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Since compressive sensing deals with a signal reconstruction using a reduced set of measurements, the
existence of a unique solution is of crucial importance. The most important approach to this problem
is based on the restricted isometry property which is computationally unfeasible. The coherence index-
based uniqueness criteria are computationally efficient, however, they are pessimistic. An approach to
alleviating this problem has been recently introduced by relaxing the coherence index condition for the
unique signal reconstruction using the orthogonal matching pursuit approach. This approach can be fur-
ther relaxed and the sparsity bound improved if we consider only the solution existence rather than its
reconstruction. One such improved bound for the sparsity limit is derived in this paper using the Gersh-
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1. Introduction

In compressive sensing we are dealing with a reduced set of
signal observations [1-10]. The reduced set of observations can be
caused by a desire to compressively acquire signal measurements
or by physical unavailability to measure the signal at all possible
sampling positions and to get a complete set of samples [4]. In
some applications, signal samples may be so heavily corrupted at
some arbitrary positions that their omission could be the best ap-
proach to their processing, when we are left with a reduced set
of signal samples as a basis for signal reconstruction [11-13]. The
fundamental condition to fully reconstruct the signal from a re-
duced set of observations is the signal sparsity in a transformation
domain. This type of reconstruction is supported by rigorous math-
ematical framework [5,15-17]. Applications of compressive sensing
methods are numerous, including radar signal processing [18,19],
time-frequency analysis [20-22], data hiding [23], wireless com-
munications [24], image processing [13], and graph signal process-
ing [14].

While compressive sensing provides a basis for signal recon-
struction, assuming the sparsity in a transformation domain, the
uniqueness of the solution is of crucial importance, due to the re-
duced set of measurements. The most comprehensive uniqueness
condition has been defined through the restricted isometry prop-
erty and is characterized by its computational infeasibility. An al-
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ternative approach is based on the coherence index. However, this
criterion may be quite pessimistic.

An approach to improve the coherence index-based bound has
been proposed in [26] by analyzing the initial estimate and the
support uncertainty principle as in Stankovic¢ [27], Elad and Bruck-
stein [28]. The approach presented in [26] guarantees unique re-
construction of a sparse signal using the orthogonal matching pur-
suit approach. In this paper, a relaxed coherence index condition
will be derived for the existence of the unique solution of the com-
pressive sensing problem, using the Gershgorin disk theorem. This
result guarantees the existence of a unique solution, but not its re-
construction, meaning that the obtained bound can be relaxed as
compared to the one introduced in [26]. The new result for the
sparsity bound will be related to the classical one and those pro-
posed in [26]. The theory is illustrated by numerical examples.

2. Review of basic definitions

The basic definitions of compressive sensing will be reviewed
first, along with the introduction and explanation of the notation
used in the next sections.

2.1. Sparse signal

Consider an N-dimensional signal, X, and one of its linear trans-
forms, X, such that x = ®X, where ® is an N x N inverse trans-
formation matrix. The transform elements are denoted by X =
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[X(0), X(1),..., X(N—=1)]T, where T represents the transpose op-
eration. This signal is sparse in the considered transform domain
if the number of nonzero elements of X, denoted by K, is much
smaller than the signal dimension, N, that is, if the following prop-
erty holds

X(k):O for I(¢K={k],k2,..,,k)(}C{O,l,...,N—]} (1)

and K « N. The number of nonzero elements, K, can be expressed
using the ¢g-norm of the vector X or the cardinality of the set K,
as K = ||X||o = card{K}.

2.2. Measurements

The measurements of the sparsity domain elements are defined
as their linear combinations

N-1

y(m) =" a(m)X k), (2)

k=0

where m=0,1,...,M—1 is the measurement index and
ay(m), k=0,1,...,N—1, are the weighting coefficients of the
mth measurement. The measurement vector is denoted by
y=[y(0), y(1),....,y(M—1)]T. Within the framework of linear
algebra, the measurements can be considered as an undetermined
system with M < N equations,

y =AX, (3)

where A is the measurement matrix with elements a,(m). The size
of the measurement matrix is M x N.

In some applications, the measurements represent the acquired
signal samples, y = WX, where ¥ is an N x M random permutation
matrix. Since y = Wx = W®X, this case reduces to (3), with ¥ =
A.

