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Abstract 

Background: Motor imagery is a cognitive process of imagining a performance of 
a motor task without employing the actual movement of muscles. It is often used 
in rehabilitation and utilized in assistive technologies to control a brain–computer 
interface (BCI). This paper provides a comparison of different time–frequency 
representations (TFR) and their Rényi and Shannon entropies for sensorimotor 
rhythm (SMR) based motor imagery control signals in electroencephalographic (EEG) 
data. The motor imagery task was guided by visual guidance, visual and vibrotactile 
(somatosensory) guidance or visual cue only.

Results: When using TFR-based entropy features as an input for classification of 
different interaction intentions, higher accuracies were achieved (up to 99.87%) in 
comparison to regular time-series amplitude features (for which accuracy was up to 
85.91%), which is an increase when compared to existing methods. In particular, the 
highest accuracy was achieved for the classification of the motor imagery versus the 
baseline (rest state) when using Shannon entropy with Reassigned Pseudo Wigner–
Ville time–frequency representation.

Conclusions: Our findings suggest that the quantity of useful classifiable motor 
imagery information (entropy output) changes during the period of motor imagery in 
comparison to baseline period; as a result, there is an increase in the accuracy and F1 
score of classification when using entropy features in comparison to the accuracy and 
the F1 of classification when using amplitude features, hence, it is manifested as an 
improvement of the ability to detect motor imagery.

Keywords: Brain–computer interface, Electroencephalography, Information entropy, 
Motor imagery, Movement detection, Time–frequency representations

Background
Injuries and disorders that impair the use of motor functions can significantly alter the 
lives of individuals affected. Therefore, many research groups are trying to tackle the 
problem of restoring or replacing the lost functionality using different methods. One 
of such methods is a brain–computer interface (BCI) utilizing electroencephalography 
(EEG). EEG is a non-invasive electrophysiological monitoring method used to record 
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the brain’s electrical activity by measuring field potentials associated with cortical neural 
activity.

EEG can be used to control or communicate with a computer without using the 
natural neuromuscular pathways. A BCI recognizes the intent of the user through the 
processing of signals acquired with electrophysiological methods [19]. Past BCI research 
has primarily been focused on the communication aspect utilizing event-related 
potentials (e.g., P300 responses) [15, 18, 28, 41], steady-state visual evoked potentials 
(SSVEP) [27, 32, 35, 50] and sensorimotor rhythms (SMR) [38, 40, 48]. Furthermore, 
there is a great developing potential for BCIs to provide control of physical devices [9, 
10, 17, 30, 31, 34, 44].

One of the key observations in EEG recordings is that the rhythmic neurophysiological 
activities recorded over the sensorimotor cortex are altered by movement, motor 
intention, or motor imagery (MI). The modulation manifests as amplitude decreases 
in the alpha or mu (8–13 Hz) and beta (14–26 Hz) frequency bands, also called event-
related desynchronization (ERD). ERD is accompanied by an amplitude increase in 
the beta and gamma (30 Hz and higher) frequency band, also called event-related 
synchronization (ERS). Such rhythmic activity is referred to as SMRs [51]. Kobler et al. 
[29] has shown that directional information is also encoded around low-frequency 
delta band (0.2–5 Hz). From SMR-based BCI, motor intention or motor imagery can be 
recorded, which is the basis of neural control in such systems. Many studies have shown 
that people can learn to control the amplitude of SMR by using MI [14, 42, 47, 48].

In different experiments, participants were able to achieve both 2D and 3D control 
[14, 48]. Up to date, SMR BCIs offer the highest level of control in terms of degrees of 
freedom among all other signal components (e.g., evoked potentials or slow cortical 
potentials). The sources of SMR caused by movements or imagined movements 
of various body parts have been located in the primary sensorimotor cortex in a 
somatotopic manner [52]. In natural movement processes, the execution of movement 
and feedback (such as haptic information, proprioception, visual information, etc.) 
processes cannot be viewed as decoupled. Rather, movement actions are adjusted and 
refined during the execution based on sensory inputs that have a beneficial effect on the 
BCI control performance [20, 21]. One such sensory input is the vibrotactile guidance, 
which is used (in addition to visual guidance) in one of the two datasets analyzed in this 
paper. Besides correctly detecting the intent of the subject’s MI, one of the essential 
prerequisites of efficient active control of a BCI is the ability to detect when the user is 
not trying to issue any commands. This scenario is referred to as an Intentional Non-
Control (INC) state [45]. It is very important to accurately detect when the user is trying 
to issue a command to minimize the possibility of false positive detection of control. In 
this paper, we aim to utilize information entropy to detect INC efficiently.

The concept of entropy was originally derived from thermodynamics as a measure 
of the disorder of a thermodynamic system. Its introduction to information theory 
has allowed quantification of the information content of a probability density function 
(PDF) [5, 6, 37]. Entropy-based signal complexity estimation of nonstationary signals in 
time–frequency plain can be interpreted as 2D energy distribution concentration [4, 6]. 
Time–frequency representations (TFRs) allow for straightforward interpretation and 
precise measurements of actual frequencies and the time instants at which they appear, 
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as well as showing if the signal is monocomponent or multicomponent [6]. While for 
different applications, we can use different TFRs, in this paper, we focus on some TFRs 
that best describe our datasets and that are suitable for the calculation of the Rényi 
and Shannon entropy. TFRs are divided into Cohen’s class (quadratic or bilinear TFRs 
that are covariant by translation in time and frequency) and affine class (bilinear TFRs 
covariant by translation in time and dilation). Due to a high number of cross-terms 
present in the affine class TFRs [6], we focus on Cohen’s class TFRs. We tested several 
TFRs from the Cohen’s class and their reassigned counterparts. Reassigned TFRs utilize 
the reassignment method in order to improve signal sharpness and concentration. The 
reassignment method aims to move TFR values away from where they are computed 
towards the center of gravity, in order to produce better localization of the signal 
components [2]. For our work, we chose to utilize various TFRs interpreted as two 
dimensional PDFs and used them as an input for Rényi and Shannon entropy, effectively 
performing analysis of TFRs’ complexity and information content.

