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Understanding the Basis of Graph Convolutional
Neural Networks via an Intuitive Matched Filtering

Approach
Ljubiša Stanković, Fellow, IEEE and Danilo Mandic, Fellow, IEEE

I. SCOPE

Graph Convolutional Neural Networks (GCNN) are becom-
ing a model of choice for learning on irregular domains; yet
due to the black box nature of neural networks (NNs) their
underlying principles are rarely examined in depth. To this
end, we revisit the operation of GCNNs from first principles
and show that their key component – the convolutional layer
– effectively performs matched filtering of its inputs with a
set of templates (filters, kernels) of interest. This serves as a
vehicle to establish a compact matched filtering perspective of
the whole convolution-activation-pooling chain, which allows
for a theoretically well founded and physically meaningful
insight into the overall operation of GCNNs. This is shown
to help mitigate their interpretability and explainability issues,
together with providing intuition for further developments,
their applications, and education purposes. This Lecture Note
is supported by an online Supplement Material which provides
more detail on several aspects of GCNN operation and training.

II. RELEVANCE

The success of deep learning (DL) and convolutional neural
networks (CNN) has also highlighted that NN-based analysis
of signals and images of large sizes poses a considerable
challenge, as every input sample/pixel needs to be associated
with one neuron at the input layer. A meaningful NN-based
analysis requires at least one hidden layer; yet even for a
simplest fully-connected (FC) hidden layer the number of
weights increases exponentially with data volume – the so
called Curse of Dimensionality. The dimensionality bottleneck
may be partially mitigated by leveraging on the smooth nature
of most physical data, whereby the neighboring signal samples
(or image pixels) typically exhibit a degree of similarity.
This allows us to describe signals/images in terms of their
local characteristic features (patterns), and exploit such local
information throughout the processing chain. In this way, a
learning task boils down to a much more computationally
efficient search for features (patterns) in data, in contrast to
standard computationally hungry brute-force approaches. In
the following, unless otherwise stated, we will use the term
signal for both signals and images.
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An important advantage of operating in the feature space is
that this resolves the problem of position change of patterns
in signals. Namely, if a certain signal feature is moved from
its original temporal or spatial position, e.g. due to translation,
a standard sample/pixel-based approach would assume that it
is presented with a completely different set of samples/pixels;
in contrast, a feature-based approach will look for this specific
pattern of interest anywhere in the signal. This underpins the
operation of CNNs which effectively perform a search for
features in the analyzed signal; this is achieved in such a way
that these features are invariant to changes in their positions [1],
[2]. In this way, each “feature window” used in the convolution
operation within CNNs (convolution filter or convolution kernel)
becomes, through training, the best match to a specific feature
within the analyzed signal. Such feature matching is performed
over the whole signal, akin to a mathematical lens in search
of some specific forms [3].

Irregular domains are conveniently modeled as graphs [4],
[5], and for learning on such domains it is natural to consider
graphs in conjunction with neural networks – the graph neural
networks (GNNs) paradigm. Such an approach benefits from the
universal approximation property of neural networks, pattern
matching inherent to CNNs, and the ability of graphs to capture
local relations and implicit complex couplings in data. Research
on GNNs has emerged almost two decades ago [6], [7], with
more recent developments centered around graph convolutional
neural networks (GCNNs) [8], [9]. These have largely focused
on learning aspects of CNNs [10], [11], and assume stationarity
(via shift invariance of convolution) and compositionality (via
downsampling or pooling) [5] – but without considering the
wider context underpinning the operation of GNNs – a subject
of this Lecture Note.

The aim of this Lecture Note is to revisit the operation
of GCNNs in order to reveal the basic principles under-
pinning their functionality, and in this way help demystify
their operation for a generally knowledgeable reader and for
educational purposes. Upon establishing that the operation of
convolutional layers in standard CNNs rests upon the classical
signal processing concept of matched filtering, we introduce an
analogous graph matched filtering framework for understanding
the convolution-activation-pooling chain within GCNNs, which
maintains intuition and physical interpretability through the
whole GCNN operation. It is our hope that such a perspective
will further help seamless migration of concepts and ideas
from Signal Processing into the more empirical area of Neural
Networks, as well as serving as a platform for extensions
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and application opportunities in our data-hungry world. For
enhanced intuition, physical insight into the operation of GNNs
is provided through a step-by-step numerical example which
also visualizes information propagation through GCNNs, thus
illuminating all stages of GCNN operation and learning.

III. PREREQUISITES

This Lecture Note assumes a basic knowledge of Linear
Algebra and Digital Signal Processing (DSP), and is supported
by on-line Supplementary Material which contains more details
of the key underlying concepts, together with a step-by-step
elaboration of back-propagation training of GCNNs.

IV. PROBLEM STATEMENT AND SOLUTION

A. The matched filter and convolution

The use of a convolution filter/kernel underpins the operation
of CNNs, yet the key question of how to justify the use
of convolution to detect features in a signal remains largely
unanswered – a subject of this work. To address this issue,
recall that matched filtering is a widely used technique for the
detection of the presence of a known template (feature), w,
in an observed unknown noisy signal, x, and is achieved by
cross-correlating the signal, x, with the template w, that is

y(n) = ∑
m

x(n + m)w(m). (1)

The maximum of this cross-correlation, y(n), will occur at
the time instance when the template, w(n), is present in the
observed signal, x(n), that is, when the pattern in x(n) matches
the feature (pattern), w(n). This technique also operates in the
presence of noise, with the matched filter aiming to maximize
the signal to noise ratio. However, the implementation of the
cross-correlation in (1) is awkward for streaming data, where
it is customary to use a standard digital filter, given by

y(n) = ∑
m

x(n−m)w(m) = x(n) ∗ w(n). (2)

This filter performs the convolution between x(n) and w(n),
denoted by y(n) = x(n) ∗ w(n). A comparison between the
cross-correlation in (1) and the convolution in (2) immediately
suggests a way to implement the matched filter through convolu-
tion, namely by time-reversing the template, w(m)→ w(−m),
in the convolution sum in (2), to arrive at

y(n) = x(n) ∗ w(−n) = ∑
m

x(n−m)w(−m)

= ∑
m

x(n + m)w(m) = x(n) ∗c w(n). (3)

The symbol ∗c denotes the convolution with the time-reversed
feature/template vector, w(−n), which also serves as the
impulse response of this filter. Figure 1 illustrates the operation
of a matched filter which searches for a bipolar squarewave
template in the observed signal, and is implemented through
convolution and thresholding.

Remark 1: The convolution operation in convolutional neural
networks is applied after one of the signals is time-reversed,
that is, x(n) ∗ w(−n) = x(n) ∗c w(n), which is implicitly

indicated in CNN implementations in the literature, for ex-
ample, x ∗ rot1800(w) or conv(x,reverse(w)). Therefore, the
convolutional layer in CNNs performs precisely the matched
filtering operation, described in (3) and Figure 1, yet NNs
equipped with this pattern matching operation are referred to as
convolutional neural networks (CNNs), and not correlational.

Remark 2: Convolution-based feature detection is independent
of the feature position within the considered signal, x(n), since
y(n) = x(n) ∗ w(−n) is calculated by sliding the window
(filter/kernel), w(−n), of length M which multiplies the
corresponding segments of the signal, x(n), for all n.

B. Interpretation of the building blocks within CNNs

Consider the problem of determining the best match between
a received signal, x(n), and one of the template waveforms,
wk(n), from a predefined set of K such template waveforms
(dictionary). For template waveforms with equal normalized
energies, the maximum of the cross-correlation between x(n)
and the elements of {wk(n), k = 1,2, . . . ,K}, will indicate the
best match between the signal, x(n), and the features, wk(n).
In light of Remark 1, this can be performed by passing the
received waveform through a bank of digital filters, each having
as the impulse response one of the time-reversed template
waveforms from the dictionary, wk(−n), that is, through the
convolution

yk(n) = x(n) ∗wk(−n) = x(n) ∗c wk(n), k = 1, . . . , K. (4)

Finally, the decision on which feature, wk(n), is contained in
the input signal is based on a simple thresholding operation

k = arg{max
k
{Ak, k = 1,2, . . . ,K}} (5)

where Ak = maxn{x(n) ∗c wk(n)}.
Remark 3: (ReLU) The decision in (5), on whether the input,
x(n), contains a feature, wk(n), is based on the maximum
value of the output of the bank of matched filters and will not
be affected if the negative values in the output in (4) are not
considered, that is, upon the application of the mapping

ok(n) = ReLU{yk(n)}= ReLU{x(n) ∗c wk(n)}, k = 1, . . . , K
(6)

where ReLU denotes the Rectified Linear Unit, a common
nonlinear activation function in CNNs, defined by

ReLU(x) = max{0, x}. (7)

The decision in (5) is also not affected by the scaling the
amplitudes of all kernels, wk(n), by the same positive factor,
even at each iteration. The same reasoning presented for the
ReLU applies to the unipolar sigmoid (tanh, logistic) and
unipolar binary nonlinearities.
Remark 4: (Max–pooling) The maximum in (6) is calculated
over all available samples of the signal, x(n), which is compu-
tationally inefficient. This operation will not be compromised if
the output domain is split into sub-domains of P time instants,
since after a local maximum is detected we are not interested
in the neighboring values of the matched filter output which
correspond to the same feature. The presence of local features is
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Fig. 1. Operation of a matched filter, which confirms the presence and position of a known squarewave template (thin blue line), w, in the observed signal, x
(thick black line). The matched filter essentially performs the cross-correlation between a known template of interest, w(n), and the unknown input, x(n). In
practical applications, this cross-correlation is implemented through a convolution between x(n) and a time-reversed template, w(−n), as in the left panel.

then examined within these sub-domains, which underpins the
so called max-pooling operation in CNNs and their efficiency
over standard NNs. For more detail, see Supplement B.

