrix AHA used for the
calculation of βA(K − 1) are encircled using a white line, while its elements
used for the calculation of γA(K) are encircled using a red line, with sparsity
K = 9, being the smallest K when inequality (15) is not satisfied.

samples (rows of the GFT matrix), is shown in Fig. 1(right).
This matrix guarantees unique reconstruction for K < 6.8917,
K < 7.4618, and K < 8.3118, respectively, with the three pre-
sented approaches for the sparsity bound, given by relations (6),
(11), and (15), respectively. We can conclude that the sparsity
limit is improved from the maximum sparsity K = 6, with (5),
to K = 8 using (15). The results are statistically checked. It has
been concluded that in 106 random realizations for K ≤ 8 all
reconstructions were successful.

For a Gaussian measurement matrix, we used N = 80 and
M = 70. Over 1000 realizations (with various Gaussian matri-
ces) we obtained the mean value of the limit K < 1.6761 with
a standard deviation (SD) of 0.08, while the presented method
produced the mean value limit K < 2.3523 with an SD of 0.16.
The same experiment with a 900× 1000 measurement matrix
produced K < 3.6175 with an SD of 0.15 and K < 4.3580
with an SD of 0.07, meaning that the sparsity of a certain
reconstruction is improved from 3 to 4.

For a partial DCT matrix, with dimension 124× 128, we
obtained the mean values K < 9.7849 and K < 12.1354, with
(6) and (15). The best case in 1000 random realizations of the
available samples, with improved bound, was K < 14.2238.

For an 124× 128 partial DFT matrix, we obtained the mean
values K < 16.9068 and K < 19.8323, with (6) and (15),
respectively. The best case over 1000 random realizations of
the available samples was K < 21.4307 with (15). For just 2
missing samples, the measurement matrix behaves close to an
ETF and produced the limits for K very close to N/4 = 32. For
112× 128measurement matrix the best limit wasK < 10.3770.
For half of the available samples, M = N/2, all limits dropped
toward the theoretically worst case when no unique solution can
be achieved. For 1000 realizations, the mean values were just
above 3, the best form of the measurement matrix produced the
sparsity limit slightly above 4, while for the worst case measure-
ment matrix in these 1000 realizations, the limit dropped toK <
1.9545. With a 20× 128, corresponding to just 20 available
samples, the mean limits were K < 1.6325, and K < 2.2649.

Finally, for an ETF matrix of dimension 9× 18, all the
presented limits were the same, as expected since the absolute
values of the off-diagonal elements of AHA are the same. The
common limit was K < 2.5616.

Remarks: (i) Notice that (6) is the worst case recovery condi-
tion. A successful recovery could still be achieved even if this
condition is not satisfied [10]. (ii) In the case when (6) is not met,

the reconstruction can be improved if the algorithm is allowed
to run more than K iterations [6], [10]. (iii) Additional improve-
ment of the bound in (15) can be achieved if all indices used in
(13) are considered as the positions of nonzero elements, and
excluded in (14), instead of excluding k1 only. (iv) Probabilistic
analysis may be found in [10], [17], [18]. (v) The condition for
a unique solution existence can be relaxed using (16) or [19].

V. GENERALIZATION FOR TWO BASES AND ℓ0-NORM

The presented framework can be used to generalize the re-
sults obtained analyzing the signal representation in two bases,
as introduced in [14]. This kind of signal representation was
used to find the general sparsity bounds for the unique solu-
tions, obtained using the ℓ0-norm and the ℓ1-norm minimiza-
tions. Consider representations of a unit energy signal, x(n),
n = 0, 1, . . . , N − 1, in two arbitrary bases uk(n) and vl(n),
with the respective transformation elements X(k) and Y (l),
k, l = 0, 1, . . . , N − 1. Assume, as in [2], [14], that the signal is
sparse in these bases with sparsities ||X||0 = K and ||Y||0 = L,
and that the Parseval’s theorem holds in both bases, ||X||22 =
1 and ||Y||22 = 1. We can now form a function L(n, k, l) =
X(k)Y ∗(l)uk(n)v∗l (n), as in [15], such that
∑

n

x(n)x∗(n) =
∑

n

∑

k

∑

l

X(k)Y ∗(l)uk(n)v
∗
l (n) = 1,

where k ∈ {k1, k2, . . . , kK} and l ∈ {l1, l2, . . . , lL}. Then,
using Schwartz’s inequality, with µ(k, l) =

∑
n uk(n)v∗l (n),

we get

1 =
∣∣∣
∑

k

∑

l

X(k)Y ∗(l)
∑

n

uk(n)v
∗
l (n)

∣∣∣
2

≤
∑

k

∑

l

|X(k)|2|Y (l)|2
∑

k

∑

l

|µ(k, l)|2

≤ KL
1

KL

∑

p

s2(p)

where s(p) is defined in (10). Using the notation ηA(KL) =
1

KL

∑
p s

2(p) and
√
ab ≤ (a+ b)/2, a > 0, b > 0, we get

1

ηA(KL)
≤ KL = ||X||0||Y||0 ≤

(
1

2
(||X||0 + ||Y||0)

)2

or ||X||0 + ||Y||0 ≥ 2√
ηA(KL)

.

The solution of the ℓ0-norm minimization is unique if the spar-
sity, ||X||0, is smaller than half of the uncertainty bound

K <
1√

ηA(K2)
, (16)

for K = L. This relation can be used to improve coherence
index-based conditions when the ℓ0-norm and ℓ1-norm mini-
mization produce the same and unique solution [2], [14].

VI. CONCLUSION

A numerically efficient calculation of an improved coherence
index-based sparsity bound has been proposed. The calculation
is demonstrated on a graph signal example and over several com-
monly used measurement matrices. The results are generalized
for the l0-norm and two bases.
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