2.3. Sparsity aware system

The fact that the signal must be sparse in a transformation do-
main, with X(k) =0 for k ¢ K = {ky,k;, ..., kg}, is not taken into
account within the measurement matrix A since, in general, the
positions of the nonzero values of X(k) are unknown and should
be determined. If we assume that the nonzero positions are found
(or assumed or known in advance), meaning that X(k) =0 for
k ¢ K, then a system with a reduced number of unknowns, Xy =
[X(ky), X(ky),..., X(kg)]T, is obtained. This system corresponds
to a reduced M x K measurement matrix Agx. The system of equa-
tions then assumes the form

y = AgXk. (4)

Since K < M must hold in compressive sensing, this system is now
an overdetermined system of linear equations. The reduced mea-
surement matrix Ay is formed using the positions k € K of nonzero
samples of X. The matrix Ak directly follows from the measure-
ment matrix, A, when the columns corresponding to the zero-
valued elements in X are omitted. The reconstructed vector, Xy,
with the determined/assumed/known nonzero positions, is a solu-
tion in the least-squares sense, given by

Xk = (A{Ax)'Ally. (5)

where A’,z is a Hermitian transpose of Ag. The condition for this
least-squares reconstruction is the invertibility of the matrix A,*(’AK.
This condition is much weaker than the condition for a unique de-
termination of the positions of nonzero elements in X, at k € K,
that will be considered next.
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2.4. Coherence index
The coherence index of a matrix A is defined as the maximum

absolute value of the normalized scalar product of its two different
columns, that is, [25]

W = max |puy|, for k #1, (6)
where the elements ), are defined by
M-1
(a, ;)
M = e 2 W(map(m) = —————— (7)
u ||ak||2||a,||zn§ K IENBIEE

and a,(m) is the element at the mth row and kth column of the

measurement matrix A (whose kth column is denoted by a,). If the

columns, a, of the measurement matrix, A, are energy normalized,
M-1 2

l1al13 = Ym_o lax(m)|* = 1, then

M-1

=Y a(m)a; (m) = (ay. a;). (8)
m=0

Notice that 11y, are then the elements of matrix A7A.

The coherence index plays a crucial role in the measurement
matrix design. The coherence index should be as small as possible,
meaning that the incoherence is a desirable property for the mea-
surement matrix [8]. With smaller values of the coherence index
the matrix defined by AMA has lower off-diagonal elements and it
is closer to the identity matrix.

3. Unique reconstruction

A K-sparse solution, X, of the system (3), whose nonzero elements
form the vector Xy, is unique if all Ayx submatrices of the measure-
ment matrix A, corresponding to a 2K-sparse signal, are such that all
matrices A’;KAZK are invertible.

The contradiction will be used to prove this statement. This
simple proof will be used as a basis for the derivation of the new
limit for the sparsity. Assume that two different K-sparse solutions
exist for the vector X. Denote the nonzero elements of these so-
lutions by X1(<1) and X,((Z). The nonzero elements in X1(<1) correspond

to the positions k € K; in the original vector X, while X1(<2) contains
the nonzero elements of vector X, positioned at k € K,. Assume
that the solution is not unique and that both of these two vectors
satisfy the measurement Eqs. (3) and (4), that is,

AVXD —y and APXP =y,

where A1(<1) and A1(<2) are submatrices of the measurement matrix A
of size M x K. They correspond to the nonzero elements in vectors
Xl((l) and X1(<2)' respectively. We can rewrite these two equations by
adding zeros at the corresponding zero positions of the other vec-

tor, as

(1) 0
a2 X | = @ a1 % | Z
(AL AL ]|: ()Ij< :| =y and [A{" Ag ]|:X1((2):| =V (9)
If we subtract these two equations we get
X(l)
1) 2 _
(A A1(<)][_,'(<<2) =0. (10)
K

We arrived at the homogeneous system of equations. It is known
that this system does not have a nonzero solution for the elements
of X" and X if the rank of matrix Ay = [AD A@] is equal
to 2K, meaning that A;’KAZK is invertible. If all possible submatri-
ces Apx of the measurement matrix A, for all possible combina-
tions of nonzero element positions, are such that AQKAZK are in-
vertible then two distinct solutions, whose sparsity is K, cannot ex-
ist. This means that the solution of the compressive sensing prob-

N

2K) submatrices Ay, and the

lem is unique. Note that there are (
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combinatorial approach to this problem is not computationally fea-
sible.

4. Review of the Gershgorin disk theorem

The matrix A’z"KAzK is invertible if its determinant is nonzero
[29]. This condition is equivalent to the condition that all eigenval-
ues of matrix A’Z"KAzK, for all possible combinations of 2K positions
of nonzero elements, are nonzero. The eigenvalue/eigenvector rela-
tion for a matrix Al Ay is defined by

(AIZ-IKAZK)U = )\.ll, (l])

where u denotes the eigenvector corresponding to the eigenvalue
A. Since the eigenvector belongs to the kernel of A’z"KAZK — Al we
can always assume that its maximum coordinate is equal to 1 (in-
stead of the common choice to produce a unit energy eigenvector),
that is u; = max;(Juj|) =1 and |u;| <1 for j #1i.

