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a b s t r a c t 

Since compressive sensing deals with a signal reconstruction using a reduced set of measurements, the 

existence of a unique solution is of crucial importance. The most important approach to this problem 

is based on the restricted isometry property which is computationally unfeasible. The coherence index- 

based uniqueness criteria are computationally efficient, however, they are pessimistic. An approach to 

alleviating this problem has been recently introduced by relaxing the coherence index condition for the 

unique signal reconstruction using the orthogonal matching pursuit approach. This approach can be fur- 

ther relaxed and the sparsity bound improved if we consider only the solution existence rather than its 

reconstruction. One such improved bound for the sparsity limit is derived in this paper using the Gersh- 

gorin disk theorem. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In compressive sensing we are dealing with a reduced set of 

ignal observations [1–10] . The reduced set of observations can be 

aused by a desire to compressively acquire signal measurements 

r by physical unavailability to measure the signal at all possible 

ampling positions and to get a complete set of samples [4] . In 

ome applications, signal samples may be so heavily corrupted at 

ome arbitrary positions that their omission could be the best ap- 

roach to their processing, when we are left with a reduced set 

f signal samples as a basis for signal reconstruction [11–13] . The 

undamental condition to fully reconstruct the signal from a re- 

uced set of observations is the signal sparsity in a transformation 

omain. This type of reconstruction is supported by rigorous math- 

matical framework [5,15–17] . Applications of compressive sensing 

ethods are numerous, including radar signal processing [18,19] , 

ime-frequency analysis [20–22] , data hiding [23] , wireless com- 

unications [24] , image processing [13] , and graph signal process- 

ng [14] . 

While compressive sensing provides a basis for signal recon- 

truction, assuming the sparsity in a transformation domain, the 

niqueness of the solution is of crucial importance, due to the re- 

uced set of measurements. The most comprehensive uniqueness 

ondition has been defined through the restricted isometry prop- 

rty and is characterized by its computational infeasibility. An al- 
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ernative approach is based on the coherence index. However, this 

riterion may be quite pessimistic. 

An approach to improve the coherence index-based bound has 

een proposed in [26] by analyzing the initial estimate and the 

upport uncertainty principle as in Stankovi ́c [27] , Elad and Bruck- 

tein [28] . The approach presented in [26] guarantees unique re- 

onstruction of a sparse signal using the orthogonal matching pur- 

uit approach. In this paper, a relaxed coherence index condition 

ill be derived for the existence of the unique solution of the com- 

ressive sensing problem, using the Gershgorin disk theorem. This 

esult guarantees the existence of a unique solution, but not its re- 

onstruction, meaning that the obtained bound can be relaxed as 

ompared to the one introduced in [26] . The new result for the 

parsity bound will be related to the classical one and those pro- 

osed in [26] . The theory is illustrated by numerical examples. 

. Review of basic definitions 

The basic definitions of compressive sensing will be reviewed 

rst, along with the introduction and explanation of the notation 

sed in the next sections. 

.1. Sparse signal 

Consider an N-dimensional signal, x , and one of its linear trans- 

orms, X , such that x = �X , where � is an N × N inverse trans-

ormation matrix. The transform elements are denoted by X = 

https://doi.org/10.1016/j.sigpro.2021.108316
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2021.108316&domain=pdf
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 X (0) , X (1) , . . . , X (N − 1)] T , where T represents the transpose op-

ration. This signal is sparse in the considered transform domain 

f the number of nonzero elements of X , denoted by K, is much 

maller than the signal dimension, N, that is, if the following prop- 

rty holds 

 (k ) = 0 for k / ∈ K = { k 1 , k 2 , . . . , k K } ⊂ { 0 , 1 , . . . , N − 1 } (1)

nd K � N. The number of nonzero elements, K, can be expressed 

sing the � 0 -norm of the vector X or the cardinality of the set K ,

s K = ‖ X ‖ 0 = card { K } . 

.2. Measurements 

The measurements of the sparsity domain elements are defined 

s their linear combinations 

 (m ) = 

N−1 ∑ 

k =0 

a k (m ) X (k ) , (2) 

here m = 0 , 1 , . . . , M − 1 is the measurement index and

 k (m ) , k = 0 , 1 , . . . , N − 1 , are the weighting coefficients of the

 th measurement. The measurement vector is denoted by 

 = [ y (0) , y (1) , . . . , y ( M − 1)] T . Within the framework of linear

lgebra, the measurements can be considered as an undetermined 

ystem with M < N equations, 

 = AX , (3) 

here A is the measurement matrix with elements a k (m ) . The size

f the measurement matrix is M × N. 