Recently, various studies have covered entropy applications in EEG SMR for different 
purposes. Spectral entropy of resting state (eyes closed) EEG was built and utilized as a 
biomarker to predict SMR BCI performance by Zhang et al. [53]. Tonin et al. [45] have 
shown that Shannon entropy can be utilized for the detection of INC state and thus 
improve the usability of a BCI by reducing unintentionally delivered commands during 
SMR BCI operations. They report an accuracy of 93.70% when predicting SMR detection. 
Another research focusing on utilizing entropy for motion detection (prediction) and 
INC state was done by Tortora et al. [46] where they reported an accuracy of 80% when 
detecting motion prediction. Jeong et  al. [25] used dataset from Ofner et  al. [39] and 
employed spectral filtering to improve movement-related cortical potentials detection. 
They achieved accuracy of 74% for detection of ‘elbow flexion’ movement. On the 
same dataset [23] achieved accuracy of 90.50% for detection of ‘hand open’ movement. 
Entropy for feature extraction was used in Chen et al. [12] where authors classified right 
and left-hand MI based on four combined entropy features (Shannon entropy based 
on amplitude, Shannon entropy based on phase, wavelet entropy, and sample entropy) 
and achieved average accuracies up to 85.71%. Sawant et al. [43] used a combination of 
empirical mode decomposition, common spatial patterns, power spectral entropy, and 
Walsh–Hadamard transform in order to acquire their features and achieve an average 
classification accuracy of 87.33% for right and left-hand MI. Ji et al. [26] utilized discrete 
wavelet transform, empirical mode decomposition, and approximate entropy to extract 
right and left-hand features which they classified with 85.71% accuracy.

In our work, we extract and compare amplitude features and entropy features (based 
on different TFRs) from the EEG SMR datasets where participants performed MI in 
congruence with visual guidance, visual and vibrotactile guidance, or visual cues only. 
After pre-processing and feature extraction, we performed classification and compared 
the features based on their classification accuracy and F1 score performance. The 
motivation for this research is to investigate the effectiveness of short-term entropy 
based on various TFRs for detecting MI in a more efficient manner (thus improving 
INC state detection), which could potentially improve the overall performance of BCI 
systems that use MI detection. Additionally, we aimed to investigate further the impact 
of vibrotactile guidance on MI detection, which could provide insights into potential 
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improvements for BCI systems incorporating somatosensory feedback. Overall, the 
study aimed to contribute to the ongoing efforts to improve the performance and 
usability of BCI systems, particularly for individuals with motor disabilities who could 
benefit as potential end users of such MI-based BCI systems.

The paper is structured as follows. “Results and discussion” section provides results 
and their interpretation. In “Conclusion” section, we talk about conclusions and 
future work. In “Methods” section, the process of data acquisition, experiment setup, 
and processing of the data before the classification is described. Lastly, at the end of 
“Methods” section, we show the flowchart diagram of our proposed experiments and 
methods.

Results and discussion
Results acquired after pre-processing of EEG amplitude features for Dataset 1, described 
in “Pre-processing” section, can be seen in Fig.  1. Results are shown for electrode 
location Cz, separately by each condition and direction. Here, we can observe slightly 
different visual evoked potentials (VEPs) in both conditions and both directions at 
certain time-points: appearance of the fixation cross ( t = −4 s), appearance of the visual 
cue ( t = −2 s) and start of the cue movement ( t = 0 s). As we can observe, difference 
between directions in amplitude is not very prominent, yet it is present (notably in MI 
period).

Such amplitude features were used for calculation of different TFRs. Example of results 
for TFR, Rényi entropy and Shannon entropy can be seen in Figs. 2 and 3.

TFR used in Fig. 2 is a Spectrogram representation. In Fig. 2a we can see that condition 
VtG (visual guidance + vibrotactile guidance) has more prominent magnitude of 
Spectrogram during the entire trial for both directions, except for the ”Right” direction 
on noVtG (only visual guidance) around time t = 0.

Rényi and Shannon entropy results where TFR input to calculate the entropy was 
Spectrogram representation can be seen in Fig. 2b. Rényi and Shannon entropy give very 

Fig. 1 Grand average (across all participants) EEG amplitude potentials after the pre-processing described in 
“Pre-processing” section (Dataset 1), for each condition and each direction. Signals shown here are recorded 
on electrode location Cz
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similar results for both conditions and both directions at matching time-points, but as 
we can see, entropy varies during the trial.

For Rényi entropy, it is low before and during the baseline period ( t = −3.5 to t = −2 ), 
increases during the beginning of pre-MI period ( t = −2 to t = −1.5 ), decreases 
towards the end of pre-MI period ( t = −1.5 to t = 0 ), and increases during MI period 
( t = 0 to t = 1.5 ). During the baseline period, Rényi entropy assumes lower values than 
during the MI period.

Fig. 2 Spectrogram TFR, Rényi entropy and Shannon entropy example for each condition and each 
direction for amplitude features (Dataset 1), electrode location Cz. a Grand average (across all participants) 
Spectrogram representation TFR, baseline period is marked with dashed rectangles ( t = −3.5 to t = −2 ). 
b Rényi entropy (left) and Shannon entropy (right) results for Spectrogram representation from a, for each 
window length (long window size is 1 s, and short window size is 0.5 s)
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For Shannon entropy, values are lowest during the pre-MI period, and there is a less 
prominent increase during the pre-MI period (in comparison to baseline).