We have shown that the convolutional layer within a CNN,
which consists of a set of convolutional filters, effectively
operates as a bank of matched filters. Then, hierarchical
features of varying degrees of complexity can be catered
for by employing several convolutional layers in a CNN. In
addition, to learn various aspects of the feature space, different
convolution filters can be applied at different convolutional
layers, each aiming to “zoom into” a different feature within the
analyzed signal. Such flexibility makes convolutional networks
suitable for robust and efficient analysis and classification of
signals and images.

Remark 5: In a special case when all convolution filter
waveforms are symmetric, that is, wk(n) = wk(−n), the
convolution filter and the matched filter produce the same
result, x(n) ∗ wk(n) = x(n) ∗ wk(−n) = x(n) ∗c wk(n).

C. Graph filtering

Consider a graph signal which is observed at N vertices of
a graph, and given by

x = [x(1), x(2), . . . , x(N)]T . (8)

In order to extend the matched filtering perspective of CNNs
to GCNNs, we shall first revisit the notion of the system on a
graph. More detail can be found in Supplement A.
Graph filtering. The standard finite impulse response (FIR)
system in the discrete-time domain, with the coefficients h0,
h1, . . . , hM−1, is given by

y(n) = h0x(n) + h1x(n− 1) + · · ·+ hM−1x(n−M + 1).

In a direct analogy, a system on a graph is defined using a
graph shift operator, S, to give [12], [13]

y = h0x + h1Sx + · · ·+ hM−1SM−1x. (9)

First-order system on a graph. This concept is central to
our perspective on GCNNs, and may assume different forms
depending on the choice of the graph shift operator, S, in (9).
Commonly used first-order systems on a graph include those:

1) With the graph Laplacian, L, as the graph shift operator,
that is S = L, the first order system assumes the form

y = h0x + h1Lx. (10)

Notice that the calculation of output signal requires only
samples from the one-neighborhood of every vertex.

2) Employing the normalized graph Laplacian, LN , shift

LN = D−1/2LD−1/2 = D−1/2(D−W)D−1/2

= I−D−1/2WD−1/2 = I−WN ,

where WN = D−1/2WD−1/2 is also commonly used as
a shift operator in convolutional layers of GCNNs [6],
[14]. When S = LN , the first-order graph system has the
form

y = (h0L0
N + h1L1

N)x = (h0 + h1)x− h1WNx. (11)

3) For multichannel systems, relation (11) should involve
the channel index, k. Then, for the k-th channel, with the
input signal, x, and the output, yk, we have

yk = wk(0)x + wk(1)D
−1/2WD−1/2x

= wk(0)x + wk(1)WNx, k = 1,2, . . . ,K (12)

where the weights wk(0) and wk(1) correspond re-
spectively to the weights (h0 + h1) and (−h1) in
(11). A simplification which uses only one parameter,
wk(0) = wk(1) = θk, was originally proposed for the
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convolutional layer in GCNNs in [6], [15], in the form
yk = θk(x + WNx). However, this reduces the parameter
space (over-simplifies the feature form) of GCNNs and
we resort to (12) – see Supplement A for more detail.

Remark 6: The common choice of wk(0) = wk(1) forces
all learned kernels to perform low-pass filtering (see
Supplement), leading to the problem of over–smoothing
in GCNN. Observe that this problem is readily rectified
by simply not imposing the (unnecessary) constraint
wk(0) = wk(1), as in the matched filtering interpretation
in (11) and (12). Such an intuitive and elegant solution
has been overlooked by many attempts trying to resolve
the over–smoothing problem in GCNNs.

4) Based on the random walk graph shift operator, S =
D−1W, which produces the first-order multichannel
system

yk = wk(0)x + wk(1)D
−1Wx, k = 1,2, . . . ,K. (13)

Notice that this graph shift operator does not, generally,
preserve the symmetry property of the shift matrix, so
that the eigenvectors may assume complex values.

5) For directed unweighted graphs, we may use the adjacency
matrix, A, as a (non-symmetric) graph shift, to yield

yk = wk(0)x + wk(1)Ax + wk(2)A
Tx, (14)

where Ax denotes the backward shift and ATx the forward
shift on a graph. Note that we can equally use the
normalized adjacency matrix, A/λmax as a graph shift.

Spectral description of a system on a graph is obtained
from the eigendecomposition of the graph shift operator
S = UΛU−1, where U is the transformation matrix with the
eigenvectors of S as its columns, and Λ is a diagonal matrix of
the eigenvalues of S. Upon pre-multiplying the vertex domain
relation in (9) by the inverse transformation, U−1, we obtain

Y = h0X + h1ΛX + · · ·+ hM−1ΛM−1X, (15)

where X = U−1x and Y = U−1y are the graph Fourier
transforms (GFT) of the graph signals x and y, with the cor-
responding inverse graph Fourier transforms (IGFT), x = UX
and y = UY. Notice that the transfer function of this system
is a diagonal matrix, H(Λ), defined by

Y = H(Λ)X = (h0 + h1Λ + · · ·+ hM−1ΛM−1)X. (16)

Remark 7: (Graph convolution) The graph convolution oper-
ator follows directly from the element-wise form of the transfer
function of the system on a graph in (16), given by Y(k) =
H(λk)X(k). Physically, graph convolution is the inverse GFT
of Y(k), that is y(n) = x(n) ? h(n) = IGFT{X(k)H(λk)},
which follows from classical analysis on regular domains [16].

In order to distinguish between the classical convolution
and graph convolution we will use slightly different symbols
∗ and ?, respectively. To distinguish between the GFT of a
signal, X(k), and the transfer function calculated based on the
eigenvalues, H(λk), we use different notations (positions of
index k) for these two functions. This topic is studied in detail
in [13], [17] and in Supplement A.

D. Matched Filter on a Graph (GMF)
Consider a graph signal, x(n), and assume that it is processed
by a system on graph whose transfer function is G(λk), with
g(n) = IGFT{G(λk)}. The output of this system is then

y(n) = x(n) ? g(n) = IGFT{X(k)G(λk)}

=
N

∑
k=1

X(k)G(λk)uk(n),

with uk(n) as elements of the k-th column (k-th eigenvector)
of the eigenvector matrix, U.

A (graph) matched filter design problem consists of finding
the transfer function, G(λk), of the system that maximizes the
power of the output signal, y(n), for an input signal x(n), at
a vertex n = n0. Then, the system output at n0, y(n0), is

|y(n0)|2 =
∣∣∣ N

∑
k=1

X(k)G(λk)uk(n0)
∣∣∣2

≤
N

∑
k=1
|X(k)|2

N

∑
k=1
|G(λk)uk(n0)|2.

According to the Schwartz inequality above, the maximum is
achieved when the equality holds which, in general, yields the
transfer function of the graph matched filter in the form (with
(·)∗ as the complex conjugate) given by

G(λk)uk(n0) = X∗(k), (17)

up to a possible scaling constant. In our context, we are not
interested in the minimum value, which occurs for a negative
scaling constant, that is, G(λk)uk(n0) = −X∗(k). From (17),
the maximum value of the output is given by

y(n0) =
N

∑
k=1
|X(k)|2 = Ex,

where Ex is the input signal energy.

Remark 8: In classical analysis (where the GFT is complex-
valued and corresponds to the standard DFT, it is well-known
that

G(λk) = X∗(k)/uk(n0) = X∗(k)e−j2πn0k/N/
√

N.

For n0 = 0, the matched filter impulse response becomes

g(n) = IDFT{G(λk)} = x∗(−n).

However, in the case of general graphs and graph signals, the
vertex domain form of (17) is much more complicated due
to the fact that G(λk) is calculated based on the eigenvalues,
while X(k) is the GFT of the signal, see Supplement A.

We now proceed to analyze more general forms of graph
matched filters, starting with a special case when the input
signal can be considered as a result of a diffusion process on
a graph.
Graph matched filter. The intuition and implementation of
the graph matched filter can be significantly simplified if the
considered graph signal, x(n), is a result of an (M− 1)-step
diffusion process, with the unit delta pulse at an arbitrary vertex
n0 as the initial signal, x0, in the diffusion.
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Consider a graph signal arising from an (M − 1)-step
diffusion starting from a delta pulse, x0, at a vertex n0, that
is, x0(n) = δ(n− n0). By repeatedly applying the graph shift
operator (M− 1) times, the resulting graph signal, x, is given
by

x = a0x0 + a1LNx0 + · · ·+ aM−1LM−1
N x0, (18)

where aν, ν = 0,1, . . . , M− 1, are the diffusion constants, while
the GFT of x0 is defined as

X0(k) =
N

∑
n=1

x0(n)uk(n) = uk(n0).

The GFT of the graph signal, x, follows from (18) and (15) as

X =
(

a0 + a1ΛN + · · ·+ aM−1ΛM−1
N

)
X0, (19)

or in an element-wise form

X(k) =
(

a0 + a1λk + · · ·+ aM−1λM−1
k

)
uk(n0). (20)

The spectral domain solution of (17) follows immediately as

G(λk) = a0 + a1λk + · · ·+ aM−1λM−1
k (21)

by having in mind that X(k) is real-valued for a symmetric
shift operator like LN in (18). Although the vertex domain
form of g(n) in the graph convolution y(n) = x(n) ∗ g(n)
may be quite complex, the vertex domain implementation
of such a matched filter is rather simple and follows from
Y(k) = G(λk)X(k) to yield

y =
(

a0 + a1LN + · · ·+ aM−1LM−1
N

)
x. (22)

For x = x0, we obtain the relation between the matched filter
output and the initial delta pulse signal in the diffusion system.
Remark 9: (Graph Matched Filter (GMF)) The vertex
domain form of GMF represents the IGFT of the graph filter
transfer function, and is given by

g(n) =
N

∑
k=1

G(λk)uk(n). (23)

To arrive at the vector-matrix form of the above GMF, denote

g0(n) =
N

∑
k=1

uk(n). (24)

With g0 as a vector whose elements are sums of all eigenvector
elements, uk(n), at a given vertex n, we have

g0 = U1, 1 = [1,1, . . . ,1]T .