In some applications, the measurements represent the acquired 

ignal samples, y = �x , where � is an N × M random permutation 

atrix. Since y = �x = ��X , this case reduces to (3) , with �� =
 . 

.3. Sparsity aware system 

The fact that the signal must be sparse in a transformation do- 

ain, with X(k ) = 0 for k / ∈ K = { k 1 , k 2 , . . . , k K } , is not taken into

ccount within the measurement matrix A since, in general, the 

ositions of the nonzero values of X(k ) are unknown and should 

e determined. If we assume that the nonzero positions are found 

or assumed or known in advance), meaning that X(k ) = 0 for 

 / ∈ K , then a system with a reduced number of unknowns, X K =
 X (k 1 ) , X (k 2 ) , . . . , X (k K )] T , is obtained. This system corresponds

o a reduced M × K measurement matrix A K . The system of equa- 

ions then assumes the form 

 = A K X K . (4) 

ince K < M must hold in compressive sensing, this system is now 

n overdetermined system of linear equations. The reduced mea- 

urement matrix A K is formed using the positions k ∈ K of nonzero 

amples of X . The matrix A K directly follows from the measure- 

ent matrix, A , when the columns corresponding to the zero- 

alued elements in X are omitted. The reconstructed vector, X K , 

ith the determined/assumed/known nonzero positions, is a solu- 

ion in the least-squares sense, given by 

 K = (A 

H 
K A K ) 

−1 A 

H 
K y , (5) 

here A 

H 
K is a Hermitian transpose of A K . The condition for this 

east-squares reconstruction is the invertibility of the matrix A 

H 
K 

A K . 

his condition is much weaker than the condition for a unique de- 

ermination of the positions of nonzero elements in X , at k ∈ K ,

hat will be considered next. 
2 
.4. Coherence index 

The coherence index of a matrix A is defined as the maximum 

bsolute value of the normalized scalar product of its two different 

olumns, that is, [25] 

= max | μkl | , for k � = l, (6) 

here the elements μkl are defined by 

kl = 

1 

|| a k || 2 || a l || 2 
M−1 ∑ 

m =0 

a k (m ) a ∗l (m ) = 

〈 a k , a l 〉 
|| a k || 2 || a l || 2 (7) 

nd a k (m ) is the element at the m th row and k th column of the

easurement matrix A (whose k th column is denoted by a k ). If the

olumns, a k , of the measurement matrix, A , are energy normalized, 

| a k || 2 2 
= 

∑ M−1 
m =0 | a k (m ) | 2 = 1 , then 

kl = 

M−1 ∑ 

m =0 

a k (m ) a ∗l (m ) = 〈 a k , a l 〉 . (8)

otice that μkl , are then the elements of matrix A 

H A . 

The coherence index plays a crucial role in the measurement 

atrix design. The coherence index should be as small as possible, 

eaning that the incoherence is a desirable property for the mea- 

urement matrix [8] . With smaller values of the coherence index 

he matrix defined by A 

H A has lower off-diagonal elements and it 

s closer to the identity matrix. 

. Unique reconstruction 

A K-sparse solution, X , of the system ( 3 ), whose nonzero elements 

orm the vector X K , is unique if all A 2 K submatrices of the measure- 

ent matrix A , corresponding to a 2 K-sparse signal, are such that all 

atrices A 

H 
2 K A 2 K are invertible. 

The contradiction will be used to prove this statement. This 

imple proof will be used as a basis for the derivation of the new 

imit for the sparsity. Assume that two different K-sparse solutions 

xist for the vector X . Denote the nonzero elements of these so- 

utions by X 

(1) 
K 

and X 

(2) 
K 

. The nonzero elements in X 

(1) 
K 

correspond 

o the positions k ∈ K 1 in the original vector X , while X 

(2) 
K 

contains

he nonzero elements of vector X , positioned at k ∈ K 2 . Assume

hat the solution is not unique and that both of these two vectors 

atisfy the measurement Eqs. (3) and (4) , that is, 

 

(1) 
K 

X 

(1) 
K 

= y and A 

(2) 
K 

X 

(2) 
K 

= y , 

here A 

(1) 
K 

and A 

(2) 
K 

are submatrices of the measurement matrix A 

f size M × K. They correspond to the nonzero elements in vectors 

 