TFR used in Fig.  3 is Reassigned Pseudo Wigner–Ville. In Fig.  3a, we can see that, 
just like was the case with Spectrogram representation, condition VtG has stronger 
magnitude during key points throughout the trial for both directions.

Rényi and Shannon entropy results where TFR input to calculate the entropy was 
Reassigned Pseudo Wigner–Ville TFR can be seen in Fig. 3b. Resembling Spectrogram 

Fig. 3 Reassigned Pseudo Wigner–Ville TFR, Rényi entropy and Shannon entropy example for each condition 
and each direction for amplitude features (Dataset 1), electrode location Cz. a Grand average (across all 
participants) Reassigned Pseudo Wigner–Ville TFR, baseline period is marked with dashed rectangles 
( t = −3.5 to t = −2 ). b Rényi entropy (left) and Shannon entropy (right) results for Reassigned Pseudo 
Wigner–Ville from a, for each window length (long window size is 1 s and short window size is 0.5 s)
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representation, Rényi and Shannon entropy give very similar results for both conditions 
and both directions at matching time-points, but entropy varies during the trial.

For Rényi entropy, it is low during baseline period ( t = −3.5 to t = −2 ), increases 
temporary at the beginning of pre-MI ( t = −2 to t = −1.5 ), decreases towards the 
end of pre-MI period ( t = −1.5 to t = 0 ), and increases during MI period ( t = 0 to 
t = 1.5 ). During the baseline period, Rényi entropy assumes lower values than during 
the MI period.

Similarly, for Shannon entropy, values are lowest during the pre-MI period and 
highest towards the end of the MI period, but with fewer variations during the entire 
trial.

Classification results for linear discriminant analysis with shrinkage regularization 
classifier (sLDA) in the form grand average (across all participants) accuracies/
F1 during the MI period for amplitude features and Rényi entropy features with 
different TFRs and window sizes are shown in Tables  1 (long window Dataset 1), 2 
(short window Dataset 1), 5 (long window Dataset 2) and 6 (short window Dataset 
2). Results in the same form for Shannon entropy features with different TFRs and 
window sizes can be seen in Tables  3 (long window Dataset 1), 4 (short window 
Dataset 1), 7 (long window Dataset 2) and 8 (short window Dataset 2). TFRs used 
in said tables are: Spectrogram (tfrsp), Reassigned Spectrogram (tfrrsp), Gabor 
representation (tfrgabor), Reassigned Gabor spectrogram (tfrrgab), Pseudo Wigner–
Ville (tfrpwv), Smoothed Pseudo Wigner–Ville (tfrspwv), Reassigned Pseudo Wigner–
Ville (tfrrpwv), Reassigned Smoothed Pseudo Wigner–Ville (tfrrspwv).

Amplitude features classification results

Amplitude features (without entropy) accuracies/F1 can be seen in the first column of 
results in Table 1 (Dataset 1) and Table 5 (Dataset 2). As we can observe, the highest 
accuracy for amplitude features for directions right vs. up is achieved on Dataset 1 when 
using amplitude features with vibrotactile guidance (VtG), and it reaches a value of 
64.07% which corroborates our previous findings [20] that VtG features perform slightly 
better than noVtG features (60.04% accuracy) when classifying different directions based 
on amplitude features. The highest overall accuracies for amplitude features is achieved 
on Dataset 1 when classifying MI (right or up) vs. baseline: between 84.59 and 86.91%.

Dataset 2 amplitude features when classifying different movements achieved 
accuracy of 53.59%, which is around chance level (55%). The highest Dataset 
2 amplitude features accuracies are achieved when classifying MI—EE (elbow 
extension) or EF (elbow flexion)—vs. baseline: between 66.15 and 66.26% (shown in 
Table  5) which is similar to the findings in the study where this dataset originated 
(68% std 8%) [39].

The difference in the performance of our algorithm on Dataset 1 amplitude features 
and Dataset 2 amplitude features could be due to several reasons: paradigms are 
not the same. They are different in timings, movements that are imagined differ 
(movements right and up for Dataset 1 and elbow extension and flexion for Dataset 2) 
and paradigm of Dataset 1 contains vibrotactile guidance on certain trials, which kept 
the participants more engaged with the task. Another reason could be the positive 
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effect of visual guidance (Dataset 1) in comparison to visual cue only (Dataset 2) [49]. 
One more reason for different performance could be the different electrode positions 
availability described in “Dataset 2” section.

Table 2 Dataset 1 short window ( w = 0.5 s ) features grand average (across all participants) 
accuracy and F1 score of sLDA classification, shown by condition, types of features and types of TFRs 
calculated with Rényi entropy

The best results for a certain type of feature are shown in bold

cond Accuracy (%)

TFR tfrsp tfrrsp tfrgabor tfrrgab tfrpwv tfrrpwv tfrspwv tfrrspwv

Feature type Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy

Right vs up VtG 51.06 53.37 53.43 52.86 54.49 55.24 52.22 52.56

noVtG 52.37 53.17 52.49 53.27 53.21 52.78 53.05 51.43

Right vs base VtG 77.33 73.35 82.08 81.65 87.87 98.39 80.43 73.40

noVtG 75.80 71.30 80.94 84.08 89.02 98.78 81.39 70.76

Up vs base VtG 74.66 71.10 80.74 82.40 87.30 98.44 79.04 69.60

noVtG 78.01 70.59 80.87 82.55 90.07 98.65 81.14 72.60

F1 score (%)