In general, the elements g0(n) are nonzero for all n, making
it quite different from x0(n) in (18). The matrix form of the
vertex domain matched filter then becomes

g = UG(Λ)1 = U
(

a0 + a1ΛN + · · ·+ aM−1ΛM−1
N

)
1

= a0g0 + a1LNg0 + · · ·+ aM−1LM−1
N g0. (25)

Unlike in the standard time domain where x(n) = g(−n),
although the signals x in (18) and the matched filter response
g in (25) have similar forms in the spectral domain (given by
(17)), they significantly differ due to the different forms of x0

and g0, defined respectively by x0(n) = δ(n− n0) and (24).
In classical analysis, with the adjacency matrix on a directed

circular graph serving as a shift operator [13], we immediately
arrive at the impulse response of the classical matched filter

g0(n) =
N

∑
k=1

uk(n) =
N

∑
k=1

ej2πnk/N/
√

N = δ(n)
√

N,

λk = e−j2πk/N/
√

N, and
g(n) = a0δ(n) + a1δ(n− 1) + · · ·+ aM−1δ(n−M + 1).

The calculation of the responses of the graph matched filter
is much more involved, and will be elucidated through an
intuitive example. We considered a simple undirected 8-vertex
graph with unit edge weights, shown in Fig. 2(a), and a unit
pulse graph signal, shown in Fig. 2(b). This graph was used
as an irregular signal domain for the considered analysis (the
exact values of the weight matrix, W, elements for this graph
is given in Supplement B by relation (SM-??)).

Example 1. (Matched filter on a graph) To illustrate the operation
of the matched filter on a graph, consider two signals (features) on
the graph from Fig. 2(a), which are created through diffusion by
graph shifting a delta pulse, x0(n) = δ(n− n0), from a vertex n0 to
its one-neighborhood, as in the first order system on a graph in (11).

(i) The first signal (feature), x1, is produced by a graph shift

x1 = x0 + 3WNx0 = 4x0 − 3LN x0,

of a pulse input x0(n) = δ(n− 3), shown in Fig. 2(b).
(ii) The second signal (feature), x2, employs a different shift weight

x2 = x0 − 2.5WNx0 = −1.5x0 + 2.5LN x0,

and a different pulse input, x0(n) = δ(n− 4).
Both features are generated based on same LN = I−WN , where

WN =



0 0.26 1
3 0 0 0 0 1

3
0.26 0 0.26 0.22 1

5 0 0 0.26
1
3 0.26 0 0.29 0 0 0 0
0 0.22 0.29 0 0.22 0.29 0 0
0 1

5 0 0.22 0 0.26 0.32 0.26
0 0 0 0.29 0.26 0 0.41 0
0 0 0 0 0.32 0.41 0 0
1
3 0.26 0 0 0.26 0 0 0


.

(26)

Therefore, the features x1 and x2 are generated by diffusion from a
pulse located at different vertices, and based on a positive weight +3
for x1 and a negative weight −2.5 for x2. Consequently, the shapes
of x1 and x2 are different, as shown in Fig. 2(c) and (d), with their
vertex-index axis representations given in Fig. 2(e) and (f).

Based on the general form of vertex domain GMF in (25), the
impulse responses of the GMFs, g1 and g2, corresponding to the
features x1 and x2 assume the form

g1 = 4g0 − 3LNg0, (27)
g2 = −1.5g0 + 2.5LNg0 (28)

and are depicted in Fig. 2(g) and (h), with g0(n) = ∑N
k=1 uk(n).

The respective matched filter responses (outputs) are next calculated
using the vertex domain graph filters, g1 and g2, to yield

y11 = 4x1 − 3LNx1, y21 = 4x2 − 3LNx2

y12 = −1.5x1 + 2.5LNx1, y22 = −1.5x2 + 2.5LNx2 (29)
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Fig. 2. Example of matched filtering on an undirected unweighted graph,
with two input signals, x1 and x2, (containing different features) observed
in two different scenarios. (a) Considered graph topology. (b) Unit pulse
graph signal, x0(n) = δ(n− 3), at a vertex n = 3. (c) The input signal with
the first feature, x1, is obtained by shifting the unit pulse x0(n) = δ(n− 3)
from the vertex n = 3 to its one-neighborhood, with the graph shift weight
of 3, that is, x1 = x0 + 3WNx0, with WN given in (26). (d) The second
input signal (second feature) is obtained by shifting the unit pulse, x0(n) =
δ(n− 4), to its one-neighborhood vertices, with the graph shift weight of
−2.5, that is, x2 = x0 − 2.5WNx0. The graph signals from panels (c) and
(d) are respectively given on a linear vertex-index axis in (e) and (f). The
impulse responses of the corresponding matched filters, g1 = 4g0 − 3LNg0
and g2 = −1.5g0 + 2.5LNg0, are shown respectively in panels (g) and (h).
The outputs of the graph matched filters, with the impulse response g1(n)
corresponding to the feature x1(n) and g2(n) corresponding to x2(n), are
given respectively in panels (i) and (j). Observe from panel (i) that, as desired,
the matched filter g1 correctly detected the presence of the feature x1 (black
line), with the maximum output at n = 3, while the matched filter g2 failed
to detect the feature x1 as it was not designed for this purpose (green line).
Panel (j) depicts an analogous scenario for the detection of the feature x2,
with the matched filter g2 performing a correct detection with the maximum
output at n = 4. The maximum values of the outputs of the two matched filters
(energies of the corresponding input features) are marked by larger symbols
and a dotted red line, while their respective values are denoted by Ex1 and
Ex2 .
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Fig. 3. An undirected unweighted circular graph with two features, x1 =
[0,1,1,1,0,0,0,0]T and x2 = [0,0,−0.5,1,−0.5,0,0,0]T . The feature x1 =
x + 2WNx is obtained by shifting the unit pulse, x(n) = δ(n− 3), to both
the left and right, with the shift weight of 2 and WN as the adjacency (weight)
matrix which was normalized by the degree matrix whose diagonal elements are
equal to 2. The feature x2 = x−WNx is produced by shifting the unit pulse,
x(n) = δ(n− 4), with the shift weight of −1. Notice a direct correspondence
with regularly sampled time-domain analysis in standard CNNs, as the graph
matched filter operating on a circular graph directly simplifies into a standard
matched filter defined for the regular time-domain signal assumed by DFT.

For completeness, these results were verified through the corresponding
spectral domain relations (see Supplement A)

yij(n) = xi(n) ∗ gj(n) = IGFT{GFT{xi(n)}GFT{gj(n)}}. (30)

While the vertex form in (29) and the spectral form in (30) produced
identical results, the vertex domain relation is simpler for practical
realization since it only requires local signal samples from the one-
neighborhood of every vertex.

The outputs of the GMFs corresponding to the two features of
interest are given in Fig. 2(i) and (j), and as desired, their maximum
values are equal to the energies of the corresponding graph features,
x1 and x2 (theoretical maximum output of a matched filter).
For enhanced intuition and direct comparison with the classical
time domain matched filters, a similar scenario is presented on an
undirected and unweighted circular graph in Fig. 3.

E. Forward Propagation

We now proceed to shed new light on the key steps of the
operation of GCNNs from a matched filter perspective. For
clarity, we assume that the weights of the convolution filters
(forward propagation) are already initialized or calculated.
In the following, we elaborate in detail upon the forward
propagation path in GCNNs, while the adaptive learning
procedure which includes backpropagation on graphs and graph
coarsening is covered in the Supplement.

1) Input. The graph input signal, x = [x(1), . . . , x(N)]T , is
observed at N vertices of a graph. A common goal in
GCNNs is to classify inputs into several non-overlapping
categories which correspond to specific features in data.

2) Convolutional layer. This operation employs a convolu-
tion filter of M elements which corresponds to a GMF in
(25), and is also called the convolution kernel. If we are
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looking for K features in x, then K GMFs are required,
with the elements of the k-th GMF (graph convolutional
layer) given by (see also Section C)

wk = [wk(0), wk(1), . . . , wk(M− 1)]T , k = 1,2, . . . ,K.

A common choice in GCNNs is the first-order system in
(10), with a kernel/filter with M = 2 coefficients. With the
normalized weight matrix as a shift operator, the N × 1
output signals, yk, from the graph matched filters are

yk = wk ? x = wk(0)x + wk(1)D
−1/2WD−1/2x

= wk(0)x + wk(1)WNx. (31)

Analogously, for M = 3, the matched filter channels within
GCNNs employ a second-order system on a graph

yk=wk ? x = wk(0)x + wk(1)WNx + wk(2)W
2
Nx.

(32)
With K convolution kernels in a graph convolutional layer,
the total number of the output signal elements is K× N.
From (31), for the normalized graph Laplacian, LN , as
the shift operator, the graph convolution filter becomes

yk = wk ? x = wk(0)x + wk(1)LNx. (33)

Remark 10: The total number of convolution filter
weights, wk(m), k = 1,2, . . . ,K, m = 0,1, . . . , M− 1, in
the graph convolutional layer is M× K, with M as the
length of the graph convolution filter and K as the number
of convolution filters (features). Given that the size of
the convolution filter is much smaller than the number
of the input signals, i.e. M� N, this makes GCNNs
exhibit considerable computational advantages over fully
connected GNNs, where the number of weights is N×K.