(1) 
K 

and X 

(2) 
K 

, respectively. We can rewrite these two equations by 

dding zeros at the corresponding zero positions of the other vec- 

or, as 

A 

(1) 
K 

A 

(2) 
K 

][X 

(1) 
K 

0 K 

]
= y and 

[
A 

(1) 
K 

A 

(2) 
K 

][ 0 K 

X 

(2) 
K 

]
= y . (9) 

f we subtract these two equations we get 

A 

(1) 
K 

A 

(2) 
K 

][ X 

(1) 
K 

−X 

(2) 
K 

]
= 0 . (10) 

e arrived at the homogeneous system of equations. It is known 

hat this system does not have a nonzero solution for the elements 

f X 

(1) 
K 

and X 

(2) 
K 

if the rank of matrix A 2 K = 

[
A 

(1) 
K 

A 

(2) 
K 

]
is equal 

o 2 K, meaning that A 

H 
2 K A 2 K is invertible. If all possible submatri- 

es A 2 K of the measurement matrix A , for all possible combina- 

ions of nonzero element positions, are such that A 

H 
2 K 

A 2 K are in- 

ertible then two distinct solutions, whose sparsity is K, cannot ex- 

st. This means that the solution of the compressive sensing prob- 

em is unique. Note that there are ( 
N 

2 K 

) submatrices A 2 K , and the
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ombinatorial approach to this problem is not computationally fea- 

ible. 

. Review of the Gershgorin disk theorem 

The matrix A 

H 
2 K A 2 K is invertible if its determinant is nonzero 

29] . This condition is equivalent to the condition that all eigenval- 

es of matrix A 

H 
2 K 

A 2 K , for all possible combinations of 2 K positions 

f nonzero elements, are nonzero. The eigenvalue/eigenvector rela- 

ion for a matrix A 

H 
2 K 

A 2 K is defined by 

A 

H 
2 K A 2 K ) u = λu , (11) 

here u denotes the eigenvector corresponding to the eigenvalue 

. Since the eigenvector belongs to the kernel of A 

H 
2 K 

A 2 K − λI we 

an always assume that its maximum coordinate is equal to 1 (in- 

tead of the common choice to produce a unit energy eigenvector), 

hat is u i = max j (| u j | ) = 1 and | u j | ≤ 1 for j � = i . 

For the columns k ∈ { k 1 , k 2 , . . . , k 2 K } of matrix A 2 K , selected

rom the columns of normalized matrix A , the elements of matrix 

 

H 
2 K 

A 2 K are denoted by 

k i k j 
= 

M−1 ∑ 

m =0 

a k i (m ) a ∗k j (m ) = 〈 a k i , a k j 〉 , (12)

or i, j = 1 , 2 , . . . , 2 K. Now, we can rewrite the eigenvalue relation

11) , in the element-wise form for the selected coordinate u i = 1 ,

s 
 

j 

μk i k j 
u j = λu i = λ or 

∑ 

j, j � = i 
μk i k j 

u j = λ − μk i k i 
. 

rom this relation we can conclude (Gershgorin Disc Theorem re- 

ult) 

 λ − μk i k i 
| = 

∣∣∣ ∑ 

j, j � = i 
μk i k j 

u j 

∣∣∣ ≤
∑ 

j, j � = i 
| μk i k j 

u j | ≤
∑ 

j, j � = i 
| μk i k j 

| , (13) 

here the property | u j | ≤ 1 for j � = i is used. Considering the

igenvalue λ as a variable and μk i k j 
as constants, we conclude that 

he last inequality, | λ − μk i k i 
| ≤ ∑ 

i, j � = i | μk i k j 
| , describes a disc area 

n the complex domain of λ, with the center at μk i k i 
and a radius 

 

j, j � = i | μk i k j 
| . The disc described by the relation in (13) does not 

nclude the point λ = 0 if the radius is smaller than the distance 

f the center from the origin, that is, if 

k i k i 
> 

∑ 

j, j � = i 
| μk i k j 

| . (14) 

herefore, if the condition in (14) is met, the matrix A 

H 
2 K 

A 2 K cannot 

ssume a zero-valued eigenvalue, λ, and therefore it is invertible. 

otice that μk i k i 
= 1 , for a normalized measurement matrix A . 