Right vs up VtG 50.00 52.70 53.30 51.43 52.78 54.43 51.49 51.54

noVtG 51.41 52.76 51.87 52.41 53.30 51.45 52.58 50.63

Right vs base VtG 76.79 72.25 81.41 80.03 85.93 98.29 79.56 72.75

noVtG 74.31 70.07 80.44 82.74 87.50 98.71 80.47 69.61

Up vs base VtG 73.39 69.69 79.80 80.71 85.29 98.33 77.72 67.95

noVtG 77.03 69.27 80.20 81.17 88.65 98.55 80.03 71.96

Table 3 Dataset 1 long window ( w = 1 s ) features grand average (across all participants) accuracy 
and F1 score of sLDA classification, shown by condition, types of features and types of TFRs 
calculated with Shannon entropy

The best results for a certain type of feature are shown in bold

cond Accuracy (%)

TFR tfrsp tfrrsp tfrgabor tfrrgab tfrpwv tfrrpwv tfrspwv tfrrspwv

Feature type Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy

Right vs up VtG 53.69 52.73 53.14 51.51 52.83 52.74 52.41 53.01

noVtG 53.38 52.78 52.42 53.52 52.71 53.19 52.88 51.99

Right vs base VtG 65.22 59.51 79.40 58.68 83.24 94.21 71.41 62.65

noVtG 65.40 59.29 77.82 58.38 85.32 94.19 71.52 63.41

Up vs base VtG 62.54 60.97 77.30 58.04 81.64 93.77 68.39 61.69

noVtG 67.60 58.41 79.25 57.83 86.23 94.17 72.41 61.32

F1 score (%)

Right vs up VtG 52.51 51.84 52.72 50.07 52.19 52.45 51.16 52.00

noVtG 53.16 52.92 52.05 52.82 51.78 51.85 53.23 51.42

Right vs base VtG 64.29 58.48 78.91 57.51 81.30 93.83 70.98 61.84

noVtG 63.91 58.07 77.22 57.80 83.54 93.76 71.01 62.81

Up vs base VtG 62.03 59.24 76.76 57.00 79.44 93.32 67.83 61.04

noVtG 66.73 57.43 78.73 57.26 84.87 93.78 71.81 60.76
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Rényi entropy classification results

For Dataset 1, the highest accuracy for long window Rényi entropy features is 
achieved with Reassigned Pseudo Wigner–Ville representation TFR and is equal to 
88.29% for VtG right vs. base (shown in Table 1), which is a slight increase of 1.31% 
compared to amplitude VtG features right vs. base (86.91%).

The highest accuracy for short window Rényi entropy features for Dataset 1 and the 
highest Rényi entropy accuracy overall is achieved for noVtG features for direction 
right vs. base when calculating with Reassigned Pseudo Wigner–Ville TFR and is 

Table 4 Dataset 1 short window ( w = 0.5 s ) features grand average (across all participants) 
accuracy and F1 score of sLDA classification, shown by condition, types of features and types of TFRs 
calculated with Shannon entropy

The best results for a certain type of feature are shown in bold

cond Accuracy (%)

TFR tfrsp tfrrsp tfrgabor tfrrgab tfrpwv tfrrpwv tfrspwv tfrrspwv

Feature type Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy

Right vs up VtG 52.40 52.17 52.92 51.93 52.82 54.24 52.54 53.27

noVtG 52.27 53.09 53.12 54.74 53.08 53.97 54.13 52.44

Right vs base VtG 78.62 59.26 89.09 63.56 94.37 99.69 84.16 68.90

noVtG 77.54 58.79 87.72 65.29 94.88 99.87 86.86 67.00

Up vs base VtG 76.33 60.01 87.58 62.62 93.86 99.58 84.41 64.17

noVtG 79.74 57.54 87.56 63.18 95.14 99.75 86.96 67.92

F1 score (%)

Right vs up VtG 50.85 51.25 52.46 51.08 51.61 53.67 51.43 52.49

noVtG 50.69 52.52 51.70 54.36 52.25 52.76 53.58 51.57

Right vs base VtG 77.43 55.79 88.26 62.28 93.86 99.67 83.10 67.52

noVtG 75.88 55.43 86.83 64.44 94.38 99.87 86.10 65.59

Up vs base VtG 74.60 56.79 86.59 61.15 93.25 99.56 83.53 62.43

noVtG 78.55 53.81 86.65 62.03 94.61 99.75 85.95 66.65

Table 5 Dataset 2 long window ( w = 1 s ) and amplitude features grand average (across all 
participants) accuracy and F1 score of sLDA classification, shown by types of features and types of 
TFRs calculated with Rényi entropy

The best results for a certain type of feature are shown in bold

Accuracy (%)

TFR – tfrsp tfrrsp tfrgabor tfrrgab tfrpwv tfrrpwv tfrspwv tfrrspwv

Feature type Ampl. Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy

EE vs EF 53.59 52.49 54.23 52.60 53.65 52.96 51.74 53.67 52.84

EE vs base 66.26 55.13 57.21 54.05 59.35 58.6 71.28 56.42 58.31

EF vs base 66.15 55.23 56.85 54.58 58.61 59.9 70.95 57.01 57.64

F1 score (%)

EE vs EF 52.72 52.42 53.90 52.27 53.08 52.46 50.99 53.04 52.41

EE vs base 55.85 54.68 56.01 52.8 58.56 56.34 70.7 54.7 56.1

EF vs base 56.18 54.61 55.91 53.93 58.27 57.32 70.39 55.16 56.14
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Table 6 Dataset 2 short window ( w = 0.5 s ) features grand average (across all participants) 
accuracy and F1 score of sLDA classification, shown by types of features and types of TFRs calculated 
with Rényi entropy

The best results for a certain type of feature are shown in bold

Accuracy (%)

TFR tfrsp tfrrsp tfrgabor tfrrgab tfrpwv tfrrpwv tfrspwv tfrrspwv

Feature type Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy

EE vs EF 53.37 55.97 52.51 54.61 51.42 53.85 52.91 53.19

EE vs base 63.13 67.76 63 76.25 72.39 87.01 66.88 58.23

EF vs base 64.2 68.68 62.55 76.43 72.24 87.17 65.87 58.37

F1 score (%)