Example 2. Relation to standard CNNs. The input-output
relation of standard CNNs is as a special case of that for GCNNs,
for circular undirected and unweighted graphs, as shown in Fig.
3. This immediately follows from the element-wise form of the
graph convolution filter in (31) [3]

yk(n) = wk(0)x(n) +
1
2

wk(1)[x(n + 1) + x(n− 1)],

where the factor 1/2 arises due to the degree matrix, and can
be absorbed into the weights, wk(ν). This form is symmetric,
since the graph in Fig. 3 is undirected. An asymmetric form may
be obtained by using the adjacency matrix, A, of a directed
unweighted circular graph, instead of the normalized weight
matrix, WN , to yield the standard CNN convolution

yk(n) = wk(0)x(n) + wk(1)x(n + 1) + wk(2)x(n + 2).

3) Bias. As in standard NN layers, a constant bias term, bk,
may be added at every graph convolutional layer, to yield

yk = wk ? x + bk.

at a cost of one more coefficient per convolution.
4) Nonlinear activation function. The convolution is a

linear operation, however, signals and images largely
exhibit a nonlinear nature. This is catered for by applying
a non-linearity at the output of convolutional layers. The

most common nonlinear activation function in CNNs and
GCNNs is the Rectified Linear Unit (ReLU), defined by

f (y) = max{0,y}. (34)

Within GCNNs, ReLU exhibits several advantages over
sigmoidal-type activation functions: (i) it does not satu-
rate for positive inputs, producing nonzero gradient for
large input values; (ii) it is computationally cheap to
implement; (iii) in practice, ReLU-based neural networks
converge faster during the learning process than saturation-
type nonlinearities (logistic, tanh). Moreover, the use of
ReLU facilitates further computational advantages through
“sparsification by deactivation”, as from (34) neurons with
negative output values are omitted. Recall, as shown in
Remark 3, that ReLU can be naturally considered within
our matched filtering perspective of CNNs and GCNNs.
The output of the graph convolutional layer, after the
activation function and with the bias term, now becomes

f (yk) = f (wk ? x + bk).

Notice that a problem arises for many consecutive negative
inputs to a neuron, whereby the corresponding zero-output
of ReLU means that such a neuron will be left without
its weight update (dying ReLU). This can be avoided
through the Leaky ReLU function, where the negative
inputs to ReLU are scaled by small factors, for example,
f (yk(n)) = 0.01yk(n), for yk(n) < 0.

5) Pooling. As stated in Remark 4, to further reduce compu-
tational complexity, the output signals at GCNN layers are
typically down-sampled – the so called pooling operation

ok = F
(

f (wk ? x + bk)
)

. (35)

The max-pooling in GCNN considers only the maximum
output of feature filters, thus considerably reducing the
number of parameters, and is closely related to graph
downscaling [5]. One approach to graph downscaling is
termed graph coarsening, and is given in Supplement B.

6) Flattening. Assume that for every channel, k, the number
of remaining vertices (signal samples) after the ReLU and
max-pooling operations is N′ < N. Then, the K output
vectors, ok in (35), can be concatenated to form the overall
output vector, oF, of which the elements are given by

oF(m) = oF
(
(k− 1)N′ + n

)
= ok(n),

with k = 1,2, . . . ,K, n = 1,2, . . . , N′. Therefore, with no
pooling the flattened output oF would be of size KN while
with max-pooling with a factor of P, its size reduces to
KN′ = KN/P.

7) Repeated graph convolutions. To identify quite complex
patterns, like hierarchically composed features, the con-
volution step can be repeated one or more times before
producing the overall output of the convolutional layer,
prior to flattening. Each repeated convolution step may
employ a different set of filter functions (features), and
may or may not use the nonlinear activation and pooling
steps – the so-called convolution-activation-pooling chain.

8) Fully Connected (FC) Layers. The flattened output



8

of the convolutional layer is typically fed into a fully
connected neural network layer with e.g. a standard
multilayer structure, followed by the output layer.
Fig. 4 illustrates the operation of a GCNN with:
• A graph input, x, and the graph weight matrix, W;
• One convolutional layer with weights wk(m), two

features, K = 2, and convolution filter length of M = 2;
• One fully connected standard neural network layer with

KN = 16 input neurons and S = 2 output neurons;
• Softmax output layer with S = 2 outputs.
This model is also used in Example 3, which provides an
in–depth illustration of the operation of the forward path
in GCNNs.

1
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78

w1(0) w1(1)

y1 = w1(0)x+ w1(1)WNx

input signal, x, on
a graph, W or WN

convolutional layer

channel
one

channel
two

FC
layer

w2(0) w2(1)

y2 = w2(0)x+ w2(1)WNx

o1 = ReLU{y1 + b1} o2 = ReLU{y2 + b2}

vp(m)
m = 1, 2, . . . , 16
p = 1, 2

P2P1

SoftMax
output

Fig. 4. Principle of operation of GCNNs, based on a GCNN with one graph
convolutional layer, one FC layer, and two (SoftMax) neurons at the output
layer. The network is presented with noisy versions of either feature1 or
feature2 from Fig. 2 (c) and (d). Shown on top panel is feature2.

Example 3. (Operation of GCNN) Without loss of generality, the
operation of GCNNs is elucidated over a two-layer network with one
graph convolutional layer and one fully connected layer, given in Fig.
4. The input signal, x, with N = 8 samples represents a noisy version
of either of the first or second feature from Figure 2, that is

x = feature1 + ε = x0 −D−1/2WD−1/2x0 + ε (36)

x = feature2 + ε = x0 + D−1/2WD−1/2x0 + ε (37)

with ε as noise, while the graph signal, x0, was a pulse x0(n) =
δ(n− n0) at a random vertex, n0. These features are similar to the
graph signals in Fig. 2(c),(d), with the weights, W, given in (26).

The target signal for feature1 was t1 = [1, 0]T and t2 = [0, 1]T for
feature2.
The task was to confirm the presence of either of these two features in
a noisy input, using graph convolution filters in (31) of length M = 2,
which corresponds to K = 2 channels at the graph convolutional layer,
followed by the ReLU nonlinearity in (7). The FC layer employed the
SoftMax output with target values that correspond to the two patterns
in the target signal, t. For more detail, see Supplement C.
Training was performed based on 200 random realizations of the
input signal, x, which for each realization randomly assumed either
feature1 or feature2 and a random central vertex, n0. This cycle of
200 realizations is called an epoch. The GCNN in Fig. 4 was trained
over 5 epochs, that is, the same set of 200 random realizations was
employed 5 times, and no max-pooling was employed. Fig. 5 illustrates
the evolution of the GCNN output and the weights of the output FC
layer along the training process.
The network output represents the “probabilities” of the presence
of the two features in the noisy input, denoted respectively by P1 and
P2, which are given in the top panel of Fig. 5 and were obtained
from the two SoftMax outputs of the GCNN from Fig. 4. Therefore,
when feature1 is present in the noisy input, x, the target signal is
t1 = [1, 0]T and the output of the SoftMax layer in an ideal case
should be close to P1 = 1 and P2 = 0. Regarding the presence of
feature2 in x, the corresponding target signal is t2 = [0, 1]T and
the SoftMax outputs should ideally approach P1 = 0 and P2 = 1. The
evolution of the SoftMax output during training is illustrated in Fig.5
(top), where for a consistent treatment of the overall accuracy:
• For the target t1, the black “+” denotes the values of P1 and

the green“·” the values of P2,
• For the target t2, the black “+” denotes the values of P2 and

the green“·” the values of P1.
In this way, a perfectly trained GCNN will have all black “+” marks
at 1 and all green “.” marks at 0. Note that for the considered
scenario, P1 + P2 = 1 always holds for the SoftMax outputs.

The graph backpropagation approach to the weight update in
GNCCs is elaborated in detail in Supplement C.
The output convergence is depicted in Fig.5 (top). Observe the
success of training, as the network outputs initially assumed indecisive
values around 0.5, and subsequently (over iterations with random pulse
positions and feature choice) the black “+” gradually approached
the correct value of 1 and the green“·” the correct value of 0.
The weight convergence of the K× N × S = 32 weights in the FC
layer, described in the middle panel of Fig. 5, reflects the overall
convergence of the GCNN. An almost flat weight evolution after the
the initial 200 random realizations of x indicates successful training.
Testing stage: The success of GCNN training was evaluated over
100 new random realizations of the noisy input, x. Fig. 5 (bottom)
indicates the correct and highly reliable GCNN decisions, as over all
100 new random inputs presented to the network, the black “+” and
green “·” were at (or very close to) their correct positions (successful
training).

All the steps and calculations in the training process are illustrated
in a step-by-step fashion in Supplement D.

V. WHAT WE HAVE LEARNED

Graph Convolutional Neural Networks (GCNN) have been
developed as extensions of standard Convolutional Neural
Networks (CNN), with the aim to cater for irregular domains
represented by connected graphs. Despite facilitating the
transition from NNs to GNNs, such an approach harbours
intrinsic disadvantages – as much of the effort has revolved
around the issues surrounding domain adaptation, rather than
resorting to first principles. To this end, we have revisited graph
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Fig. 5. Illustration of the operation of the GCNN from Fig. 4, with one graph
convolutional layer, K = 2 convolution kernels, one FC layer, and two neurons
at the output SoftMax layer, to yield (NK)× 2 = 16× 2 = 32 weights. The
task was to identify the two features from Example 1, also given in Fig. 2 c)
and d). (Top) The output probabilities of the GCNN for the task of identification
of the presence of a correct feature (either feature1 or feature2) are denoted
by a black “+” if the corresponding SoftMax output should be equal to 1, and
by a green “·” if the SoftMax output should be 0. (Middle) Evolution of the
32 weights in the FC layer along the training process. (Bottom) Test results
over 100 random realisations of x, with ”+” and ”·” as above. Observe an
almost perfect identification of the two patterns in x.

convolutional neural networks starting from the notion of a
system on a graph, which has served to establish a matched-
filtering interpretation of the whole convolution-activation-
pooling chain within GCNNs, while inheriting the rigour and
intuition from signal detection theory. Such an approach is
shown to be quite general, and yields both standard CNNs
and fully connected NNs as special cases. It is our hope that,
by revisiting the underpinning principles of GCNNs through
the lens of matched filtering, we have helped shed new light
onto the otherwise black box approach to GCNNs, together
with demystifying GCNNs to practitioners and for educational
purposes. We also hope that the resulting the well-motivated
and physically meaningful interpretation at every step of the
operation and adaptation of GCNNs will help establish a
common language between the diverse communities working
on Data Analytics on Graphs.
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Understanding the Basis of Graph Convolutional
Neural Networks via an Intuitive Matched Filtering

Approach
Ljubiša Stanković, Fellow, IEEE and Danilo Mandic, Fellow, IEEE

SUPPLEMENTARY MATERIAL

This Supplement complements the main text body of this
Lecture Note, for the completeness of the material and to make
it self-sufficient.
Notation convention. For convenience of cross-referencing,
the equations and figures from the main text body of this
Lecture Note will be denoted with the prefix ‘LN’, for example,
(LN-1) refers to equation (1) in the Lecture Note and Fig. LN-1
refers to Fig. 1 in the Lecture Note.