We have already concluded that the solution for a K-sparse vec- 

or is unique if the matrices A 

H 
2 K 

A 2 K are invertible for all possi- 

le submatrices A 2 K . Note that the off-diagonal elements of A 

H 
2 K A 2 K 

epresent a subset of the off-diagonal elements of the matrix A 

H A , 

hat is 

{ μk i k j 
| k i , k j ∈ { k 1 , k 2 , . . . , k 2 K } , j � = i } 

⊂ { μkl | k, l ∈ { 0 , 1 , . . . , N − 1 } , k � = l} . 
t means that the coherence μ of the measurement matrix A 

ill be always greater than or equal to the coherence of any 

ubmatrix A 2 K , that is, max i, j, j � = i | μk i k j 
| ≤ max k,l,k � = l | μkl | = μ, for 

 i , k j ∈ { k 1 , k 2 , . . . , k 2 K } , j � = i and k, l ∈ { 0 , 1 , . . . , N − 1 } , k � = l. These

wo sets of indices are related as in (1) . 

The invertibility condition for all matrices A 

H 
2 K A 2 K , and the unique 

olution for a K sparse vector X , is achieved if 1 > (2 K − 1) μ or 

 < 

1 

2 

(1 + 

1 

μ
) . (15) 
3 
he proof of this classical coherence index-based uniqueness con- 

ition follows from (14) for the normalized matrix A 

H A . The in- 

quality 

 = μk i k i 
> 

2 K ∑ 

j =1 , j � = i 
| μk i k j 

| (16) 

s satisfied if 1 > (2 K − 1) max i, j, j � = i | μk i k j 
| . Since all matrices 

 

H 
2 K 

A 2 K are submatrices of the matrix A 

H A then max i, j, j � = i | μk i k j 
| ≤

ax l ,k,l � = k | μkl | = μ holds. This means that 
∑ 2 K 

j =1 , j � = i | μk i k j 
| ≤ (2 K −

) μ and (16) is always satisfied if 1 > (2 K − 1) μ, producing (15) . 

. Improved bound 

The coherence index bound is pessimistic by definition, since it 

akes the worst possible value of μkl , over the whole matrix A 

H A ,

hich is equal to μ, and assigns it to each of (2 K − 1) terms μk i k j 

n the sum in (16) . This means that we may improve the coherence

ndex-based bound in the Gershgorin disc theorem derivation us- 

ng the sum of the (2 K − 1) largest absolute values instead of using 

2 K − 1) times the largest absolute value μ, like in Stankovi ́c et al.

26] , when the coherence index was analyzed. 

Proposition: A unique solution of the reconstruction problem, for 

 K sparse vector X , exists if 

 < 

1 

2 

(
1 + 

1 

βA (2 K − 1) 

)
, (17) 

here βA (2 K − 1) is the mean of the (2 K − 1) largest absolute values

f the off-diagonal elements of the matrix A 

H A within one row/column. 

The condition that a matrix A 

H 
2 K A 2 K is invertible is equivalent to 

he condition that λ = 0 is not an eigenvalue of A 

H 
2 K 

A 2 K . According 

o (14) , this is the case when 

 > max 
i 

{ 
2 K ∑ 

j =1 , j � = i 
| μk i k j 

|} (18) 

olds for all possible combinations of 2 K out of N indices, K 1 ∪ 

 2 = { k 1 , k 2 , . . . , k 2 K } ⊂ { 0 , 1 , . . . , N − 1 } . 
In order to avoid combinatorial (NP hard) approach, we can 

se the largest values of this sum over the complete matrix A 

H A .

enote the sorted absolute values of the elements, μkl , in the 

olumns (or rows) of the matrix A 

H A by 

 ( k, p ) = sort l { | μkl | } , 
uch that s (k, 1) ≥ s (k, 2) ≥ . . . ≥ s (k, N) . Then, having in mind that

 

H 
2 K A 2 K are submatrices of A 

H A , the condition in (18) will be satis-

ed if 

 > max 
k 

{ (2 K − 1) 
1 

2 K − 1 

2 K−1 ∑ 

p=1 

s (k, p) } (19) 

olds. Using the notation 

A (2 K − 1) = max 
k 

{ mean { s (k, p) | p = 1 , 2 . . . , 2 K − 1 }} , 
he inequality in (19) can be written in the following form 

 > ( 2 K − 1 ) βA ( 2 K − 1 ) , (20) 

roducing (17) , where βA (2 K − 1) is the mean of the (2 K − 1)

argest absolute values of the off-diagonal elements of the matix 

 

H A within one row/column. 

The implicit inequality (17) is easily solved by checking for the 

parsity values, K = 1 , K = 2 , and so on, until the inequality sign

olds. 