EE vs EF 51.81 55.42 51.78 54.83 51.74 53.31 52.18 52.33

EE vs base 61.16 65.72 61.16 74.48 69.6 85.67 65.85 53.65

EF vs base 62.41 66.87 60.45 74.29 69.7 85.73 64.47 53.23

Table 7 Dataset 2 long window ( w = 1 s ) features grand average (across all participants) accuracy 
and F1 score of sLDA classification, shown by types of features and types of TFRs calculated with 
Shannon entropy

The best results for a certain type of feature are shown in bold

Accuracy (%)

TFR tfrsp tfrrsp tfrgabor tfrrgab tfrpwv tfrrpwv tfrspwv tfrrspwv

Feature type entropy entropy entropy entropy entropy entropy entropy entropy

EE vs EF 53.14 52.9 53.36 53.69 52.34 52.26 51.86 51.7

EE vs base 55.55 57.64 56.26 59.17 63.67 76.86 60.28 62.1

EF vs base 55.9 58.69 57.36 58.36 63.58 76.84 59.41 61.87

F1 score (%)

EE vs EF 53.13 53.13 53.12 53.48 52.77 51.91 51.84 51.77

EE vs base 54.95 56.24 55.69 57.5 61.91 76.11 58.57 60.73

EF vs base 55.44 56.82 57.29 56.52 61.66 76.02 57.66 60.41

Table 8 Dataset 2 short window ( w = 0.5 s ) features grand average (across all participants) 
accuracy and F1 score of sLDA classification, shown by types of features and types of TFRs calculated 
with Shannon entropy

The best results for a certain type of feature are shown in bold

Accuracy (%)

TFR tfrsp tfrrsp tfrgabor tfrrgab tfrpwv tfrrpwv tfrspwv tfrrspwv

Feature type Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy

EE vs EF 52.84 53.09 52.65 52.85 52.15 53.05 51.69 51.79

EE vs base 63.36 59.92 70.53 62.92 84.45 94.82 70.01 61.77

EF vs base 62.66 60.2 69.49 63.62 84.3 95.27 69.02 61.82

F1 score (%)

EE vs EF 51.76 52.38 51.79 52.73 53.25 53.12 51.86 52.13

EE vs base 62.2 56.69 69.67 61.34 83.39 94.61 69.04 58.03

EF vs base 60.9 57.02 68.69 61.45 83.11 95.04 68.23 58.28
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equal to 98.78% (shown in Table 2), which is an increase of 13.10% when compared to 
amplitude noVtG features right vs. base (85.68%).

For Dataset 2, the highest accuracy for long window Rényi entropy features is also 
achieved with Reassigned Pseudo Wigner–Ville representation TFR and is equal to 
71.28 for EE vs. base% (shown in Table 5), which is an increase of 5.02% in comparison 
to amplitude features EE vs. base (66.26%).

The highest accuracy for short window Rényi entropy features For Dataset 2 and the 
highest Rényi entropy accuracy overall for Dataset 2 is achieved for movement EF vs. 
base when calculating with Reassigned Pseudo Wigner–Ville TFR and is equal to 87.17% 
(shown in Table 6), which is an increase of 21.02% when compared to amplitude features 
EF vs. base (66.15%).

Shannon entropy classification results

The accuracies/F1 for both long window and short window Shannon entropy features 
is also best in the Reassigned Pseudo Wigner–Ville TFR (shown in bold in Tables 3, 4, 7 
and 8) as it was the case with Rényi entropy, for both datasets.

For Dataset 1, the highest accuracy for long window Shannon entropy features 
is equal to 94.21% and is achieved for VtG right vs. base when calculating with 
Reassigned Pseudo Wigner–Ville TFR (shown in Table 3). This is an increase of 7.30% 
when compared to amplitude VtG features right vs. base (86.91%) and an increase of 
5.92% when compared to long window Rényi entropy Reassigned Pseudo Wigner–Ville 
representation amplitude VtG features right vs. base (88.29%).

The highest accuracy for short window Shannon entropy features for Dataset 1 and the 
highest overall accuracy is achieved for noVtG features for direction right vs. base when 
calculating with Reassigned Pseudo Wigner–Ville TFR (shown in Table 4) and is equal 
to 99.87%, which is an increase of 14.19% when compared to amplitude noVtG features 
right vs. base (85.68%).

For Dataset 2, the highest accuracy for long window Shannon entropy features is equal 
to 76.86% and is achieved for EE vs. base when calculating with Reassigned Pseudo 
Wigner–Ville TFR (shown in Table 7 which is an increase of 10.60% in comparison to 
amplitude features EE vs. base (66.26%)

The highest accuracy for short window Shannon entropy features For Dataset 2 and 
the highest overall accuracy for Dataset 2 is achieved for movement EF vs. base when 
calculating with Reassigned Pseudo Wigner–Ville TFR and is equal to 95.27% (shown 
in Table 8), which is an increase of 29.12% when compared to amplitude features EF vs. 
base (66.15%). This result is also, to our bes knowledge, better than previous work on the 
same dataset, including [23, 25, 39].

Compared to Rényi entropy, Shannon entropy measure has lower increase during the 
baseline period relative to increase/variation during the MI period (seen in Figs. 2 and 
3), which explains the higher accuracies/F1 that we achieved with Shannon entropy in 
comparison to Rényi entropy.

As can be observed in Tables 1, 2, 3, 4, 5, 6, 7, and 8, some of our Rényi and Shannon 
entropy features performed very well (up to 99.87%) in our main goal of MI detection 
(MI vs. baseline), neither of them performed very well in detection of different directions 



Page 13 of 23Batistić et al. BioMedical Engineering OnLine           (2023) 22:41  

or movements (right vs. up or EE vs. EF) which indicates that the TFRs’ complexity 
and information content contained in different directions of a same limb could not be 
detected in this way, which goes in line with the similarities between directions shown in 
Figs. 2 and 3 explained in “Results and discussion” section.