SUPPLEMENT A: GRAPH CONVOLUTION

The perspective of employing convolutions to implement
cross-correlations in classical signal analysis [1], [2] will now
be extended to graph signals. For completeness, we shall start
from the notion of a system on a graph, which underpins the
graph convolution (matched filtering) operation.
System on a graph. A system on a graph is defined in analogy
to classical finite impulse response (FIR) systems, based on a
set of filter coefficients, {h}, and a graph shift operator, S, in
the form given by (LN-9) [3]

y = h0x + h1Sx + · · ·+ hM−1SM−1x. (1)

For undirected graphs, the graph Laplacian, L, is commonly
used as a graph shift operator for systems on a graph. Other
graph shift operators may be equally used, such as the
adjacency matrix, A, and the normalized versions of the
adjacency matrix, (AN = A/λmax), and the graph Laplacian
(LN = D−1/2LD−1/2). The random walk (diffusion) matrix
(S = D−1W) is one more possible graph shift operator.

The spectral domain description of a system on a graph
is obtained when any form of the graph shift operator, S, is
represented in its eigendecomposition form

S = UΛU−1 and Λ = U−1SU, (2)

where U is the transformation matrix with the eigenvectors as
its columns and Λ is a diagonal matrix with the corresponding
eigenvalues on the main diagonal (the graph Laplacian, L, is
always diagonizable, being a real-valued symmetric matrix). A

L. Stanković is with the University of Montenegro, Podgorica, Montenegro.
D. P. Mandic is with Imperial College London, London, United Kingdom.
Contact e-mail: ljubisa@ucg.ac.me

left-multiplication of the vertex domain relation in (1) by the
inverse transformation matrix, U−1, yields

U−1y = h0U−1x + h1U−1Sx + · · ·+ hM−1U−1SM−1x.

Upon expanding, U−1Sx = U−1SUU−1x = ΛX, we arrive at
the spectral domain description of a system on a graph [3]

Y = h0X + h1ΛX + · · ·+ hM−1ΛM−1X, (3)

where
X = U−1x and Y = U−1y

are respectively the graph Fourier transforms (GFT) of the
graph signals x and y. The transfer function of the graph
system in (1), is now obtained from

Y = H(Λ)X,

to arrive at a diagonal graph transfer function matrix defined
by

H(Λ) = h0 + h1Λ + · · ·+ hM−1ΛM−1. (4)

Filtering and convolving graph signals. The three approaches
to filtering (convolutions) of a graph signal using a system
transfer function, G(Λ), with the elements on the diagonal
G(λk), k = 1,2, . . . , N, are as follows.

(a) The simplest approach is based on the direct use of the
GFT, and is performed by:

(i) Calculating the GFT of the input signal, X = U−1x,
(ii) Producing the output GFT by multiplying X by G(Λ),

to yield Y = G(Λ)X,
(iii) Calculating the output (filtered) signal, y, as the inverse

GFT of Y, that is y = UY.
The result of this operation,

y(n) = x(n) ∗ g(n) = IGFT{GFT{x(n)}GFT{g(n)}}
= IGFT{X(k)G(λk)},

is called the convolution of signals on a graph.
However, this procedure quickly becomes computationally
prohibitive for graphs with a large number of vertices,
N, since only the computation of the eigendecomposi-
tion in (2) requires at least O(N2) operations over N-
dimensional vectors and matrices.

(b) A way to avoid the full size transformation matrices for
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large graphs is to approximate the filter transfer function,
G(λ), at the positions of the eigenvalues, λ = λk, k =
1,2, . . . , N, by a polynomial, h0 + h1λ + h2λ2 + · · · +
hM−1λM−1, that is

h0 + h1λk + · · ·+ hM−1λM−1
k = G(λk), k = 1,2, . . . , N.

(5)
The resulting system of N equations

Vh = diag{G(Λ)}, (6)

is solved in the least squares sense for M < N unknown
parameters of the system, h = [h0, h1, . . . , hM−1]

T , with
a given M and

diag{G(Λ)} = [G(λ1), G(λ2), . . . , G(λN)]
T

as the column vector of diagonal elements of G(Λ).
The elements of the matrix V are V(k,m) = λm

k , m =
0,1, . . . , M− 1, k = 1,2, . . . , N (Vandermonde matrix).
This system can be efficiently solved for a relatively small
M [3]. The implementation of the graph filter is then
performed in the vertex domain using h0, h1, . . . , hM−1
obtained in (1), with S= L and the (M− 1)-neighborhood
for every considered vertex. Notice that the relation
between the IGFT of diag{G(Λ)} and the system
coefficients h0, h1, . . . , hM−1 is a direct one in the classical
DFT case only, while it is more complex in the general
graph case [3], as further elaborated in Remark 14 in this
Supplement.
For a large M, the solution to the system of equations
in (5), for the unknown parameters h0, h1, . . . , hM−1, can
be numerically unstable due to large values of λM−1

k for
large M.

(c) Another way for avoiding the direct GFT calculation in
the implementation of graph filters is by approximating
the graph system transfer function, G(λ), by a polynomial
H(λ) of a continuous variable λ [4]–[6].
Notice that this approximation does not guarantee that the
transfer function, G(λ), and its polynomial approximation

H(λ) = h0 + h1λ + · · ·+ hM−1λM−1

will be close at a discrete set of points λ = λp, p =
1,2, . . . , N. However, the maximum absolute deviation of
this polynomial approximation can be kept small using the
so called min-max polynomials (Chebyshev polynomial
approximation of the transfer function G(λ) is one such
example). After such a polynomial approximation, H(λ),
the output of the graph system, Y = H(Λ)X, is calculated
in the vertex domain using

y =
(M−1

∑
m=0

hmLm
)

x = H(L)x.

In other words, the calculation of the output signal, y(n),
at a vertex, n, is now localized to the input signal sample
at the same vertex, n, and its small (M− 1)-neighborhood.
In other words, as desired, in this way there is no need
to perform any operation over the whole (possibly very
large) graph, as in the GFT approach.

Remark 11: Some of the first-order systems on a graph which
are commonly used in the GCNN, are given by (LN-10)-(LN-
14) of our earlier Lecture Notes article [7].

Graph transfer function and graph “impulse response”.
The relation between the transfer function of a system on a
graph, H(λk), and the graph signal (cf. impulse response),
h(n), in the generalized convolutions

y(n) = x(n) ? h(n)

is not as straightforward as in classical analysis. This relation
can be established based on the definitions of the graph system
function, H(λk), and the corresponding GFT. To this end,
consider H(λk), which is defined in (LN-15) as

H(λk) = h0 + h1λk + · · ·+ hM−1λM−1
k . (7)

The samples of the graph “impulse response” signal, h(n), are
equal to the IGFT of H(λk), and are by definition given by

h(n) =
N−1

∑
k=0

H(λk)uk(n). (8)

Recall that in the classical system (transfer function) anal-
ysis, we have uk(n) = exp(j2πnk/N)/

√
N and λk =

exp(−j2πnk/N)
√

N, which results in the coefficients of the
transfer functions being equal to the impulse response of the
convolution filter, that is

h(n) = hn.

This is, however, not the case for systems on graphs. To show
this, for notational simplicity and without loss of generality,
we assume M = N. The vector form of the “impulse response”
in (8) is then

[h(0), h(1), . . . , h(N − 1)]T = UH(Λ),

while the vector form of the system coefficients in (7) is given
by

H(Λ) = Vλ[h0, h1, . . . , hN−1]
T

where Vλ is a Vandermonde matrix whose rows are
[1, λk, λ2

k , . . . ,λN−1
k ], k = 0,1,2, . . . , N − 1, see also (6).

Using the last two equations, the graph signal, h(n), and
the system coefficients, hn, can now be related via H(Λ), as

[h(0), h(1), . . . , h(N − 1)]T = UVλ[h0, h1, . . . , hN−1]
T . (9)

Remark 12: Unlike in standard system analysis, the coefficients
of a system on a graph, hn, n = 1, . . . , M, are different (both
in terms of their number and physical meaning) from the
graph “impulse response” signal, h(n), n = 1, . . . , N, which is
obtained through the Inverse Graph Fourier Transform (IGFT)
of the graph system function in (8). Fig. 1 illustrates this
important point for the graph from Fig. LN-2 and the first-
order transfer function, H(λk) = 1 + 0.5λk. The top panel
shows the weights (system coefficients) h0 and h1, the middle
panel shows the corresponding graph “impulse response” signal,
h(n) = IGFT(H(λk)), along the vertex index axis, and the
bottom panel shows h(n) on the original graph [3].