L. Stankovi ́c Signal Processing 190 (2022) 108316 

Fig. 1. The off-diagonal elements of matrix A H A used for the calculation of various bounds. (a) The coherence index, as the largest absolute off-diagonal element of matrix 

A H A (or the largest absolute element of matrix A H A − I ), used in the sparsity bound in (15) , marked with a red circle. (b) The largest absolute values of elements in A H A − I 

used to calculate αA and the bound in (21) . (c) The largest absolute values in A H A − I used to calculate βA (K − 1) (encircled using a white line) and γA (K) (encircled using 

a red line) used in the bound in (22) . (d) The largest absolute values in A H A − I used to calculate βA (2 K − 1) and the bound in (17) . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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.1. Comparison of bounds 

Next, we will compare the bound in (17) with other bounds de- 

ived in [26] . It is obvious that this new bound can improve the 

tandard coherence index-based bound (15) since the maximum 

bsolute value is always greater or equal to the mean of (2 K − 1) 

argest absolute values, μ ≥ βA (2 K − 1) , that is 

 < 

1 

2 

(1 + 

1 

μ
) ≤ 1 

2 

(1 + 

1 

βA (2 K − 1) 
) . 

llustration of the values used in the calculation of the bound in 

17) and the standard coherence index-based bound (15) is shown 

n Fig. 1 (a) and (d). 

The bound in (17) is obtained using the mean of the (2 K − 1)

argest absolute values of the off-diagonal elements of the ma- 

rix A 

H A within one row/column and it will therefore be always 

arger or equal to the bound obtained in [26] using the average of 

he (2 K − 1) largest absolute values within the whole matrix A 

H A 
4 
 Fig. 1 (b)), denoted by αA , that is 

 < 

1 

2 

(1 + 

1 

αA 

) ≤ 1 

2 

(1 + 

1 

βA (2 K − 1) 
) . (21) 

The bound derived in this paper is compared with one derived 

n [26] , when the maximum absolute values within two different 

ows are used (whose means are denoted by βA (K − 1) and γA (K) , 

ig. 1 (c)), which is defined by 

 < 

1 + βA (K − 1) 

βA (K − 1) + γA (K) 
. (22) 

e cannot decisively conclude which one of the bounds in (17) or 

22) is better since two different rows are used in the calculation 

f (22) . In the examples that will be presented next, the inequality 

17) produced higher sparsity bound than (22) in all considered 

ases. 

All the previous bounds produce the same result for the equian- 

ular tight frame (ETF) measurement matrices, when all | μk i k j 
| = 

are equal for any k i � = k j , and βA (K − 1) = γA (K) = αA = μ. 

Finally, note that while the limit derived in [26] guarantees suc- 

essful reconstruction using the matching pursuit approach, the re- 
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axed condition derived in this paper guarantees only the existence 

f a unique solution. 

. Numerical examples 

The derived limit for the sparsity was tested on several mea- 

urement matrices, including the partial graph Fourier transform 

GFT) matrix, the partial DFT matrix, the partial DCT matrix, and a 

andom Gaussian measurement matrix. 

• For a partial DFT matrix A of dimension 124 × 128 the spar- 

sity limit obtained with the standard coherence index relation 

(15) is K < 16 . 63 . For the limits (21) and (22) we get K < 16 . 63

and K < 19 . 20 , respectively. For the limit in (17) we get K <

23 . 54 . The proposed result improves the classical coherence in- 

dex bound for almost 50% . 

• For a Gaussian measurement matrix A of dimension 900 × 1000 

we get K < 3 . 40 as the classical limit and K < 3 . 59 and K <

4 . 48 , as the bounds in (21) and (22) respectively. With (17) we

get K < 4 . 84 . 

• For a partial DCT matrix of the size 124 × 128 we get K < 9 . 05 ,

K < 9 . 77 , K < 12 . 47 , and K < 15 . 11 , with the bounds defined by

(15), (21), (22) , and (17) , respectively. 

• For a partial GFT matrix of a graph with N = 64 vertices and

62 available graph signal samples, given in Stankovi ́c et al. [26] , 

the classical coherence index relation produces K < 6 . 89 . The 

bounds in (21) and (22) produce K < 7 . 46 and K < 8 . 31 , while

the bound in (17) produces K < 9 . 22 , as illustrated in Fig. 1 . 

. Conclusion 

An improved bound for the reconstruction limit has been re- 

ently proposed based on the coherence index analysis. In this pa- 

er, this bound is further relaxed by considering the existence of 

he unique solution only and using the Gershgorin disc theorem. 
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