Conclusion
The brain–computer interfaces based on sensorimotor rhythms are a point of interest to 
many researchers globally. With advances in sensors, signal processing algorithms, and 
intelligent control solutions, better accuracy of the systems is achieved every day.

This paper proposes a new method for processing and detection of MI data and 
provides a comparison of amplitude features, Rényi and Shannon short-term entropy 
features (with various window sizes) used for classification of signals when MI task 
was guided by visual guidance, visual and vibrotactile guidance or visual cue only. 
Methods were tested and developed on Dataset 1 from our previous study [20] and 
additionally tested on publicly available and commonly used Dataset 2 from [39] study. 
Amplitude features give better classification accuracy results than entropy features for 
classification of different directions or movements (up to average 64.07%, Dataset 1), 
but entropy features give better classification accuracy results than amplitude features 
for classification of MI vs. baseline (resulting in average accuracy up to 99.87% for short 
window Shannon entropy for Dataset 1 and average accuracy up to 95.27% for Dataset 
2). When considering different TFRs as input to entropy measure, the best results were 
acquired when using the Reassigned Pseudo Wigner–Ville. Our findings have shown 
that the proposed approach can increase average accuracy up to 14.19% when using 
the proposed entropy features instead of amplitude features in cases of classifying MI 
against the baseline period for Dataset 1 and can increase average accuracy up to 29.12% 
in the same situation for Dataset 2.

From our analysis, we can conclude that MI detection (i.e., classification of MI 
vs. baseline) is very efficient when entropy is used on certain types of TFRs with our 
proposed processing and notably on paradigm with vibrotactile guidance (Dataset 1). 
The approach of processing and classification described in our paper can be utilized 
for efficient detection of MI which is important in real case scenario of usage of BCI 
where unwanted movement detection should not occur, and movement detection 
should be triggered only when there is an actual MI. Furthermore, we can conclude 
that vibrotactile guidance has neither positive nor negative impact on accuracy of MI 
detection, however, we corroborated previous findings that the congruent vibrotactile 
guidance used in MI experiment has a slight positive impact on accuracy of detecting 
different directions or movements (when used on amplitude features).

As for our future work, we plan to expand our dataset with data augmentation methods 
and try to improve classification accuracy with some state-of-the-art classification 
methods from the machine learning field. Besides this, we plan on recording a different 
MI experiment where movement imagination of various limbs would be used in order 
to assess the impact of usage of various TFRs on short-term entropy in such paradigm.
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Methods
In this paper, we used two datasets to develop and test our methods. Dataset 1 is 
acquired from “Feel Your Reach” project from [20, 36]. We chose to use this particular 
dataset because of its variety (two visually guided classes—direction ‘Up’ and direction 
‘Right’; and two conditions—MI with vibrotactile guidance and MI without vibrotactile 
guidance) and simplicity (simple linear continuous center-out MI). Dataset 1 is the 
dataset that our methods were developed on and for that reason in this paper we will be 
focusing mostly on this dataset to describe and introduce our methods. Dataset 2 is the 
SMR dataset acquired from BNCI Horizon 2020 project [39]. This dataset was chosen in 
addition to Dataset 1 to test our methods on one of the commonly used SMR datasets 
that are available online. Although Dataset 2 uses visual cue instead of visual guidance 
and it does not use two different conditions (i.e., it does not have vibrotactile guidance), 
it has simple MI tasks and paradigm very similar to our originally used Dataset 1.

Dataset 1

EEG and electrooculogram (EOG) were recorded from 61 and 3 actiCap electrodes, 
respectively, using two BrainAmp amplifiers (Brain Products GmbH, Gilching, 
Germany) at a sampling rate of 1 kHz. Electrodes were arranged according to the 
international 10/20 EEG system, shown in Fig. 4, where 61 channels were used for EEG, 
and 3 channels were used for EOG. Later, in the processing and classification of data, 
only 31 channels around the motor-related section were used (marked in green on 
Fig. 4).

Data were recorded from 15 participants. Participants were between 21 and 32 years 
old (avg 25.36, std 3.4); 7 males and 8 females. All participants were right-handed. 
Out of the 15 participants, 10 of them had prior experience with MI. Each participant 
participated in one session where six runs were recorded. Each run consisted of either 
VtG (visual guidance + vibrotactile guidance) or noVtG (only visual guidance) MI 

Fig. 4 International 10/20 EEG system cap montage [20]
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tasks (3 VtG and 3 noVtG runs). In condition VtG, vibrotactile guidance was delivered 
by three tactile actuators (C-2 tactors—Engineering Acoustics Inc., Casselberry, USA) 
which were attached to the inside of an elastic shirt to stimulate the right shoulder blade 
[20]. Those tactors delivered haptic vibrotactile guidance in form of a moving sensation 
on participant’s shoulder. In each run, there are 40 trials. Each trial was 7.5 s long, and 
MI happened during a 2-s period, as shown in Fig.  5. The participants were visually 
informed to “Get ready!” at the beginning of each trial, 1.5 s before the appearance of 
the fixation cross. The fixation cross was displayed for 2 s, the latter 1.5 s of which were 
later utilized as a baseline period (used for processing and classification). During this 
period, participants were instructed to fixate their gaze on the fixation cross and relax. 
The monitor then displayed the visual cue, a right hand with a fixation point. During the 
2-s pre-MI interval, it remained stationary before moving either to the right or up at a 
consistent speed. Participants were instructed to perform the MI in accordance with the 
movement of the cue and fixate their gaze on a fixation point (black dot in the middle of 
the hand cue). In condition VtG, participants were subsequently asked to determine if 
the vibrotactile guidance was congruent to the visual guidance in this trial and to answer 
with a (keyboard) keypress [20].