In classical system analysis (the case of a directed circular
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Fig. 1. Representation of a system on a graph. (Top:) The first-order transfer
function, H(λk) = 1 + 0.5λk , for the graph from Fig. LN-2, with the weights
(system coefficients) h0 and h1. (Middle) The corresponding graph “impulse
response” signal, h(n), plotted along the vertex index axis. (Bottom:) The
signal h(n) plotted on the original graph from Fig. LN-2. Observe that the
graph “impulse response” signal h(n) differs significantly from the classical
case, for which the impulse response would be h(n) = δ(n) + 0.5δ(n− 1).

graph and its adjacency matrix), the graph signal samples,
h(n), which are obtained as the inverse DFT of the system
(transfer) function H(λk) and the system coefficients (weights
of the shifted/delayed signals), hn, are the same, since the
eigenvalues of the shift operator (adjacency matrix of a directed
unweighted circular graph) are equal to the corresponding shift
operators in the spectral domain, λk = exp(−j2πk/N)/

√
N

and uk(n) = exp(j2πnk/N)/
√

N = λ−n
k , with hn = h(n)

and

H(λk) =
N−1

∑
n=0

h(n)e−j2πnk/N .

Therefore, in classical DFT analysis (signals on a directed
circular graph), the following relation holds

UVλ = I.

which is different from the corresponding relation for the graph
system in (9).

SUPPLEMENT B: MAX-POOLING THROUGH GRAPH
COARSENING

Graph coarsening is a graph down-sampling strategy which
refers to the mechanisms for the reduction in the number of
vertices of the original graph [8], [9]. Graph coarsening is typi-
cally performed in graph partitioning strategies, and also for the
visualization of large graphs in a computationally efficient and
intuitive manner [10]. In general, graph coarsening is performed
by grouping the vertices into Nc < N nonoverlapping subsets,
subsequently forming new vertices by merging the vertices in
these subsets, and finally connecting these new “super–vertices”
(former groups of vertices) with the new “equivalent” weights,
which represent a sum of all weights between the vertex groups.
The weight matrix of the so coarsened graph is given by

Wc = PWPT ,

with P as the indicator matrix of these groups of vertices [8].

Example 1. (Max pooling through graph coarsening). To
illustrate the principle of graph coarsening, recall that in the max-
pooling operation in the Lecture Note we used the first iteration of
the graph signal in the first channel of the considered GCNN, after
the ReLU operation (see Supplement D, Table 1), given by f (y1) =

[0.012 0.037 0 0.121 0 0 0 0.053]T and shown in Fig.
2 (a). The weight matrix, W, for this graph is given by (10). Observe
that the maximum signal value is located at the vertex n = 4. The
coarsening of this graph can be performed in the following way:

1) Fuse (merge) the vertices n = 2,3,5,6 which are in the one-
neighbourhood of the vertex with the maximum value of the
signal (in this case n = 4 with the signal value of 0.121), to
form a super-vertex 23456, which inherits the signal value of
f (y1(4)) = 0.121. Based on the set of weights, W in (10), the
creation of this super-vertex is described by the second row of
the indicator matrix, P in (11).

2) The remaining graph from Fig. 2 (a) now has 4 vertices,
the super-vertex n=23456, and the vertices n=1,7,8, with the
corresponding signal values [0.012,0,0.053]. The maximum
signal value of 0.053 at the remaining original vertices is located
at vertex n = 8, and this vertex is therefore fused with the vertices
within its one-neighbourhood (in this case only vertex n=1), to
form the second super-vertex 18, with the signal value of 0.053.
This is described by the first row of the indicator matrix, P, in
(11).

3) Finally, the only remaining original vertex is now vertex n = 7,
which becomes the last super-vertex and keeps its original signal
value of 0. The process is described by the third row of the
indicator matrix, P in (11).

In this way, we have coarsened the original 8-vertex graph from Fig.
2 (a) into a resulting 3-vertex graph in Fig. 2 (b) which corresponds
to the max-pooling operation on graphs. The numerical values of the
matrices used in graph coarsening are given below.

In order to allocate new weights to the coarsened graph in Fig. 2
(b), it is important to realise that the weight matrix, Wc = PWPT in
(12), is calculated for the three new super-vertices 18, 23456, and 7.
Observe that the non-zero values on the diagonal of Wc correspond
to self-loops at the corresponding graph vertices, as shown in the
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final coarsened graph in Fig. 2(c).

W =

1
2
3
4
5
6
7
8



0 1 1 0 0 0 0 1
1 0 1 1 1 0 0 1
1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
0 1 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
1 1 0 0 1 0 0 0


1 2 3 4 5 6 7 8

, (10)

P =
1,8

2,3,4,5,6
7

 1 0 0 0 0 0 0 1
0 1 1 1 1 1 0 0
0 0 0 0 0 0 1 0


1 2 3 4 5 6 7 8

, (11)

Wc = PWPT =
1,8

2,3,4,5,6
7

 2 4 0
4 14 2
0 2 0


1,8 2,3,4,5,6 7

. (12)

The indicator matrix for the ReLU and max-pooling stages
indicates the values of the signal which keep their nonzero values
after the ReLU and the max-pooling (MP) operations, and is given by

MReLU+MP =

[
0 0 0 1 0 0 0 1
0 1 0 0 0 0 1 0

]T
. (13)

The first row shows that, for the first channel (convolution filter,
kernel), the signal values at the vertices n = 4 and n = 8 have

“survived” both the ReLU and the max-pooling operation. In a similar
way, the signal values at the vertices, n = 7 and n = 2 have “survived”
in the second channel. Importantly, when max-pooling is used, the
above indicator matrix is employed during the learning process to
reposition the gradient updates to their correct positions, as elaborated
in Supplement D. Fig. 3 illustrates the max-pooling operation for
the GCNN from Fig. LN-4 in the article. For more detail on the
implementation, we refer to our sister paper [1].

Remark 13: In the process of graph coarsening, described by
(10)–(12), the graph topology changes for each channel and at
each iteration, since the operation is signal dependent.

Graph lifting (uncoarsening). Graph lifting is an inverse
operation to graph coarsening, and represents a process of
obtaining a larger scale (fine) graph from a coarsened (smaller)
graph. The weight matrix, WL, of the lifted graph is obtained
from the weight matrix of the coarsened graph, Wc, as

WL = P+Wc(P+)T ,

where P+ is the pseudo-inverse of the indicator matrix, such
that PP+ = I, where I is the identity matrix.

The same relations as for the normalized weights in (12)
hold for the corresponding graph Laplacian of the original
graph, L, graph Laplacian of the coarsened graph, Lc, and the

1

2

3
4

5

6

7
8 (a)

Super-vertex 23456

Super-vertex 18 Super-vertex 7

1

2

3
4

5

6

7
8

(b)

23456

7
18

1
4

2

4

2

(c)

Fig. 2. Illustration of the max–pooling operation in a graph CNN, when
implemented through graph coarsening. (a) The considered graph signal. (b)
The coarsening process for the graph from a), whereby the creation of super-
vertices (max-pooling) is performed for: i) graph signal at the vertex n = 4
with its one-neighborhood, n = 2,3,5,6, ii) graph signal at the vertex n=8
with its one-neighbourhood, n=1, and iii) remaining graph signal at n = 7. c)
The resulting coarsened graph, where the three super-vertices are n = 23456,
n = 18, and n=7, while the values of weights, Wc in (12), in the self-loops
(on the diagonal of (12)) and between the super-vertices, are given in blue.

graph Laplacian of the lifted graph, LL, that is

Lc = PLPT ,

LL = P+Lc(P+)T .

Notice that for the normalized graph Laplacian, the definition
of the indicator matrix should be slightly modified [11].
Generalization of graph coarsening. The process of coarsen-
ing a graph G (with vertices V , edges B, and weights W) may
be continued until a desired number of vertices is obtained.
In general, the coarsening operation involves a sequence of
graphs

G = G0 = {V ,B,W} = {V0,B0,W0}
G1 = {V1,B1,W1}

...
Gc = {Vc,Bc,Wc},

whereby at every iteration, the coarsened graph, Gl+1 =
{Vl+1,Bl+1,Wl+1}, is obtained from the previous one through
a weight matrix transformation based on the corresponding
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w1(0) w1(1)

y1 = w1(0)x+ w1(1)WNx

input signal, x, on
a graph, W or WN

convolutional layer

channel
one

channel
two

FC
layer

w2(0) w2(1)

y2 = w2(0)x+ w2(1)WNx

o1 = ReLU{y1 + b1} o2 = ReLU{y2 + b2}Max-pooling

y1(4) y1(8) y2(2) y2(7)

vp(m)
m = 1, 2, 3, 4
p = 1, 2

P2P1

SoftMax
output

Fig. 3. Principle of max-pooling in GCNNs, which corresponds to selecting
the signal values through the indicator matrix in (13). The considered GCNN
comprises one graph convolutional layer and one fully connected (FC) output
layer with two SoftMax neurons.

indicator matrices, as in (12), that is

Wl = PlWl−1PT
l ,

The inverse operation is referred to as graph lifting, and is
performed as Wl−1 = P+

l Wl(P
+
l )

T .

SUPPLEMENT C: UPDATING GRAPH CONVOLUTIONAL
WEIGHTS: THE GRAPH BACKPROPAGATION

The initial parameters (weights) of a GCNN are typically
updated in a supervised manner through a gradient-based
learning process known as the backpropagation (BP). At each
iteration of the BP algorithm, the gradient values (sensitivities)
are computed for each network parameter – the weights in
the convolutional layers, the weights in the fully-connected
layers, and the biases. These sensitivities are then used to
backpropagate the output errors in the process of iteratively
updating all the GCNN parameters, until a certain stopping
criterion is met or the training data set is exhausted [12]–[14].