For the columns ke {ky,ky, ..., ky} of matrix Ay, selected
from the columns of normalized matrix A, the elements of matrix
All Ayi are denoted by

M-1
/‘Lk;kj = Z Ay, (m)aj;j (m) = <ak|-7 akj)a (12)
m=0

fori,j=1,2,...,2K. Now, we can rewrite the eigenvalue relation
(11), in the element-wise form for the selected coordinate u; =1,
as

D Migglj =AU =2 OF Y [l llj = A — [y,

J JJ#t
From this relation we can conclude (Gershgorin Disc Theorem re-
sult)

|)‘ - Mk,»k,»| = ‘ Z Mlcilcjuj‘ = Z |Mlql<juj| = Z |:u'kikj|v (13)
J.J# J.J# J.J#

where the property [uj| <1 for j#i is used. Considering the
eigenvalue A as a variable and Mik; s constants, we conclude that
the last inequality, |A — /,Lkik,,| <D ijs |,ukikj|, describes a disc area
in the complex domain of A, with the center at i, and a radius
i |Mkik}'|' The disc described by the relation in (13) does not
include the point A = 0 if the radius is smaller than the distance
of the center from the origin, that is, if

Mk, > Z |:u'kikj|~ (14)
J.J#

Therefore, if the condition in (14) is met, the matrix AgKA21< cannot

assume a zero-valued eigenvalue, A, and therefore it is invertible.

Notice that py,, =1, for a normalized measurement matrix A.

We have already concluded that the solution for a K-sparse vec-
tor is unique if the matrices A’Z"KAZK are invertible for all possi-
ble submatrices Ayg. Note that the off-diagonal elements of A‘;KAZK
represent a subset of the off-diagonal elements of the matrix A"A,
that is

{bkp, | kis kj e {ki, ko ... kok}h, j # i}
c{uul k,1€{0,1,... ., N—1},k #1}.

It means that the coherence p of the measurement matrix A
will be always greater than or equal to the coherence of any
submatrix Agg, that is, max; ;. |/,Lkikj| < Maxy gz M| = p, for
ki. kj e {k1. ky..... ko), j#iand k,1€{0,1,....N—1}.k # I These
two sets of indices are related as in (1).

The invertibility condition for all matrices Ag’KAZK, and the unique
solution for a K sparse vector X, is achieved if 1 > (2K — 1) or

1 1
K < E(HE)' (15)
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The proof of this classical coherence index-based uniqueness con-
dition follows from (14) for the normalized matrix AfA. The in-
equality

2K

T=fier > Y il (16)
j=1j#

is satisfied if 1> (2K —1)max;; . |/L,<i,<j|. Since all matrices
Al Ayi are submatrices of the matrix AFA then max; j j; ;| <

max; . 1. || = 4 holds. This means that 32, ; ; liigp; | < (2K —
1)u and (16) is always satisfied if 1 > (2K — 1), producing (15).

5. Improved bound

The coherence index bound is pessimistic by definition, since it
takes the worst possible value of p;, over the whole matrix AHA,
which is equal to u, and assigns it to each of (2K — 1) terms ik,
in the sum in (16). This means that we may improve the coherence
index-based bound in the Gershgorin disc theorem derivation us-
ing the sum of the (2K — 1) largest absolute values instead of using
(2K — 1) times the largest absolute value u, like in Stankovic et al.
[26], when the coherence index was analyzed.

Proposition: A unique solution of the reconstruction problem, for
a K sparse vector X, exists if

1 1

where B5(2K — 1) is the mean of the (2K — 1) largest absolute values
of the off-diagonal elements of the matrixA"A within one row/column.

The condition that a matrix A’;KAZK is invertible is equivalent to
the condition that A = 0 is not an eigenvalue of AgKAZK. According
to (14), this is the case when

2K

1> miax{ Z | Wik, |} (18)
j=1,j#

holds for all possible combinations of 2K out of N indices, K; U
Ky = {k],kz,...,kz[{} C {O,],...,N— 1}

In order to avoid combinatorial (NP hard) approach, we can
use the largest values of this sum over the complete matrix A7A.
Denote the sorted absolute values of the elements, wy, in the
columns (or rows) of the matrix AFA by

s(k, p) = sorti{| pex |}

such that s(k, 1) > s(k,2) > ... > s(k, N). Then, having in mind that
Al Ayi are submatrices of A"A, the condition in (18) will be satis-
fied if

1 2K-1
1> max((2K - 15— p; stk p)} (19)

holds. Using the notation
BaRK -1) = mkax{mean{s(k, plp=12...,2K-1}},

the inequality in (19) can be written in the following form
1> 2K-1)Ba2K - 1), (20)

producing (17), where Ba(2K —1) is the mean of the (2K-1)
largest absolute values of the off-diagonal elements of the matix
AHA within one row/column.