Dataset 2

EEG and EOG were recorded from 61 and 3 active electrodes, respectively, using four 
g.tec amplifiers (g.tec medical engineering GmbH, Austria) at a sampling rate of 512 
Hz. 8th order Chebyshev bandpass filter was used to filter between 0.01 and 200 Hz. 
Electrodes were arranged similarly to the montage shown in Fig. 4, only the 31 electrodes 
marked in green were in matching positions to our Dataset 1 montage. Because of this 
differences in montage, for Dataset 2 we used only electrodes marked in green and EOG 
electrodes for pre-processing, processing and classification.

Data were recorded from 15 participants. Participants were between 22 and 40 years 
old (mean 27, std 5); 6 males and 9 females. All participants except one were right-
handed. Each participant participated in one MI session where ten runs were recorded. 
Each run consisted of different MI tasks where stationary visual cues were presented on 
screen in front of a participant. Tasks were: elbow flexion, elbow extension, supination, 

Fig. 5 Paradigm of the experiment trial for Dataset 1 [20]. Top row of the image (shaded in green and blue) 
depicts the position and activation of the tactors that delivered vibrotactile input (guidance) in congruence 
with the visual input (depicted in the middle row of the image). Timings are shown in the bottom row of the 
image
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pronation, hand close, hand open. In each run, there are 36 trials (6 of each 6 tasks). 
Each trial was 5 s long, and MI happened during a 3-s period, as shown in Fig. 6. The 
fixation cross was displayed for 2  s, the latter 1.5  s of which were later utilized as a 
baseline period (used for processing and classification). During this period, participants 
were instructed to fixate their gaze on the fixation cross. The monitor then displayed the 
stationary visual cue indicating the required task (one of six movements). Participants 
were instructed to perform the MI in accordance with the given stationary visual cue 
[39]. In our work, we used only two tasks: EF (elbow flexion) and EE (elbow extension). 
These tasks were selected because of their similarity to tasks from Dataset 1 (MI ‘up’ and 
‘right’).

Some of the differences in Dataset 2 from Dataset 1 are: paradigms are different in 
timings, movements that are imagined differ (movements right and up for Dataset 
1 and elbow extension and flexion for Dataset 2) and paradigm of Dataset 1 contains 
vibrotactile guidance on certain trials. Dataset 1 also contains visual guidance while 
Dataset 2 contains stationary visual cue only.

Pre‑processing

Before classification, data were pre-processed in the following manner: 

1. Data were downsampled to 200  Hz, bandpass filtered between 1 and 40 Hz (4th 
order zero-phase Butterworth filter [8]), epoched to a relevant period (Dataset 1: 
from t = −5.5 s to t = 2 s as shown in Fig. 5. Dataset 2: from t = 0 s to t = 5 s as 
shown in Fig. 6).

2. Bad trials were rejected based on amplitude threshold and artifact presence, using 
EEGLAB MATLAB toolbox [13]

3. Independent Component Analysis (ICA) [13, 33] was performed for each 
participant separately. For Dataset 1 it was performed on 61 EEG channels (giving 
61 independent components). The remaining 3 EOG channels were used for artifact 
removal. For Dataset 2 it was performed on 31 EEG channels (giving 31 independent 
components). The remaining 3 EOG channels were used for artifact removal. For 
both datasets, only relevant independent components (IC) were kept—with SASICA 
[11] and manual IC rejection.

4. Data were further filtered in bands of interest with the 4th order zero-phase 
Butterworth filter, specifically 0.2 to 5 Hz for amplitude features. This band was 

Fig. 6 Paradigm of the experiment trial for Dataset 2 [39]
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selected due to best performance of amplitude features shown in our previous study 
[20].

5. Amplitude features were then further downsampled to 20 Hz.
6. 31 relevant channels around the motor-related section were selected for further 

analysis and processing (marked in green on Fig. 4).

From here, classification was done based on the amplitude features. For the classification 
of the entropy features, we first calculated different TFRs from amplitude features, then, 
the short-term entropy (Rényi or Shannon) were calculated from those TFRs with two 
different window sizes, i.e., long window ( w = 1  s) and short window ( w = 0.5  s), in 
order to inspect the influence of various window lengths on entropy results. Window 
size of w = 0.5 s was selected as a lower limit because the further decrease of window 
size has a negligible increase of accuracy as an effect but at the cost of an increase 
in computational time. In this work, we performed a classification comparison of 
amplitude features, Rényi entropy features, and Shannon entropy features. Both Rényi 
and Shannon entropy were calculated from different TFRs.

Entropy calculation

The entropy is used as an indicator of the energy distribution concentration of the 
TFR [37]. The interpretation is that a highly concentrated TFR with a small number of 
components has lower entropy than a signal with a large number of signal components 
[7]. Short term entropy was calculated on the moving window of either long window 
( w = 1  s) or short window ( w = 0.5  s) width and 50 ms step, over each trial, for each 
channel separately. Value at a certain time-point is calculated from a window that 
reaches on both sides of that time-point equidistantly.

The Rényi entropy is calculated as:

where Rα
x is the α order Rényi entropy for the TFRx (due to oscillation reducing effects, 

we have set Rényi entropy order to α = 3 as in Baraniuk et al. [5]). Since certain TFRs 
can assume negative values due to the interferences, we have taken absolute values of the 
calculated TFR before calculating an entropy.