1) Initialization: Unlike standard adaptive systems where
the initial weight values are typically set to zero, the initial
values of the weights in neural networks are usually set to
random (and different) values for each convolution channel and
network layer. Since, in general, graph convolutional weights,
wk(ν), multiply M input signal values at each convolution
channel (for the set of the considered input neurons of the
layer), the only requirement is that the choice of the initial
weights preserves the expected energy of the output for the

considered layers. This is achieved, for example, if the initial
weights are Gaussian distributed, with

wk(ν) ∼
√

2
M
N (0,1), ν = 0,1, . . . , M− 1, k = 1,2, . . . ,K.

(14)
The factor of 2 is used since the ReLU activation function will
remove negative output values, which on the average accounts
for a half of the expected energy.

Another possibility is to use uniformly distributed initial
weights, wk(ν), whereby the sum of M initial weights,
∑M−1

ν=0 wk(ν), is also a random variable with unit variance.
Such uniformly distributed random weights are defined on the
interval

wk(ν) ∼
[
−
√

6
M

,

√
6
M

]
,

and their variance is Var{wk(ν)} = 6
M

1
3 = 2

M . In this way,
the variance of a sum of M values, divided by 2 (to account
for the ReLU activation function), will produce a unit weight
variance. Such initial weights are referred to as the He initial
values.

We can use the same principles as above to generate the
initial weights in the fully connected layers, just with the
number of weights in the convolutional layer now as KN
instead of M. The values of the initial weights in (14) can be
further reduced based on the number of output neurons in the
considered layer, S, to yield the Xavier initial values, given by

vp(m) ∼
√

2
NK + S

N (0,1).

2) Backpropagation in a two-layer GCNN: The principle
of adaptive learning in general GCNNs will be next illustrated
through an example of weight update within a simple GCNN,
shown in Fig. LN-4 of the Lecture Note, which comprises one
convolutional layer and one fully connected output layer.
Convolutional layer. For the input graph signal, x =
[x(1), x(2), . . . , x(N)]T , the output signal of the convolutional
layer of the GCNN, with K convolution filters (kernels) of
width M = 2, is given by

yk = wk(0)x + wk(1)WNx,

or in an element-wise form for the channels k = 1,2, . . . ,K

yk(n) = wk(0)x(n) + wk(1)∑
µ

WN(n,µ)x(µ), (15)

where WN(n,µ) are the elements of the normalized weight
matrix, WN . The overall output of the convolutional layer is
then obtained after the bias term, bk, is included and upon the
application of the ReLU activation function, f (·), to yield

ok(n) = f
(

yk(n) + bk

)
. (16)

For simplicity, we assumed that no max-pooling or any other
down-sampling was performed.

The output from the convolutional layer is then reshaped
(flattened) into a vector of length KN, which serves as input
to the fully connected (FC) layer with S outputs (for clarity,
we considered only one FC layer). Each of the KN nodes
of the output of the convolutional layer, oF(m), with the
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corresponding samples

[o1(1), . . . ,o1(N), o2(1), . . . ,o2(N), . . . ,oK(1), . . . ,oK(N)]T

is connected to each of the S nodes of the fully connected
output layer, through the weights, vp(m), p = 1,2, . . . ,S, to
produce the overall GCNN output in the form

zp = vp(0)o1(1) + vp(1)o1(2) + · · ·+ vp(N − 1)o1(N)

+ vp(N)o2(1) + . . . + vp(2N − 1)o2(N)

...
+ vp((K− 1)N)oK(1) + · · ·+ vp(KN − 1)oK(N). (17)

Note that the number of weights, vp(m), p = 1,2, . . . ,S, m =
1,2, . . . ,KN in the FC layer is S× KN.

A commonly used loss function in the BP algorithm is the
mean square error (MSE) between the network output, zp, and
the true label, tp, given by

L =
1
S

S

∑
p=1

(zp − tp)
2, (18)

where tp denotes the desired or target output (also called the
teaching signal) [12].

Training process in the convolutional layer. To define the
gradient descent relations for the update of all previous weights
(within both the graph convolutional layer, wk(ν), and the fully
connected layer, vp(m)) in the training process, consider first
the convolutional layer, described by (15)-(16), to give the
gradient weight update in the form

wk(ν)new = wk(ν)old − α
∂L

∂wk(ν)
∣∣∣wk(ν)=wk(ν)old

(19)

where α is a small positive constant known as the step-size
or learning rate. The element-wise gradient values in the first
(convolutional) layer are designated by the superscript (·)(1),
and calculated as

g(1)k (0) =
∂L

∂wk(0)
= ∑

n

∂L
∂yk(n)

∂yk(n)
∂wk(0)

= ∑
n

∂L
∂yk(n)

x(n),

(20)

g(1)k (1) =
∂L

∂wk(1)
= ∑

n

∂L
∂yk(n)

∂yk(n)
∂wk(1)

= ∑
n

∂L
∂yk(n)

∑
µ

WN(n,µ)x(µ), (21)

based on the input-output relation in (15).

Next, the terms ∂L/∂yk(n), also termed the delta error
function, ∆(1)

k (n), are calculated using the chain rule, as

∆(1)
k (n) =

∂L
∂yk(n)

= ∑
p

∂L
∂zp

∂zp

∂yk(n)
= ∑

p

∂L
∂zp

∂zp

∂ok(n)
∂ok(n)
∂yk(n)

= ∑
p

∆(2)
p vp((k− 1)N + n− 1) u(yk(n)) (22)

where, according to (16) and (LN-34), ∂ok(n)/∂yk(n) =
u(yk(n)), while the relation in (17) is used for the calculation

of ∂zp/∂ok(n) = vp((k− 1)N + n− 1), with

∆(2)
p =

∂L
∂zp

= zp − tp, p = 1,2, . . . ,S

as the delta error in the final (the second, in this case) stage.
The relation in (22) back-propagates the error from layer 2,

denoted by ∆(2)
p , to layer 1, to give the portion of the overall

error attributed to the neuron k of layer 1, denoted by ∆(1)
k (n).

We can now calculate ∂L/∂yk(n) = ∆(1)
k (n) and the gradient

for the update in (19).

Remark 14: The values of the gradients g(1)k (0) and g(1)k (1)
in (20) and (21), for the update of the convolutional (matched
filter) weights, wk(m), can now be expressed as

g(1)k (0) = ∑
n

∂L
∂yk(n)

x(n) = ∑
n

∆(1)
k (n)x(n), and

g(1)k (1) = ∑
n

∆(1)
k (n)∑

µ

WN(n,µ)x(µ), (23)

or in a compact vector/matrix form

g(1)
k = [xT∆

(1)
k , (WNx)T∆

(1)
k ]T =

[
xT

(WNx)T

]
∆
(1)
k . (24)

This expression can be straightforwardly generalized to cater
for higher-order matched filters. For example, for M = 3 and
based on (LN-32), the gradient vector will become

g(1)
k = [xT∆

(1)
k , (WNx)T∆

(1)
k , (W2

Nx)T∆
(1)
k ]T . (25)

From (23), (24), and (25) it can be concluded that, in general,
the elements of the gradient, g(1)k (m), are obtained from

g(1)k (m) = ∑
n

∆(1)
k (n)Dm{x(n)}, (26)

where Dm{x(n)} is a graph signal which is shifted by m steps.
A vector form of the signal shifted for m steps, Dm{x(n)},
is (Wm

Nx)T . In classical systems, the shifted version of the
signal is given by Dm{x(n)} = x(n + m) and relation (26)
reduces to the classical convolution (cross-correlation) form.
Therefore, (26) can be understood as the graph convolution
(cross-correlation) of the graph shifted input signal, Dm{x(n)},
and the delta error signal, ∆(1)

k (n). This is conformal with the
cross-correlation concept of matched filters.

This means that for the M-th order system, in an ideal case
(after the GCNN is sufficiently trained) the gradients, g(1)k (m),

should be equal to zero, whereby the delta error signal, ∆(1)
k (n),

should be normal to the graph input signal, x(n), and all its
graph shifts, Dm{x(n)}, up to the (M− 1)th shift.

The bias terms are updated in the same way as the weights
in (19), that is, based on

bk,new = bk,old − β
∂L
∂bk

∣∣∣bk=bk,old

(27)

and
∂L
∂bk

= ∑
n

∂L
∂yk(n)

∂yk(n)
∂bk

= ∑
n

∂L
∂yk(n)

= ∑
n

∆(1)
k (n). (28)
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Fully connected (FC) layer. The input to the FC layer
represents the flattened output from the convolutional layer,
given by

oF((k− 1)N + n) = oF(m),

where the indices m in oF(m) range from 1 to KN, with
k = 1,2, . . . ,K and n = 1,2, . . . , N. Notice that the relation (17)
can be equally written as

zp =
KN

∑
m=1

vp(m− 1)oF(n).

The update of the fully connected layer weights, vp(m), is
then performed in the same way as in (19), based on

vp(m)new = vp(m)old − γ
∂L

∂vp(m)
∣∣∣vp(m)=vp(m)old

, (29)

with the gradient elements in the form

g(2)p (m)=
∂L

∂vp(m)
=

∂L
∂zp

∂zp

∂vp(m)
=(zp−tp)oF(m)=∆(2)

p oF(m),

and with γ as the step-size.
If a nonlinear activation function is used at the output, the

factor of f ′(zp) will correspondingly multiply the right hand
side of ∂L/∂vp(m).

3) SoftMax Output Layer: In some applications, it is
desirable that the output layer gives the probabilities for
the decision when performing classification tasks. In other
words, such an output represents the probabilities of different
possible outcomes (labels) which are associated with the
analyzed signals or images (for example, dog, cat, bird in an
image), whereby the label that receives the highest probability
represents the overall classification decision. In the error
calculation, the desired (target) output then assumes the value
tp = 1 for the highest value of the output probability, say p = p0
(in the supervised training process, we have the knowledge of
the signal/image which is analyzed by the GCNN) and tp = 0
for all other lower probability values p = 1,2, . . . ,S, p 6= po.