The implicit inequality (17) is easily solved by checking for the
sparsity values, K =1, K =2, and so on, until the inequality sign
holds.
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10 20 30 40 50 60 (d)

Fig. 1. The off-diagonal elements of matrix AMA used for the calculation of various bounds. (a) The coherence index, as the largest absolute off-diagonal element of matrix
AMA (or the largest absolute element of matrix A”A —1I), used in the sparsity bound in (15), marked with a red circle. (b) The largest absolute values of elements in A#A — I
used to calculate a4 and the bound in (21). (c) The largest absolute values in A#A —1 used to calculate B4 (K — 1) (encircled using a white line) and y4(K) (encircled using
a red line) used in the bound in (22). (d) The largest absolute values in A"A —1I used to calculate 84 (2K — 1) and the bound in (17). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

5.1. Comparison of bounds

Next, we will compare the bound in (17) with other bounds de-
rived in [26]. It is obvious that this new bound can improve the
standard coherence index-based bound (15) since the maximum
absolute value is always greater or equal to the mean of (2K —1)
largest absolute values, © > B4 (2K — 1), that is

1

T Baak—1)

1 1 1
K<§(1+ﬁ)5§(1

Illustration of the values used in the calculation of the bound in
(17) and the standard coherence index-based bound (15) is shown
in Fig. 1(a) and (d).

The bound in (17) is obtained using the mean of the (2K — 1)
largest absolute values of the off-diagonal elements of the ma-
trix AFA within one row/column and it will therefore be always
larger or equal to the bound obtained in [26] using the average of
the (2K — 1) largest absolute values within the whole matrix AHA

(Fig. 1(b)), denoted by «p, that is
1
PaCK—T) 1
The bound derived in this paper is compared with one derived
in [26], when the maximum absolute values within two different

rows are used (whose means are denoted by B4 (K — 1) and y, (K),
Fig. 1(c)), which is defined by
- 1+ Ba(K-1)

BatK —=1) + ya(K)’

We cannot decisively conclude which one of the bounds in (17) or
(22) is better since two different rows are used in the calculation
of (22). In the examples that will be presented next, the inequality
(17) produced higher sparsity bound than (22) in all considered
cases.

All the previous bounds produce the same result for the equian-
gular tight frame (ETF) measurement matrices, when all | ,ukikj| =
w are equal for any k; # k;j, and Ba(K — 1) = ya(K) = ap = u.

Finally, note that while the limit derived in [26] guarantees suc-
cessful reconstruction using the matching pursuit approach, the re-

1 1 1
K<5(1+oTA)5§(1+

K (22)
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laxed condition derived in this paper guarantees only the existence
of a unique solution.

6. Numerical examples

The derived limit for the sparsity was tested on several mea-
surement matrices, including the partial graph Fourier transform
(GFT) matrix, the partial DFT matrix, the partial DCT matrix, and a
random Gaussian measurement matrix.

 For a partial DFT matrix A of dimension 124 x 128 the spar-
sity limit obtained with the standard coherence index relation
(15) is K < 16.63. For the limits (21) and (22) we get K < 16.63
and K < 19.20, respectively. For the limit in (17) we get K <
23.54. The proposed result improves the classical coherence in-
dex bound for almost 50%.

For a Gaussian measurement matrix A of dimension 900 x 1000
we get K <3.40 as the classical limit and K < 3.59 and K <
4.48, as the bounds in (21) and (22) respectively. With (17) we
get K < 4.84.

For a partial DCT matrix of the size 124 x 128 we get K < 9.05,
K <9.77, K < 12.47, and K < 15.11, with the bounds defined by
(15), (21), (22), and (17), respectively.

For a partial GFT matrix of a graph with N =64 vertices and
62 available graph signal samples, given in Stankovic et al. [26],
the classical coherence index relation produces K < 6.89. The
bounds in (21) and (22) produce K < 7.46 and K < 8.31, while
the bound in (17) produces K < 9.22, as illustrated in Fig. 1.

7. Conclusion

An improved bound for the reconstruction limit has been re-
cently proposed based on the coherence index analysis. In this pa-
per, this bound is further relaxed by considering the existence of
the unique solution only and using the Gershgorin disc theorem.
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