To compare with the Rényi entropy, we also utilized the Shannon entropy defined as:

Time–frequency representations

Time–frequency representations may be divided into two classes: Cohen’s class and 
Affine class. Cohen’s class TFRs are quadratic or bilinear TFRs that are covariant by 
translation in time and frequency. Affine class TFRs are bilinear TFRs covariant by 
translation in time and dilation. In our experiment, we focus on Cohen’s class TFRs 
because they yielded better results in our preliminary studies, most likely due to a high 

(1)Rα
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number of cross-terms present in the affine class TFRs. Four different TFRs and their 
four reassigned counterparts were used as part of this analysis.

The reassignment method is used in order to improve signal sharpness or 
concentration. The reassignment method aims to move TFRs values away from where 
they are computed towards the center of gravity, in order to produce better localization 
of the signal components [2]. The key principle of the method is that values of a certain 
distribution have no reason to be symmetrically distributed around a certain time–
frequency point where they are usually calculated, but rather at the center of gravity of 
this domain, which gives a better representation of the local energy distribution of the 
signal [3].

For the entropy calculation, we used the following Cohen’s class TFRs: 

1. Spectrogram, which is a simple Cohen’s class TFR and can be interpreted as bilinear 
energy distribution. Spectrogram has a trade-off between the time resolution and 
frequency resolution as a drawback and good interference deduction if two signal 
components are sufficiently far apart [3, 22]. The spectrogram is calculated as: 

 where h is a frequency smoothing window. We can interpret the spectrogram as 
a measure of the energy of the signal contained in the time–frequency domain 
centered on the point (t, ν) [3].

2. Reassigned Spectrogram, introduced as an attempt to improve the spectrogram’s 
localization to produce sharper representation of signal components [3]. The 
reassigned spectrograms is calculated with the equation 

 where δ is reassignment operation, (t ′, ν′) is the value of reassigned spectrogram 
and (t̂, v̂) is a center of gravity of the signal energy distribution around (t,  v). The 
reassigned spectrogram also uses the phase information of the short-time Fourier 
transform, and not only its squared modulus as it is the case with the spectrogram 
[3].

3. Gabor representation was introduced to remove the highly oscillated cross-terms 
without significantly altering desirable properties, i.e., it can balance the resolution 
and cross-term interference [6, 16]. The Gabor representation is calculated as: 

 where Gx[n,m; h] are Gabor coefficients (n, m).
4. Reassigned Gabor spectrogram which is a reassigned spectrogram utilizing Gabor 

representation [16]. Calculated with Eq. (4), but utilizing Gaussian window instead of 
frequency smoothing window, thus allowing faster computation [3].
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5. Pseudo Wigner–Ville distribution is based on Wigner–Ville distribution (WVD) 
which has many desirable properties such as preservation of time and frequency 
shifts and energy conservation. Since WVD has a drawback of producing strong 
cross-terms in multicomponent signals [6], Pseudo Wigner–Ville distribution 
introduces windowing operation which is equivalent to frequency smoothing of 
WVD [3, 24]. As a result, cross-terms are attenuated comparing to regular WVD. It 
is calculated as: 

 where h is frequency smoothing operation.
6. Smoothed Pseudo Wigner–Ville is a pseudo Wigner–Ville distribution that utilizes 

time and frequency smoothing (in contrast to frequency only smoothing that is 
present in Pseudo Wigner–Ville) in order to smooth the signal in time and frequency 
domain [1]. The previous compromise of spectrogram between time and frequency 
resolutions is now replaced by a compromise between the joint time–frequency 
resolution and the level of cross-terms (more smoothing results in poorer resolution) 
[3]. It is defined as: 

 where g is time smoothing operation.
7. Reassigned Pseudo Wigner–Ville is a Pseudo Wigner–Ville TFR that utilizes 

reassignment method [3], and is calculated as: 

8. Reassigned Smoothed Pseudo Wigner–Ville is a Pseudo Wigner–Ville TFR that 
utilizes reassignment method and separable (time and frequency) smoothing 
function. It is defined as: 

 where g is the time smoothing window.

Classification

We performed classification of several feature types:
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• Amplitude features
• Entropy features (long window, i.e., w = 1 s)
• Entropy features (short window, i.e., w = 0.5 s).

Every one of the feature types was classified based upon several class distributions.
For Dataset 1:

• Condition VtG, directions: right vs up
• Condition noVtG, directions: right vs up
• Condition VtG: direction right vs baseline
• Condition VtG: direction up vs baseline
• Condition noVtG: direction right vs baseline
• Condition noVtG: direction up vs baseline.

For Dataset 2:

• Movements: EE vs EF
• Movement EE vs baseline
• Movement EF vs baseline.

For the classification of selected features, we used linear discriminant analysis with 
shrinkage regularization (sLDA) classifier and did the classification in a fivefold way 
wherein each fold 75% of the dataset was used for training and cross-validation, and 
25% for testing. Accuracies and F1 scores are calculated in the following manner: first, 
average accuracy/F1 for every single participant separately was calculated; second, a 
grand average accuracy/F1 across all participants was calculated (average accuracy/F1 

Fig. 7 Flowchart diagram of the data acquisition (purple), processing pipeline (yellow for pre-processing, 
blue for amplitude features processing, and red for entropy features processing), and classification (gray) 
phases of our proposed method. Note that the Dataset 1 uses Visual guidance and a combination of Visual 
guidance and Vibrotactile guidance, and the Dataset 2 uses Visual cue only



Page 21 of 23Batistić et al. BioMedical Engineering OnLine           (2023) 22:41  

of all participants); third, grand average accuracy/F1 during MI period was taken into 
consideration as an end result of classification accuracy/F1.

The accuracy is calculated as:

and F1 is calculated as:

where n is the number of trials, TP is the number of True Positives, TN is the number 
of true negatives, FP is the number of False Positives, and FN is the number of False 
Negatives. F1 score represents the harmonic mean of the precision and recall of the 
classification.

To summarize “Methods” section, in Fig.  7 we can see a flowchart diagram of our 
proposed method, including data acquisition, processing, and classification phases.
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