Given that the probabilities are positive, while the output,
zp, from the last GCNN layer (the overall output) may assume
various positive and negative real values, it is necessary to map
the overall GCNN output, zp, onto a probability-like range of
positive values. This is typically achieved through a mapping
of the form

Pp =
ezp

∑S
i=1 ezi

, p = 1,2, . . . ,S. (30)

called the SoftMax. Obviously, 0≤ Pp ≤ 1 and ∑S
p=1 Pp = 1.

When the SoftMax is used as the output mapping, the loss
function is modified accordingly, that is, instead of the mean
square error it assumes the cross-entropy form, given by

L = −
S

∑
p=1

tp ln(Pp).

Consider the case with S = 2. Physically, the cross-entropy
should be zero (and no update of the weights should be
performed) when, for example, t = [t1, t2]

T = [1, 0]T , and the
value of corresponding probability, Pp, is such that P1 = 1 and

P2 = 0, producing L=−1ln(1)− 0ln(0) = 0. Conversely, the
cross-entropy is very large if there is a target, for example, at
p=1, that is t1 = 1, and the corresponding output probability P1
is small, so that L=−1ln(0)− 0ln(1)→∞, thus indicating
a big change in the weights. In practical GCNN training, we
are always between these two theoretical extrema.

It is now straightforward to show that with cross-entropy as
the cost function, the delta error function in the output layer
is of the form

∆(2)
p =

∂L
∂zp

=
S

∑
i=1

∂L
∂Pi

∂Pi
∂zp

=
S

∑
i=1

( ti
Pi

PiPp

)
−

tp

Pp
Pp = Pp− tp

since from (30) it follows that ∂Pi/∂zp = −PiPp if i 6= p and
∂Pi/∂zp = Pi(1− Pp) =−PiPp + Pp if i = p, while ∑S

i=1 ti =
1.

Therefore, as desired, there is no weight correction for the
correct GCNN decision, tp = Pp, while all other relations
within the backpropagation algorithm do hold, without any
modification.

SUPPLEMENT D: A STEP-BY-STEP CALCULATION IN THE
FIRST ITERATION OF THE GCNN FROM EXAMPLE LN-3

A step-by-step quantification of all the intermediate results
in the forward pass, together with the backpropagation learning
procedures is given in the Table 1 below (see the next page).
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and A. G. Constantinides, “Data analytics on graphs Part II: Signals on
graphs,” Foundations and Trends R© in Machine Learning, vol. 13, no. 3,
pp. 157–331, 2020.

[4] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “The spectral
graph wavelet transform: Fundamental theory and fast computation,” in
Vertex-Frequency Analysis of Graph Signals (L. Stanković and E. Sejdić,
eds.), pp. 141–175, Springer, 2019.

[5] H. Behjat and D. Van De Ville, “Spectral design of signal-adapted
tight frames on graphs,” in Vertex-Frequency Analysis of Graph Signals
(L. Stanković and E. Sejdić, eds.), pp. 177–206, Springer, 2019.
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TABLE 1: A STEP-BY-STEP CALCULATION OF ALL THE STEPS IN THE FORWARD PASS AND THE BACKPROPAGATION, FOR THE
GCNN FROM EXAMPLE LN-3

FORWARD CALCULATIN: From the input signal to the output
FW1: Input signal, x, of length N = 8,
x = [0.087 0.030 −0.006 0.039 −0.254 −0.426 0.946 −0.145]T .
The normalized weight matrix, WN given in (LN-26), was used as the graph shift operator
The target signal was t = [1 0]T , since the feature1 = x0 −WNx0 = [0,0,0,0,−0.316,−0.408, 1, 0]T
was present in the input (corrupted by small levels of noise). This feature was obtained using (LN-36) and x0(n) = δ(n− 7).

FW2: Weight random initialization (convolutional layer): wk(ν) ∼N (0,1)
√

2/M, M = 2, for K = 2 channels, wk = [wk(0), wk(1)]T , to yield
w1 = [−0.221 −0.741]T ,
w2 = [ 1.429 0.323]T .
FW3: Graph convolutions: yk = x ? wk + bk = wk(0)x + wk(1)WNx, k = 1,2, with the initial bias values bk = 0.
y1 = [ 0.012 0.037 −0.034 0.121 −0.067 −0.152 −0.021 0.053]T ,
y2 = [ 0.111 0.024 0.007 −0.001 −0.309 −0.501 1.270 −0.217]T .
FW4: Nonlinear activation function: The ReLU activation function, f (yk) = max{0,yk}, was used, to give
f (y1) = [0.012 0.037 0 0.121 0 0 0 0.053]T

f (y2) = [0.011 0.024 0.007 0 0 0 1.270 0]T .
FW5: Indicator matrix: The indicator matrix of the output (nonzero) values from the ReLU, denoted by MReLU , assumed the form

MReLU =

[
1 1 0 1 0 0 0 1
1 1 1 0 0 0 1 0

]T
.

It will be used to reposition the gradient updates to their correct positions if the downsampled (e.g. coarsened) graph signal was used,
that is, it caters for the effect of the zeroing of negative inputs to the ReLU.
FW6: Flattening of the output of the “convolution-activation-pooling” chain, to give oF((k− 1)N + n) = f (yk(n)), k = 1,2, n = 1,2,3,4 . . . ,8.
oF = [0.012, 0.037, 0, 0.121, 0, 0, 0, 0.053, 0.011, 0, 0.024, 0.007, 0, 0, 0, 1.270, 0]T ,
FW7: Weight random initialization (FC layer): vp(m) ∼N (0,1)

√
2/(NK) =N (0,1)

√
1/8,

v =

[
−0.045, 0.391,−0.289, 0.123, 0.309, 0.029, 0.121,−0.132,−0.389, 0.081,−0.055,−0.609,−0.183,−0.765, 0.277, 0.174
−0.248, 0.023,−0.085, 0.543, 0.102,−0.548,−0.542,−0.360, 0.706, 0.412,−0.590,−0.714,−0.445, 0.102, 0.245,−0.226

]T
.

FW8: Output of the FC layer: The output signal of the FC layer (overall output the GCNN) is given by zp = ∑16
m=1 oF(m)vp(m− 1).

For the considered GCNN from Fig. LN-4, we therefore have z = [z1, z2]
T = vToF = [0.332 0.440]T .

FW9: Softmax: With S = 2 output values, Pp = ezp /(ez1 + ez2 ), p = 1,2, we have
P = [P1, P2] = [0.4731 0.5269]T .

BACK-PROPAGATION: Delta error, gradient, weight updates

BP1: Output Delta error: ∆(2) = [∆(2)
1 , ∆(2)

2 ]T = P− t = [−0.5269 0.5269]T , ∆(2)
p = Pp − tp

BP2: Gradient: For the FC layer weights update, g(2)p (m) = ∆(2)
p oF(m); oF(m) is the input to the FC layer and ∆(2)

p is the output Delta error

g(2) = oF(∆
(2))T =

[
−0.006,−0.019, 0,−0.064, 0, 0, 0,−0.028,−0.058,−0.013,−0.004, 0, 0, 0,−0.669, 0

0.006, 0.019, 0, 0.064, 0, 0, 0, 0.028, 0.058, 0.013, 0.004, 0, 0, 0, 0.669, 0

]T
.

BP3: Weight update in the FC layer using the gradient g(2) and the stepsize α = 0.1 becomes, v← v− 0.1g(2),

v =

[
−0.044, 0.394,−0.289, 0.132, 0.309, 0.029, 0.121,−0.128,−0.380, 0.082,−0.054,−0.609,−0.183,−0.765, 0.378, 0.174
−0.249, 0.021,−0.085, 0.534, 0.102,−0.548,−0.542,−0.364, 0.697, 0.410,−0.591,−0.714,−0.445, 0.102, 0.145,−0.226

]T

The unchanged weights in this iteration (in red) are defined by the zero-valued input, oF(m), to the FC layer (concatenated matrix MReLU).

BP4: Delta error backpropagation from the output, ∆(2)
p , to the convolutional layer, ∆(1)

k (n) = ∑p ∆(2)
p vp((k− 1)N + n− 1) u(yk(n)),

∆
(1)
1 = [−0.108 −0.197 0 0.211 0 0 0 −0.125]T ,

∆
(1)
2 = [ 0.567 0.173 −0.283 0 0 0 −0.123 0]T . Notice that the elements u(yk(m)) in (22) are defined by MReLU in FW5.

BP5: Gradient for the weight update in the convolutional layer, g(1)
k = [xT∆

(1)
k , (WNx)T∆

(1)
k ]T , k = 1,2,

g(1)
1 = [ 0.011 −0.017]T ,

g(1)
2 = [−0.060 −0.017]T .

BP6: Weight update in the convolutional layer wk ←wk − 0.1g(1)
k , k = 1,2,

w1 = [−0.223 −0.739]T

w2 = [ 1.437 0.325]T .

BP7: Bias update. According to (28), bk ← bk − 0.05∑n ∆(1)
k (n), k = 1,2, to yield

b = 0− 0.05([1 1 1 1 1 1 1 1]∆(1))T = [0.0109, −0.0167]T .
BP8: New iteration. With every new signal realization, e.g.
x = [−0.412 0.886 −0.338 −0.202 −0.204 0.029 0.035 −0.304]T , t = [1, 0]T ,
go back to the first step with the new (updated) weights, w and v, and bias weights b.
Some of the results (the SoftMax output signal, P1, and the FC layer weights, vp(m)) over 1000 iterations are shown in Fig. LN-5.

n = 1,2, . . . , N is the vertex index in the input layer
k = 1,2, . . . , K is the channel (matched filter) index
ν = 1,2, . . . , M is the matched filter order index
m = 1,2, . . . ,KN is the FC input node index
p = 1,2, . . . ,S is the output node index


